blender/extern/recastnavigation/Recast/Source/RecastMesh.cpp
Campbell Barton 0128218254 recast and detour patch now builds again with GCC
- rearrange structs to work for 64bit
- define all vars before goto's
- ifdefs for qsort_r/qsort_s
- dont cast pointers to int only for NULL checks
- dont printf STR_String directly, get the char pointer from it

also minor change to gpu py module, no need to pass empty tuple to PyObject_CallObject, can just be NULL
2011-09-10 03:07:26 +00:00

1219 lines
29 KiB
C++

//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#define _USE_MATH_DEFINES
#include <math.h>
#include <string.h>
#include <stdio.h>
#include "Recast.h"
#include "RecastLog.h"
#include "RecastTimer.h"
struct rcEdge
{
unsigned short vert[2];
unsigned short polyEdge[2];
unsigned short poly[2];
};
/*static */bool buildMeshAdjacency(unsigned short* polys, const int npolys,
const int nverts, const int vertsPerPoly)
{
// Based on code by Eric Lengyel from:
// http://www.terathon.com/code/edges.php
int maxEdgeCount = npolys*vertsPerPoly;
unsigned short* firstEdge = new unsigned short[nverts + maxEdgeCount];
if (!firstEdge)
return false;
unsigned short* nextEdge = firstEdge + nverts;
int edgeCount = 0;
rcEdge* edges = new rcEdge[maxEdgeCount];
if (!edges)
return false;
for (int i = 0; i < nverts; i++)
firstEdge[i] = 0xffff;
// Invalida indices are marked as 0xffff, the following code
// handles them just fine.
for (int i = 0; i < npolys; ++i)
{
unsigned short* t = &polys[i*vertsPerPoly*2];
for (int j = 0; j < vertsPerPoly; ++j)
{
unsigned short v0 = t[j];
unsigned short v1 = (j+1 >= vertsPerPoly || t[j+1] == 0xffff) ? t[0] : t[j+1];
if (v0 < v1)
{
rcEdge& edge = edges[edgeCount];
edge.vert[0] = v0;
edge.vert[1] = v1;
edge.poly[0] = (unsigned short)i;
edge.polyEdge[0] = (unsigned short)j;
edge.poly[1] = (unsigned short)i;
edge.polyEdge[1] = 0;
// Insert edge
nextEdge[edgeCount] = firstEdge[v0];
firstEdge[v0] = edgeCount;
edgeCount++;
}
}
}
for (int i = 0; i < npolys; ++i)
{
unsigned short* t = &polys[i*vertsPerPoly*2];
for (int j = 0; j < vertsPerPoly; ++j)
{
unsigned short v0 = t[j];
unsigned short v1 = (j+1 >= vertsPerPoly || t[j+1] == 0xffff) ? t[0] : t[j+1];
if (v0 > v1)
{
for (unsigned short e = firstEdge[v1]; e != 0xffff; e = nextEdge[e])
{
rcEdge& edge = edges[e];
if (edge.vert[1] == v0 && edge.poly[0] == edge.poly[1])
{
edge.poly[1] = (unsigned short)i;
edge.polyEdge[1] = (unsigned short)j;
break;
}
}
}
}
}
// Store adjacency
for (int i = 0; i < edgeCount; ++i)
{
const rcEdge& e = edges[i];
if (e.poly[0] != e.poly[1])
{
unsigned short* p0 = &polys[e.poly[0]*vertsPerPoly*2];
unsigned short* p1 = &polys[e.poly[1]*vertsPerPoly*2];
p0[vertsPerPoly + e.polyEdge[0]] = e.poly[1];
p1[vertsPerPoly + e.polyEdge[1]] = e.poly[0];
}
}
delete [] firstEdge;
delete [] edges;
return true;
}
static const int VERTEX_BUCKET_COUNT = (1<<12);
inline int computeVertexHash(int x, int y, int z)
{
const unsigned int h1 = 0x8da6b343; // Large multiplicative constants;
const unsigned int h2 = 0xd8163841; // here arbitrarily chosen primes
const unsigned int h3 = 0xcb1ab31f;
unsigned int n = h1 * x + h2 * y + h3 * z;
return (int)(n & (VERTEX_BUCKET_COUNT-1));
}
static int addVertex(unsigned short x, unsigned short y, unsigned short z,
unsigned short* verts, int* firstVert, int* nextVert, int& nv)
{
int bucket = computeVertexHash(x, 0, z);
int i = firstVert[bucket];
while (i != -1)
{
const unsigned short* v = &verts[i*3];
if (v[0] == x && (rcAbs(v[1] - y) <= 2) && v[2] == z)
return i;
i = nextVert[i]; // next
}
// Could not find, create new.
