blender/release/scripts/freestyle/style_modules/ChainingIterators.py
Tamito Kajiyama 39f8c6e189 Freestyle Python API improvements - part 5.
Handling of keyword arguments in Python wrapper class constructors was revised.
This revision is mainly focused on Interface0D, Interface1D, Iterator, and
their subclasses, as well as a few additional view map component classes.

Implementation notes: Because of the extensive use of constructor overloading
in the underlying C++ classes, the corresponding Python wrappers try to parse
arguments through multiple calls of PyArg_ParseTupleAndKeywords() if needed.
The downside of this implementation is that most argument errors result in the
same error message ("invalid argument(s)") without indicating what is wrong.
For now this issue is left for future work.

* Now the instantiation of ViewVertex is prohibited since the underlying
C++ class is an abstract class.

* Removed the .cast_to_interface0diterator() method from CurvePointIterator
and StrokeVertexIterator.  Instead the constructor of Interface0DIterator now
accepts the instances of these two iterator classes to construct a nested
Interface0DIterator instance that can be passed to Function0D functor objects.
Specifically, an iterator 'it' is passed to a functor 'func' as follows:

  func(Interface0DIterator(it))

instead of:

  func(it.cast_to_interface0diterator())

* Boolean arguments of class constructors only accept values of boolean type.
Input values of other types are considered as error.

