blender/intern/cycles/device/device_memory.h
Sergey Sharybin 34e7285b0a Cycles: Gracefully handle out-of-memory happening in device vector
Currently only image loading benefits of this and will give magenta color
when image manager detects it's running out of memory.

This isn't ideal solution and can't handle all cases. For example, OOM
killer might kill process before it realized it run out of memory, but
in other cases this could prevent some crashes.

Reviewers: juicyfruit, dingto

Differential Revision: https://developer.blender.org/D1502
2015-10-11 19:41:59 +05:00

284 lines
6.4 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __DEVICE_MEMORY_H__
#define __DEVICE_MEMORY_H__
/* Device Memory
*
* This file defines data types that can be used in device memory arrays, and
* a device_vector<T> type to store such arrays.
*
* device_vector<T> contains an STL vector, metadata about the data type,
* dimensions, elements, and a device pointer. For the CPU device this is just
* a pointer to the STL vector data, as no copying needs to take place. For
* other devices this is a pointer to device memory, where we will copy memory
* to and from. */
#include "util_debug.h"
#include "util_half.h"
#include "util_types.h"
#include "util_vector.h"
CCL_NAMESPACE_BEGIN
enum MemoryType {
MEM_READ_ONLY,
MEM_WRITE_ONLY,
MEM_READ_WRITE
};
/* Supported Data Types */
enum DataType {
TYPE_UCHAR,
TYPE_UINT,
TYPE_INT,
TYPE_FLOAT,
TYPE_HALF
};
static inline size_t datatype_size(DataType datatype)
{
switch(datatype) {
case TYPE_UCHAR: return sizeof(uchar);
case TYPE_FLOAT: return sizeof(float);
case TYPE_UINT: return sizeof(uint);
case TYPE_INT: return sizeof(int);
case TYPE_HALF: return sizeof(half);
default: return 0;
}
}
/* Traits for data types */
template<typename T> struct device_type_traits {
static const DataType data_type = TYPE_UCHAR;
static const int num_elements = 0;
};
template<> struct device_type_traits<uchar> {
static const DataType data_type = TYPE_UCHAR;
static const int num_elements = 1;
};
template<> struct device_type_traits<uchar2> {
static const DataType data_type = TYPE_UCHAR;
static const int num_elements = 2;
};
template<> struct device_type_traits<uchar3> {
static const DataType data_type = TYPE_UCHAR;
static const int num_elements = 3;
};
template<> struct device_type_traits<uchar4> {
static const DataType data_type = TYPE_UCHAR;
static const int num_elements = 4;
};
template<> struct device_type_traits<uint> {
static const DataType data_type = TYPE_UINT;
static const int num_elements = 1;
};
template<> struct device_type_traits<uint2> {
static const DataType data_type = TYPE_UINT;
static const int num_elements = 2;
};
template<> struct device_type_traits<uint3> {
static const DataType data_type = TYPE_UINT;
static const int num_elements = 3;
};
template<> struct device_type_traits<uint4> {
static const DataType data_type = TYPE_UINT;
static const int num_elements = 4;
};
template<> struct device_type_traits<int> {
static const DataType data_type = TYPE_INT;
static const int num_elements = 1;
};
template<> struct device_type_traits<int2> {
static const DataType data_type = TYPE_INT;
static const int num_elements = 2;
};
template<> struct device_type_traits<int3> {
static const DataType data_type = TYPE_INT;
static const int num_elements = 3;
};
template<> struct device_type_traits<int4> {
static const DataType data_type = TYPE_INT;
static const int num_elements = 4;
};
template<> struct device_type_traits<float> {
static const DataType data_type = TYPE_FLOAT;
static const int num_elements = 1;
};
template<> struct device_type_traits<float2> {
static const DataType data_type = TYPE_FLOAT;
static const int num_elements = 2;
};
template<> struct device_type_traits<float3> {
static const DataType data_type = TYPE_FLOAT;
static const int num_elements = 3;
};
template<> struct device_type_traits<float4> {
static const DataType data_type = TYPE_FLOAT;
static const int num_elements = 4;
};
template<> struct device_type_traits<half4> {
static const DataType data_type = TYPE_HALF;
static const int num_elements = 4;
};
/* Device Memory */
class device_memory
{
public:
size_t memory_size() { return data_size*data_elements*datatype_size(data_type); }
/* data information */
DataType data_type;
int data_elements;
device_ptr data_pointer;
size_t data_size;
size_t device_size;
size_t data_width;
size_t data_height;
size_t data_depth;
/* device pointer */
device_ptr device_pointer;
protected:
device_memory() {}
virtual ~device_memory() { assert(!device_pointer); }
/* no copying */
device_memory(const device_memory&);
device_memory& operator = (const device_memory&);
};
/* Device Vector */
template<typename T> class device_vector : public device_memory
{
public:
device_vector()
{
data_type = device_type_traits<T>::data_type;
data_elements = device_type_traits<T>::num_elements;
data_pointer = 0;
data_size = 0;
device_size = 0;
data_width = 0;
data_height = 0;
data_depth = 0;
assert(data_elements > 0);
device_pointer = 0;
}
virtual ~device_vector() {}
/* vector functions */
T *resize(size_t width, size_t height = 0, size_t depth = 0)
{
data_size = width * ((height == 0)? 1: height) * ((depth == 0)? 1: depth);
if(data.resize(data_size) == NULL) {
clear();
return NULL;
}
data_width = width;
data_height = height;
data_depth = depth;
if(data_size == 0) {
data_pointer = 0;
return NULL;
}
data_pointer = (device_ptr)&data[0];
return &data[0];
}
T *copy(T *ptr, size_t width, size_t height = 0, size_t depth = 0)
{
T *mem = resize(width, height, depth);
if(mem != NULL) {
memcpy(mem, ptr, memory_size());
}
return mem;
}
void copy_at(T *ptr, size_t offset, size_t size)
{
if(size > 0) {
size_t mem_size = size*data_elements*datatype_size(data_type);
memcpy(&data[0] + offset, ptr, mem_size);
}
}
void reference(T *ptr, size_t width, size_t height = 0, size_t depth = 0)
{
data.clear();
data_size = width * ((height == 0)? 1: height) * ((depth == 0)? 1: depth);
data_pointer = (device_ptr)ptr;
data_width = width;
data_height = height;
data_depth = depth;
}
void clear()
{
data.clear();
data_pointer = 0;
data_width = 0;
data_height = 0;
data_depth = 0;
data_size = 0;
}
size_t size()
{
return data.size();
}
T* get_data()
{
return &data[0];
}
private:
array<T> data;
};
CCL_NAMESPACE_END
#endif /* __DEVICE_MEMORY_H__ */