i = nv; nv++;
unsigned short* v = &verts[i*3];
v[0] = x;
v[1] = y;
v[2] = z;
nextVert[i] = firstVert[bucket];
firstVert[bucket] = i;
return i;
}
inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; }
inline int next(int i, int n) { return i+1 < n ? i+1 : 0; }
inline int area2(const int* a, const int* b, const int* c)
{
return (b[0] - a[0]) * (c[2] - a[2]) - (c[0] - a[0]) * (b[2] - a[2]);
}
// Exclusive or: true iff exactly one argument is true.
// The arguments are negated to ensure that they are 0/1
// values. Then the bitwise Xor operator may apply.
// (This idea is due to Michael Baldwin.)
inline bool xorb(bool x, bool y)
{
return !x ^ !y;
}
// Returns true iff c is strictly to the left of the directed
// line through a to b.
inline bool left(const int* a, const int* b, const int* c)
{
return area2(a, b, c) < 0;
}
inline bool leftOn(const int* a, const int* b, const int* c)
{
return area2(a, b, c) <= 0;
}
inline bool collinear(const int* a, const int* b, const int* c)
{
return area2(a, b, c) == 0;
}
// Returns true iff ab properly intersects cd: they share
// a point interior to both segments. The properness of the
// intersection is ensured by using strict leftness.
bool intersectProp(const int* a, const int* b, const int* c, const int* d)
{
// Eliminate improper cases.
if (collinear(a,b,c) || collinear(a,b,d) ||
collinear(c,d,a) || collinear(c,d,b))
return false;
return xorb(left(a,b,c), left(a,b,d)) && xorb(left(c,d,a), left(c,d,b));
}
// Returns T iff (a,b,c) are collinear and point c lies
// on the closed segement ab.
static bool between(const int* a, const int* b, const int* c)
{
if (!collinear(a, b, c))
return false;
// If ab not vertical, check betweenness on x; else on y.
if (a[0] != b[0])
return ((a[0] <= c[0]) && (c[0] <= b[0])) || ((a[0] >= c[0]) && (c[0] >= b[0]));
else
return ((a[2] <= c[2]) && (c[2] <= b[2])) || ((a[2] >= c[2]) && (c[2] >= b[2]));
}
// Returns true iff segments ab and cd intersect, properly or improperly.
static bool intersect(const int* a, const int* b, const int* c, const int* d)
{
if (intersectProp(a, b, c, d))
return true;
else if (between(a, b, c) || between(a, b, d) ||
between(c, d, a) || between(c, d, b))
return true;
else
return false;
}
static bool vequal(const int* a, const int* b)
{
return a[0] == b[0] && a[2] == b[2];
}
// Returns T iff (v_i, v_j) is a proper internal *or* external
// diagonal of P, *ignoring edges incident to v_i and v_j*.