* Additional code clean-up was made.
2013-02-21 02:57:44 +00:00

727 lines
22 KiB
Python

#
# Filename : ChainingIterators.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Chaining Iterators to be used with chaining operators
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
## the natural chaining iterator
## It follows the edges of same nature following the topology of
## objects with preseance on silhouettes, then borders,
## then suggestive contours, then everything else. It doesn't chain the same ViewEdge twice
## You can specify whether to stay in the selection or not.
class pyChainSilhouetteIterator(ChainingIterator):
def __init__(self, stayInSelection=True):
ChainingIterator.__init__(self, stayInSelection, True, None, True)
def getExactTypeName(self):
return "pyChainSilhouetteIterator"
def init(self):
pass
def traverse(self, iter):
winner = None
it = AdjacencyIterator(iter)
tvertex = self.next_vertex
if type(tvertex) is TVertex:
mateVE = tvertex.get_mate(self.current_edge)
while not it.is_end:
ve = it.object
if ve.id == mateVE.id:
winner = ve
break
it.increment()
else:
## case of NonTVertex
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
for i in range(len(natures)):
currentNature = self.current_edge.nature
if (natures[i] & currentNature) != 0:
count=0
while not it.is_end:
visitNext = 0
oNature = it.object.nature
if (oNature & natures[i]) != 0:
if natures[i] != oNature:
for j in range(i):
if (natures[j] & oNature) != 0:
visitNext = 1
break
if visitNext != 0:
break
count = count+1
winner = it.object
it.increment()
if count != 1:
winner = None
break
return winner
## the natural chaining iterator
## It follows the edges of same nature on the same
## objects with preseance on silhouettes, then borders,
## then suggestive contours, then everything else. It doesn't chain the same ViewEdge twice
## You can specify whether to stay in the selection or not.
## You can specify whether to chain iterate over edges that were
## already visited or not.
class pyChainSilhouetteGenericIterator(ChainingIterator):
def __init__(self, stayInSelection=True, stayInUnvisited=True):
ChainingIterator.__init__(self, stayInSelection, stayInUnvisited, None, True)
def getExactTypeName(self):
return "pyChainSilhouetteGenericIterator"
def init(self):
pass
def traverse(self, iter):
winner = None
it = AdjacencyIterator(iter)
tvertex = self.next_vertex
if type(tvertex) is TVertex:
mateVE = tvertex.get_mate(self.current_edge)
while not it.is_end:
ve = it.object
if ve.id == mateVE.id:
winner = ve
break
it.increment()
else:
## case of NonTVertex
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
for i in range(len(natures)):
currentNature = self.current_edge.nature
if (natures[i] & currentNature) != 0:
count=0
while not it.is_end:
visitNext = 0
oNature = it.object.nature
ve = it.object
if ve.id == self.current_edge.id:
it.increment()
continue
if (oNature & natures[i]) != 0:
if natures[i] != oNature:
for j in range(i):
if (natures[j] & oNature) != 0:
visitNext = 1
break
if visitNext != 0:
break
count = count+1
winner = ve
it.increment()
if count != 1:
winner = None
break
return winner
class pyExternalContourChainingIterator(ChainingIterator):
def __init__(self):
ChainingIterator.__init__(self, False, True, None, True)
self._isExternalContour = ExternalContourUP1D()
def getExactTypeName(self):
return "pyExternalContourIterator"
def init(self):
self._nEdges = 0
self._isInSelection = 1
def checkViewEdge(self, ve, orientation):
if orientation != 0:
vertex = ve.second_svertex()
else:
vertex = ve.first_svertex()
it = AdjacencyIterator(vertex,1,1)
while not it.is_end:
ave = it.object
if self._isExternalContour(ave):
return 1
it.increment()
print("pyExternlContourChainingIterator : didn't find next edge")
return 0
def traverse(self, iter):
winner = None
it = AdjacencyIterator(iter)
while not it.is_end:
ve = it.object
if self._isExternalContour(ve):
if ve.time_stamp == GetTimeStampCF():
winner = ve
it.increment()
self._nEdges = self._nEdges+1
if winner is None:
orient = 1
it = AdjacencyIterator(iter)
while not it.is_end:
ve = it.object
if it.is_incoming:
orient = 0
good = self.checkViewEdge(ve,orient)
if good != 0:
winner = ve
it.increment()
return winner
## the natural chaining iterator
## with a sketchy multiple touch
class pySketchyChainSilhouetteIterator(ChainingIterator):
def __init__(self, nRounds=3,stayInSelection=True):
ChainingIterator.__init__(self, stayInSelection, False, None, True)
self._timeStamp = GetTimeStampCF()+nRounds
self._nRounds = nRounds
def getExactTypeName(self):
return "pySketchyChainSilhouetteIterator"
def init(self):
self._timeStamp = GetTimeStampCF()+self._nRounds
def traverse(self, iter):
winner = None
it = AdjacencyIterator(iter)