static bool diagonalie(int i, int j, int n, const int* verts, int* indices)
{
const int* d0 = &verts[(indices[i] & 0x0fffffff) * 4];
const int* d1 = &verts[(indices[j] & 0x0fffffff) * 4];
// For each edge (k,k+1) of P
for (int k = 0; k < n; k++)
{
int k1 = next(k, n);
// Skip edges incident to i or j
if (!((k == i) || (k1 == i) || (k == j) || (k1 == j)))
{
const int* p0 = &verts[(indices[k] & 0x0fffffff) * 4];
const int* p1 = &verts[(indices[k1] & 0x0fffffff) * 4];
if (vequal(d0, p0) || vequal(d1, p0) || vequal(d0, p1) || vequal(d1, p1))
continue;
if (intersect(d0, d1, p0, p1))
return false;
}
}
return true;
}
// Returns true iff the diagonal (i,j) is strictly internal to the
// polygon P in the neighborhood of the i endpoint.
static bool inCone(int i, int j, int n, const int* verts, int* indices)
{
const int* pi = &verts[(indices[i] & 0x0fffffff) * 4];
const int* pj = &verts[(indices[j] & 0x0fffffff) * 4];
const int* pi1 = &verts[(indices[next(i, n)] & 0x0fffffff) * 4];
const int* pin1 = &verts[(indices[prev(i, n)] & 0x0fffffff) * 4];
// If P[i] is a convex vertex [ i+1 left or on (i-1,i) ].
if (leftOn(pin1, pi, pi1))
return left(pi, pj, pin1) && left(pj, pi, pi1);
// Assume (i-1,i,i+1) not collinear.
// else P[i] is reflex.
return !(leftOn(pi, pj, pi1) && leftOn(pj, pi, pin1));
}
// Returns T iff (v_i, v_j) is a proper internal
// diagonal of P.
static bool diagonal(int i, int j, int n, const int* verts, int* indices)
{
return inCone(i, j, n, verts, indices) && diagonalie(i, j, n, verts, indices);
}
int triangulate(int n, const int* verts, int* indices, int* tris)
{
int ntris = 0;
int* dst = tris;
// The last bit of the index is used to indicate if the vertex can be removed.
for (int i = 0; i < n; i++)
{
int i1 = next(i, n);
int i2 = next(i1, n);
if (diagonal(i, i2, n, verts, indices))
indices[i1] |= 0x80000000;
}
while (n > 3)
{
int minLen = -1;
int mini = -1;
for (int i = 0; i < n; i++)
{
int i1 = next(i, n);
if (indices[i1] & 0x80000000)
{
const int* p0 = &verts[(indices[i] & 0x0fffffff) * 4];
const int* p2 = &verts[(indices[next(i1, n)] & 0x0fffffff) * 4];
int dx = p2[0] - p0[0];
int dy = p2[2] - p0[2];
int len = dx*dx + dy*dy;
if (minLen < 0 || len < minLen)
{
minLen = len;
mini = i;
}
}
}
if (mini == -1)
{
// Should not happen.
if (rcGetLog())
rcGetLog()->log(RC_LOG_WARNING, "triangulate: Failed to triangulate polygon.");
/* printf("mini == -1 ntris=%d n=%d\n", ntris, n);
for (int i = 0; i < n; i++)
{
printf("%d ", indices[i] & 0x0fffffff);
}
printf("\n");*/
return -ntris;
}
int i = mini;
int i1 = next(i, n);
int i2 = next(i1, n);
*dst++ = indices[i] & 0x0fffffff;
*dst++ = indices[i1] & 0x0fffffff;
*dst++ = indices[i2] & 0x0fffffff;
ntris++;
// Removes P[i1] by copying P[i+1]...P[n-1] left one index.
n--;
for (int k = i1; k < n; k++)
indices[k] = indices[k+1];
if (i1 >= n) i1 = 0;
i = prev(i1,n);
// Update diagonal flags.
if (diagonal(prev(i, n), i1, n, verts, indices))
indices[i] |= 0x80000000;
else
indices[i] &= 0x0fffffff;
if (diagonal(i, next(i1, n), n, verts, indices))
indices[i1] |= 0x80000000;
else
indices[i1] &= 0x0fffffff;
}
// Append the remaining triangle.
*dst++ = indices[0] & 0x0fffffff;
*dst++ = indices[1] & 0x0fffffff;
*dst++ = indices[2] & 0x0fffffff;
ntris++;
return ntris;
}
static int countPolyVerts(const unsigned short* p, const int nvp)
{
for (int i = 0; i < nvp; ++i)
if (p[i] == 0xffff)
return i;
return nvp;
}
inline bool uleft(const unsigned short* a, const unsigned short* b, const unsigned short* c)
{
return ((int)b[0] - (int)a[0]) * ((int)c[2] - (int)a[2]) -
((int)c[0] - (int)a[0]) * ((int)b[2] - (int)a[2]) < 0;
}
static int getPolyMergeValue(unsigned short* pa, unsigned short* pb,
const unsigned short* verts, int& ea, int& eb,
const int nvp)
{
const int na = countPolyVerts(pa, nvp);
const int nb = countPolyVerts(pb, nvp);
// If the merged polygon would be too big, do not merge.
if (na+nb-2 > nvp)
return -1;
// Check if the polygons share an edge.
ea = -1;
eb = -1;
for (int i = 0; i < na; ++i)
{
unsigned short va0 = pa[i];
unsigned short va1 = pa[(i+1) % na];
if (va0 > va1)
rcSwap(va0, va1);
for (int j = 0; j < nb; ++j)
{
unsigned short vb0 = pb[j];
unsigned short vb1 = pb[(j+1) % nb];
if (vb0 > vb1)
rcSwap(vb0, vb1);
if (va0 == vb0 && va1 == vb1)
{
ea = i;
eb = j;
break;
}
}
}
// No common edge, cannot merge.
if (ea == -1 || eb == -1)
return -1;
// Check to see if the merged polygon would be convex.
unsigned short va, vb, vc;
va = pa[(ea+na-1) % na];
vb = pa[ea];
vc = pb[(eb+2) % nb];
if (!uleft(&verts[va*3], &verts[vb*3], &verts[vc*3]))
return -1;
va = pb[(eb+nb-1) % nb];
vb = pb[eb];
vc = pa[(ea+2) % na];
if (!uleft(&verts[va*3], &verts[vb*3], &verts[vc*3]))
return -1;
va = pa[ea];
vb = pa[(ea+1)%na];
int dx = (int)verts[va*3+0] - (int)verts[vb*3+0];
int dy = (int)verts[va*3+2] - (int)verts[vb*3+2];
return dx*dx + dy*dy;
}
static void mergePolys(unsigned short* pa, unsigned short* pb,
const unsigned short* verts, int ea, int eb,
unsigned short* tmp, const int nvp)
{
const int na = countPolyVerts(pa, nvp);
const int nb = countPolyVerts(pb, nvp);
// Merge polygons.
memset(tmp, 0xff, sizeof(unsigned short)*nvp);
int n = 0;
// Add pa
for (int i = 0; i < na-1; ++i)
tmp[n++] = pa[(ea+1+i) % na];
// Add pb
for (int i = 0; i < nb-1; ++i)
tmp[n++] = pb[(eb+1+i) % nb];
memcpy(pa, tmp, sizeof(unsigned short)*nvp);
}
static void pushFront(int v, int* arr, int& an)
{
an++;
for (int i = an-1; i > 0; --i) arr[i] = arr[i-1];
arr[0] = v;
}
static void pushBack(int v, int* arr, int& an)
{
arr[an] = v;
an++;
}
static bool removeVertex(rcPolyMesh& mesh, const unsigned short rem, const int maxTris)
{
unsigned short* tmpPoly;
int ntris;
static const int nvp = mesh.nvp;
int* edges = 0;
int nedges = 0;
int* hole = 0;
int nhole = 0;
int* hreg = 0;
int nhreg = 0;
int* tris = 0;
int* tverts = 0;
int* thole = 0;
unsigned short* polys = 0;
unsigned short* pregs = 0;
int npolys = 0;
// Count number of polygons to remove.