tvertex = self.next_vertex
if type(tvertex) is TVertex:
mateVE = tvertex.get_mate(self.current_edge)
while not it.is_end:
ve = it.object
if ve.id == mateVE.id:
winner = ve
break
it.increment()
else:
## case of NonTVertex
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
for i in range(len(natures)):
currentNature = self.current_edge.nature
if (natures[i] & currentNature) != 0:
count=0
while not it.is_end:
visitNext = 0
oNature = it.object.nature
ve = it.object
if ve.id == self.current_edge.id:
it.increment()
continue
if (oNature & natures[i]) != 0:
if (natures[i] != oNature) != 0:
for j in range(i):
if (natures[j] & oNature) != 0:
visitNext = 1
break
if visitNext != 0:
break
count = count+1
winner = ve
it.increment()
if count != 1:
winner = None
break
if winner is None:
winner = self.current_edge
if winner.chaining_time_stamp == self._timeStamp:
winner = None
return winner
# Chaining iterator designed for sketchy style.
# can chain several times the same ViewEdge
# in order to produce multiple strokes per ViewEdge.
class pySketchyChainingIterator(ChainingIterator):
def __init__(self, nRounds=3, stayInSelection=True):
ChainingIterator.__init__(self, stayInSelection, False, None, True)
self._timeStamp = GetTimeStampCF()+nRounds
self._nRounds = nRounds
def getExactTypeName(self):
return "pySketchyChainingIterator"
def init(self):
self._timeStamp = GetTimeStampCF()+self._nRounds
def traverse(self, iter):
winner = None
it = AdjacencyIterator(iter)
while not it.is_end:
ve = it.object
if ve.id == self.current_edge.id:
it.increment()
continue
winner = ve
it.increment()
if winner is None:
winner = self.current_edge
if winner.chaining_time_stamp == self._timeStamp:
return None
return winner
## Chaining iterator that fills small occlusions
## percent
## The max length of the occluded part
## expressed in % of the total chain length
class pyFillOcclusionsRelativeChainingIterator(ChainingIterator):
def __init__(self, percent):
ChainingIterator.__init__(self, False, True, None, True)
self._length = 0
self._percent = float(percent)
def getExactTypeName(self):
return "pyFillOcclusionsChainingIterator"
def init(self):
# each time we're evaluating a chain length
# we try to do it once. Thus we reinit
# the chain length here:
self._length = 0
def traverse(self, iter):
winner = None
winnerOrientation = 0
print(self.current_edge.id.first, self.current_edge.id.second)
it = AdjacencyIterator(iter)
tvertex = self.next_vertex
if type(tvertex) is TVertex:
mateVE = tvertex.get_mate(self.current_edge)
while not it.is_end:
ve = it.object
if ve.id == mateVE.id:
winner = ve
if not it.is_incoming:
winnerOrientation = 1
else:
winnerOrientation = 0
break
it.increment()
else:
## case of NonTVertex
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
for nat in natures:
if (self.current_edge.nature & nat) != 0:
count=0
while not it.is_end:
ve = it.object
if (ve.nature & nat) != 0:
count = count+1
winner = ve
if not it.is_incoming:
winnerOrientation = 1
else:
winnerOrientation = 0
it.increment()
if count != 1:
winner = None
break
if winner is not None:
# check whether this edge was part of the selection
if winner.time_stamp != GetTimeStampCF():
#print("---", winner.id.first, winner.id.second)
# if not, let's check whether it's short enough with
# respect to the chain made without staying in the selection
#------------------------------------------------------------
# Did we compute the prospective chain length already ?
if self._length == 0:
#if not, let's do it
_it = pyChainSilhouetteGenericIterator(0,0)
_it.begin = winner
_it.current_edge = winner
_it.orientation = winnerOrientation
_it.init()
while not _it.is_end:
ve = _it.object
#print("--------", ve.id.first, ve.id.second)
self._length = self._length + ve.length_2d
_it.increment()
if _it.is_begin:
break;
_it.begin = winner
_it.current_edge = winner
_it.orientation = winnerOrientation
if not _it.is_begin:
_it.decrement()
while (not _it.is_end) and (not _it.is_begin):
ve = _it.object
#print("--------", ve.id.first, ve.id.second)
self._length = self._length + ve.length_2d
_it.decrement()
# let's do the comparison:
# nw let's compute the length of this connex non selected part:
connexl = 0
_cit = pyChainSilhouetteGenericIterator(0,0)
_cit.begin = winner
_cit.current_edge = winner
_cit.orientation = winnerOrientation
_cit.init()
while _cit.is_end == 0 and _cit.object.time_stamp != GetTimeStampCF():
ve = _cit.object
#print("-------- --------", ve.id.first, ve.id.second)
connexl = connexl + ve.length_2d
_cit.increment()
if connexl > self._percent * self._length:
winner = None
return winner
## Chaining iterator that fills small occlusions
## size
## The max length of the occluded part
## expressed in pixels
class pyFillOcclusionsAbsoluteChainingIterator(ChainingIterator):