int nrem = 0;
for (int i = 0; i < mesh.npolys; ++i)
{
unsigned short* p = &mesh.polys[i*nvp*2];
for (int j = 0; j < nvp; ++j)
if (p[j] == rem) { nrem++; break; }
}
edges = new int[nrem*nvp*3];
if (!edges)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_WARNING, "removeVertex: Out of memory 'edges' (%d).", nrem*nvp*3);
goto failure;
}
hole = new int[nrem*nvp];
if (!hole)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_WARNING, "removeVertex: Out of memory 'hole' (%d).", nrem*nvp);
goto failure;
}
hreg = new int[nrem*nvp];
if (!hreg)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_WARNING, "removeVertex: Out of memory 'hreg' (%d).", nrem*nvp);
goto failure;
}
for (int i = 0; i < mesh.npolys; ++i)
{
unsigned short* p = &mesh.polys[i*nvp*2];
const int nv = countPolyVerts(p, nvp);
bool hasRem = false;
for (int j = 0; j < nv; ++j)
if (p[j] == rem) hasRem = true;
if (hasRem)
{
// Collect edges which does not touch the removed vertex.
for (int j = 0, k = nv-1; j < nv; k = j++)
{
if (p[j] != rem && p[k] != rem)
{
int* e = &edges[nedges*3];
e[0] = p[k];
e[1] = p[j];
e[2] = mesh.regs[i];
nedges++;
}
}
// Remove the polygon.
unsigned short* p2 = &mesh.polys[(mesh.npolys-1)*nvp*2];
memcpy(p,p2,sizeof(unsigned short)*nvp);
mesh.regs[i] = mesh.regs[mesh.npolys-1];
mesh.npolys--;
--i;
}
}
// Remove vertex.
for (int i = (int)rem; i < mesh.nverts; ++i)
{
mesh.verts[i*3+0] = mesh.verts[(i+1)*3+0];
mesh.verts[i*3+1] = mesh.verts[(i+1)*3+1];
mesh.verts[i*3+2] = mesh.verts[(i+1)*3+2];
}
mesh.nverts--;
// Adjust indices to match the removed vertex layout.
for (int i = 0; i < mesh.npolys; ++i)
{
unsigned short* p = &mesh.polys[i*nvp*2];
const int nv = countPolyVerts(p, nvp);
for (int j = 0; j < nv; ++j)
if (p[j] > rem) p[j]--;
}
for (int i = 0; i < nedges; ++i)
{
if (edges[i*3+0] > rem) edges[i*3+0]--;
if (edges[i*3+1] > rem) edges[i*3+1]--;
}
if (nedges == 0)
return true;
hole[nhole] = edges[0];
hreg[nhole] = edges[2];
nhole++;
while (nedges)
{
bool match = false;
for (int i = 0; i < nedges; ++i)
{
const int ea = edges[i*3+0];
const int eb = edges[i*3+1];
const int r = edges[i*3+2];
bool add = false;
if (hole[0] == eb)
{
pushFront(ea, hole, nhole);
pushFront(r, hreg, nhreg);
add = true;
}
else if (hole[nhole-1] == ea)
{
pushBack(eb, hole, nhole);
pushBack(r, hreg, nhreg);
add = true;
}
if (add)
{
// Remove edge.
edges[i*3+0] = edges[(nedges-1)*3+0];
edges[i*3+1] = edges[(nedges-1)*3+1];
edges[i*3+2] = edges[(nedges-1)*3+2];
--nedges;
match = true;
--i;
}
}
if (!match)
break;
}
tris = new int[nhole*3];
if (!tris)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_WARNING, "removeVertex: Out of memory 'tris' (%d).", nhole*3);
goto failure;
}
tverts = new int[nhole*4];
if (!tverts)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_WARNING, "removeVertex: Out of memory 'tverts' (%d).", nhole*4);
goto failure;
}
thole = new int[nhole];
if (!tverts)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_WARNING, "removeVertex: Out of memory 'thole' (%d).", nhole);
goto failure;
}
// Generate temp vertex array for triangulation.
for (int i = 0; i < nhole; ++i)
{
const int pi = hole[i];
tverts[i*4+0] = mesh.verts[pi*3+0];
tverts[i*4+1] = mesh.verts[pi*3+1];
tverts[i*4+2] = mesh.verts[pi*3+2];
tverts[i*4+3] = 0;
thole[i] = i;
}
// Triangulate the hole.
ntris = triangulate(nhole, &tverts[0], &thole[0], tris);
// Merge the hole triangles back to polygons.
polys = new unsigned short[(ntris+1)*nvp];
if (!polys)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_WARNING, "removeVertex: Out of memory 'polys' (%d).", (ntris+1)*nvp);
goto failure;
}
pregs = new unsigned short[ntris];
if (!pregs)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_WARNING, "removeVertex: Out of memory 'pregs' (%d).", ntris);
goto failure;
}
tmpPoly = &polys[ntris*nvp];
// Build initial polygons.
memset(polys, 0xff, ntris*nvp*sizeof(unsigned short));
for (int j = 0; j < ntris; ++j)
{
int* t = &tris[j*3];
if (t[0] != t[1] && t[0] != t[2] && t[1] != t[2])
{
polys[npolys*nvp+0] = (unsigned short)hole[t[0]];
polys[npolys*nvp+1] = (unsigned short)hole[t[1]];
polys[npolys*nvp+2] = (unsigned short)hole[t[2]];
pregs[npolys] = hreg[t[0]];
npolys++;
}
}
if (!npolys)
return true;
// Merge polygons.
if (nvp > 3)
{
while (true)
{
// Find best polygons to merge.
int bestMergeVal = 0;
int bestPa, bestPb, bestEa, bestEb;
for (int j = 0; j < npolys-1; ++j)
{
unsigned short* pj = &polys[j*nvp];
for (int k = j+1; k < npolys; ++k)
{
unsigned short* pk = &polys[k*nvp];
int ea, eb;
int v = getPolyMergeValue(pj, pk, mesh.verts, ea, eb, nvp);
if (v > bestMergeVal)
{
bestMergeVal = v;
bestPa = j;
bestPb = k;
bestEa = ea;
bestEb = eb;
}
}
}
if (bestMergeVal > 0)
{
// Found best, merge.
unsigned short* pa = &polys[bestPa*nvp];
unsigned short* pb = &polys[bestPb*nvp];
mergePolys(pa, pb, mesh.verts, bestEa, bestEb, tmpPoly, nvp);
memcpy(pb, &polys[(npolys-1)*nvp], sizeof(unsigned short)*nvp);
pregs[bestPb] = pregs[npolys-1];
npolys--;
}
else
{
// Could not merge any polygons, stop.
break;
}
}
}
// Store polygons.
for (int i = 0; i < npolys; ++i)
{
if (mesh.npolys >= maxTris) break;
unsigned short* p = &mesh.polys[mesh.npolys*nvp*2];
memset(p,0xff,sizeof(unsigned short)*nvp*2);
for (int j = 0; j < nvp; ++j)
p[j] = polys[i*nvp+j];
mesh.regs[mesh.npolys] = pregs[i];
mesh.npolys++;
}
delete [] edges;
delete [] hole;
delete [] hreg;
delete [] tris;
delete [] thole;
delete [] tverts;
delete [] polys;
delete [] pregs;
return true;
failure:
delete [] edges;
delete [] hole;
delete [] hreg;
delete [] tris;
delete [] thole;
delete [] tverts;
delete [] polys;
delete [] pregs;
return false;
}
bool rcBuildPolyMesh(rcContourSet& cset, int nvp, rcPolyMesh& mesh)
{
unsigned short* tmpPoly;
rcTimeVal startTime = rcGetPerformanceTimer();
rcTimeVal endTime;
vcopy(mesh.bmin, cset.bmin);
vcopy(mesh.bmax, cset.bmax);
mesh.cs = cset.cs;
mesh.ch = cset.ch;
int maxVertices = 0;
int maxTris = 0;
int maxVertsPerCont = 0;
for (int i = 0; i < cset.nconts; ++i)
{
maxVertices += cset.conts[i].nverts;
maxTris += cset.conts[i].nverts - 2;
maxVertsPerCont = rcMax(maxVertsPerCont, cset.conts[i].nverts);
}