def __init__(self, length):
ChainingIterator.__init__(self, False, True, None, True)
self._length = float(length)
def getExactTypeName(self):
return "pySmallFillOcclusionsChainingIterator"
def init(self):
pass
def traverse(self, iter):
winner = None
winnerOrientation = 0
#print(self.current_edge.id.first, self.current_edge.id.second)
it = AdjacencyIterator(iter)
tvertex = self.next_vertex
if type(tvertex) is TVertex:
mateVE = tvertex.get_mate(self.current_edge)
while not it.is_end:
ve = it.object
if ve.id == mateVE.id:
winner = ve
if not it.is_incoming:
winnerOrientation = 1
else:
winnerOrientation = 0
break
it.increment()
else:
## case of NonTVertex
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
for nat in natures:
if (self.current_edge.nature & nat) != 0:
count=0
while not it.is_end:
ve = it.object
if (ve.nature & nat) != 0:
count = count+1
winner = ve
if not it.is_incoming:
winnerOrientation = 1
else:
winnerOrientation = 0
it.increment()
if count != 1:
winner = None
break
if winner is not None:
# check whether this edge was part of the selection
if winner.time_stamp != GetTimeStampCF():
#print("---", winner.id.first, winner.id.second)
# nw let's compute the length of this connex non selected part:
connexl = 0
_cit = pyChainSilhouetteGenericIterator(0,0)
_cit.begin = winner
_cit.current_edge = winner
_cit.orientation = winnerOrientation
_cit.init()
while _cit.is_end == 0 and _cit.object.time_stamp != GetTimeStampCF():
ve = _cit.object
#print("-------- --------", ve.id.first, ve.id.second)
connexl = connexl + ve.length_2d
_cit.increment()
if connexl > self._length:
winner = None
return winner
## Chaining iterator that fills small occlusions
## percent
## The max length of the occluded part
## expressed in % of the total chain length
class pyFillOcclusionsAbsoluteAndRelativeChainingIterator(ChainingIterator):
def __init__(self, percent, l):
ChainingIterator.__init__(self, False, True, None, True)
self._length = 0
self._absLength = l
self._percent = float(percent)
def getExactTypeName(self):
return "pyFillOcclusionsChainingIterator"
def init(self):
# each time we're evaluating a chain length
# we try to do it once. Thus we reinit
# the chain length here:
self._length = 0
def traverse(self, iter):
winner = None
winnerOrientation = 0
print(self.current_edge.id.first, self.current_edge.id.second)
it = AdjacencyIterator(iter)
tvertex = self.next_vertex
if type(tvertex) is TVertex:
mateVE = tvertex.get_mate(self.current_edge)
while not it.is_end:
ve = it.object
if ve.id == mateVE.id:
winner = ve
if not it.is_incoming:
winnerOrientation = 1
else:
winnerOrientation = 0
break
it.increment()
else:
## case of NonTVertex
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
for nat in natures:
if (self.current_edge.nature & nat) != 0:
count=0
while not it.is_end:
ve = it.object
if (ve.nature & nat) != 0:
count = count+1
winner = ve
if not it.is_incoming:
winnerOrientation = 1
else:
winnerOrientation = 0
it.increment()
if count != 1:
winner = None
break
if winner is not None:
# check whether this edge was part of the selection
if winner.time_stamp != GetTimeStampCF():
#print("---", winner.id.first, winner.id.second)
# if not, let's check whether it's short enough with
# respect to the chain made without staying in the selection
#------------------------------------------------------------
# Did we compute the prospective chain length already ?
if self._length == 0:
#if not, let's do it
_it = pyChainSilhouetteGenericIterator(0,0)
_it.begin = winner
_it.current_edge = winner
_it.orientation = winnerOrientation
_it.init()
while not _it.is_end:
ve = _it.object
#print("--------", ve.id.first, ve.id.second)
self._length = self._length + ve.length_2d
_it.increment()
if _it.is_begin:
break;
_it.begin = winner
_it.current_edge = winner
_it.orientation = winnerOrientation
if not _it.is_begin:
_it.decrement()
while (not _it.is_end) and (not _it.is_begin):
ve = _it.object
#print("--------", ve.id.first, ve.id.second)
self._length = self._length + ve.length_2d
_it.decrement()
# let's do the comparison:
# nw let's compute the length of this connex non selected part:
connexl = 0
_cit = pyChainSilhouetteGenericIterator(0,0)
_cit.begin = winner
_cit.current_edge = winner
_cit.orientation = winnerOrientation
_cit.init()
while _cit.is_end == 0 and _cit.object.time_stamp != GetTimeStampCF():
ve = _cit.object
#print("-------- --------", ve.id.first, ve.id.second)
connexl = connexl + ve.length_2d
_cit.increment()
if (connexl > self._percent * self._length) or (connexl > self._absLength):
winner = None
return winner