if (maxVertices >= 0xfffe)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Too many vertices %d.", maxVertices);
return false;
}
unsigned char* vflags = 0;
int* nextVert = 0;
int* firstVert = 0;
int* indices = 0;
int* tris = 0;
unsigned short* polys = 0;
vflags = new unsigned char[maxVertices];
if (!vflags)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.verts' (%d).", maxVertices);
goto failure;
}
memset(vflags, 0, maxVertices);
mesh.verts = new unsigned short[maxVertices*3];
if (!mesh.verts)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.verts' (%d).", maxVertices);
goto failure;
}
mesh.polys = new unsigned short[maxTris*nvp*2];
if (!mesh.polys)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.polys' (%d).", maxTris*nvp*2);
goto failure;
}
mesh.regs = new unsigned short[maxTris];
if (!mesh.regs)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.regs' (%d).", maxTris);
goto failure;
}
mesh.nverts = 0;
mesh.npolys = 0;
mesh.nvp = nvp;
memset(mesh.verts, 0, sizeof(unsigned short)*maxVertices*3);
memset(mesh.polys, 0xff, sizeof(unsigned short)*maxTris*nvp*2);
memset(mesh.regs, 0, sizeof(unsigned short)*maxTris);
nextVert = new int[maxVertices];
if (!nextVert)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'nextVert' (%d).", maxVertices);
goto failure;
}
memset(nextVert, 0, sizeof(int)*maxVertices);
firstVert = new int[VERTEX_BUCKET_COUNT];
if (!firstVert)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'firstVert' (%d).", VERTEX_BUCKET_COUNT);
goto failure;
}
for (int i = 0; i < VERTEX_BUCKET_COUNT; ++i)
firstVert[i] = -1;
indices = new int[maxVertsPerCont];
if (!indices)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'indices' (%d).", maxVertsPerCont);
goto failure;
}
tris = new int[maxVertsPerCont*3];
if (!tris)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'tris' (%d).", maxVertsPerCont*3);
goto failure;
}
polys = new unsigned short[(maxVertsPerCont+1)*nvp];
if (!polys)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'polys' (%d).", maxVertsPerCont*nvp);
goto failure;
}
tmpPoly = &polys[maxVertsPerCont*nvp];
for (int i = 0; i < cset.nconts; ++i)
{
rcContour& cont = cset.conts[i];
// Skip empty contours.
if (cont.nverts < 3)
continue;
// Triangulate contour
for (int j = 0; j < cont.nverts; ++j)
indices[j] = j;
int ntris = triangulate(cont.nverts, cont.verts, &indices[0], &tris[0]);
if (ntris <= 0)
{
// Bad triangulation, should not happen.
/* for (int k = 0; k < cont.nverts; ++k)
{
const int* v = &cont.verts[k*4];
printf("\t\t%d,%d,%d,%d,\n", v[0], v[1], v[2], v[3]);
if (nBadPos < 100)
{
badPos[nBadPos*3+0] = v[0];
badPos[nBadPos*3+1] = v[1];
badPos[nBadPos*3+2] = v[2];
nBadPos++;
}
}*/
ntris = -ntris;
}
// Add and merge vertices.
for (int j = 0; j < cont.nverts; ++j)
{
const int* v = &cont.verts[j*4];
indices[j] = addVertex((unsigned short)v[0], (unsigned short)v[1], (unsigned short)v[2],
mesh.verts, firstVert, nextVert, mesh.nverts);
if (v[3] & RC_BORDER_VERTEX)
{
// This vertex should be removed.
vflags[indices[j]] = 1;
}
}
// Build initial polygons.