## Chaining iterator that fills small occlusions without caring about the
## actual selection
## percent
## The max length of the occluded part
## expressed in % of the total chain length
class pyFillQi0AbsoluteAndRelativeChainingIterator(ChainingIterator):
def __init__(self, percent, l):
ChainingIterator.__init__(self, False, True, None, True)
self._length = 0
self._absLength = l
self._percent = float(percent)
def getExactTypeName(self):
return "pyFillOcclusionsChainingIterator"
def init(self):
# each time we're evaluating a chain length
# we try to do it once. Thus we reinit
# the chain length here:
self._length = 0
def traverse(self, iter):
winner = None
winnerOrientation = 0
print(self.current_edge.id.first, self.current_edge.id.second)
it = AdjacencyIterator(iter)
tvertex = self.next_vertex
if type(tvertex) is TVertex:
mateVE = tvertex.get_mate(self.current_edge)
while not it.is_end:
ve = it.object
if ve.id == mateVE.id:
winner = ve
if not it.is_incoming:
winnerOrientation = 1
else:
winnerOrientation = 0
break
it.increment()
else:
## case of NonTVertex
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
for nat in natures:
if (self.current_edge.nature & nat) != 0:
count=0
while not it.is_end:
ve = it.object
if (ve.nature & nat) != 0:
count = count+1
winner = ve
if not it.is_incoming:
winnerOrientation = 1
else:
winnerOrientation = 0
it.increment()
if count != 1:
winner = None
break
if winner is not None:
# check whether this edge was part of the selection
if winner.qi != 0:
#print("---", winner.id.first, winner.id.second)
# if not, let's check whether it's short enough with
# respect to the chain made without staying in the selection
#------------------------------------------------------------
# Did we compute the prospective chain length already ?
if self._length == 0:
#if not, let's do it
_it = pyChainSilhouetteGenericIterator(0,0)
_it.begin = winner
_it.current_edge = winner
_it.orientation = winnerOrientation
_it.init()
while not _it.is_end:
ve = _it.object
#print("--------", ve.id.first, ve.id.second)
self._length = self._length + ve.length_2d
_it.increment()
if _it.is_begin:
break;
_it.begin = winner
_it.current_edge = winner
_it.orientation = winnerOrientation
if not _it.is_begin:
_it.decrement()
while (not _it.is_end) and (not _it.is_begin):
ve = _it.object
#print("--------", ve.id.first, ve.id.second)
self._length = self._length + ve.length_2d
_it.decrement()
# let's do the comparison:
# nw let's compute the length of this connex non selected part:
connexl = 0
_cit = pyChainSilhouetteGenericIterator(0,0)
_cit.begin = winner
_cit.current_edge = winner
_cit.orientation = winnerOrientation
_cit.init()
while not _cit.is_end and _cit.object.qi != 0:
ve = _cit.object
#print("-------- --------", ve.id.first, ve.id.second)
connexl = connexl + ve.length_2d
_cit.increment()
if (connexl > self._percent * self._length) or (connexl > self._absLength):
winner = None
return winner
## the natural chaining iterator
## It follows the edges of same nature on the same
## objects with preseance on silhouettes, then borders,
## then suggestive contours, then everything else. It doesn't chain the same ViewEdge twice
## You can specify whether to stay in the selection or not.
class pyNoIdChainSilhouetteIterator(ChainingIterator):
def __init__(self, stayInSelection=True):
ChainingIterator.__init__(self, stayInSelection, True, None, True)
def getExactTypeName(self):
return "pyChainSilhouetteIterator"
def init(self):
pass
def traverse(self, iter):
winner = None
it = AdjacencyIterator(iter)
tvertex = self.next_vertex
if type(tvertex) is TVertex:
mateVE = tvertex.get_mate(self.current_edge)
while not it.is_end:
ve = it.object
feB = self.current_edge.last_fedge
feA = ve.first_fedge
vB = feB.second_svertex
vA = feA.first_svertex
if vA.id.first == vB.id.first:
winner = ve
break
feA = self.current_edge.first_fedge
feB = ve.last_fedge
vB = feB.second_svertex
vA = feA.first_svertex
if vA.id.first == vB.id.first:
winner = ve
break
feA = self.current_edge.last_fedge
feB = ve.last_fedge
vB = feB.second_svertex
vA = feA.second_svertex
if vA.id.first == vB.id.first:
winner = ve
break
feA = self.current_edge.first_fedge
feB = ve.first_fedge
vB = feB.first_svertex
vA = feA.first_svertex
if vA.id.first == vB.id.first:
winner = ve
break
it.increment()
else:
## case of NonTVertex
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
for i in range(len(natures)):
currentNature = self.current_edge.nature
if (natures[i] & currentNature) != 0:
count=0
while not it.is_end:
visitNext = 0
oNature = it.object.nature
if (oNature & natures[i]) != 0:
if natures[i] != oNature:
for j in range(i):
if (natures[j] & oNature) != 0:
visitNext = 1
break
if visitNext != 0:
break
count = count+1
winner = it.object
it.increment()
if count != 1:
winner = None
break
return winner