int npolys = 0;
memset(polys, 0xff, maxVertsPerCont*nvp*sizeof(unsigned short));
for (int j = 0; j < ntris; ++j)
{
int* t = &tris[j*3];
if (t[0] != t[1] && t[0] != t[2] && t[1] != t[2])
{
polys[npolys*nvp+0] = (unsigned short)indices[t[0]];
polys[npolys*nvp+1] = (unsigned short)indices[t[1]];
polys[npolys*nvp+2] = (unsigned short)indices[t[2]];
npolys++;
}
}
if (!npolys)
continue;
// Merge polygons.
if (nvp > 3)
{
while (true)
{
// Find best polygons to merge.
int bestMergeVal = 0;
int bestPa, bestPb, bestEa, bestEb;
for (int j = 0; j < npolys-1; ++j)
{
unsigned short* pj = &polys[j*nvp];
for (int k = j+1; k < npolys; ++k)
{
unsigned short* pk = &polys[k*nvp];
int ea, eb;
int v = getPolyMergeValue(pj, pk, mesh.verts, ea, eb, nvp);
if (v > bestMergeVal)
{
bestMergeVal = v;
bestPa = j;
bestPb = k;
bestEa = ea;
bestEb = eb;
}
}
}
if (bestMergeVal > 0)
{
// Found best, merge.
unsigned short* pa = &polys[bestPa*nvp];
unsigned short* pb = &polys[bestPb*nvp];
mergePolys(pa, pb, mesh.verts, bestEa, bestEb, tmpPoly, nvp);
memcpy(pb, &polys[(npolys-1)*nvp], sizeof(unsigned short)*nvp);
npolys--;
}
else
{
// Could not merge any polygons, stop.
break;
}
}
}
// Store polygons.
for (int j = 0; j < npolys; ++j)
{
unsigned short* p = &mesh.polys[mesh.npolys*nvp*2];
unsigned short* q = &polys[j*nvp];
for (int k = 0; k < nvp; ++k)
p[k] = q[k];
mesh.regs[mesh.npolys] = cont.reg;
mesh.npolys++;
}
}
// Remove edge vertices.
for (int i = 0; i < mesh.nverts; ++i)
{
if (vflags[i])
{
if (!removeVertex(mesh, i, maxTris))
goto failure;
for (int j = i; j < mesh.nverts-1; ++j)
vflags[j] = vflags[j+1];
--i;
}
}
delete [] vflags;
delete [] firstVert;
delete [] nextVert;
delete [] indices;
delete [] tris;
// Calculate adjacency.
if (!buildMeshAdjacency(mesh.polys, mesh.npolys, mesh.nverts, nvp))
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Adjacency failed.");
return false;
}
endTime = rcGetPerformanceTimer();
// if (rcGetLog())
// rcGetLog()->log(RC_LOG_PROGRESS, "Build polymesh: %.3f ms", rcGetDeltaTimeUsec(startTime, endTime)/1000.0f);
if (rcGetBuildTimes())
rcGetBuildTimes()->buildPolymesh += rcGetDeltaTimeUsec(startTime, endTime);
return true;
failure:
delete [] vflags;
delete [] tmpPoly;
delete [] firstVert;
delete [] nextVert;
delete [] indices;
delete [] tris;
return false;
}
bool rcMergePolyMeshes(rcPolyMesh** meshes, const int nmeshes, rcPolyMesh& mesh)
{
if (!nmeshes || !meshes)
return true;
rcTimeVal startTime = rcGetPerformanceTimer();
rcTimeVal endTime;
int* nextVert = 0;
int* firstVert = 0;
unsigned short* vremap = 0;
mesh.nvp = meshes[0]->nvp;
mesh.cs = meshes[0]->cs;
mesh.ch = meshes[0]->ch;
vcopy(mesh.bmin, meshes[0]->bmin);
vcopy(mesh.bmax, meshes[0]->bmax);
int maxVerts = 0;
int maxPolys = 0;
int maxVertsPerMesh = 0;
for (int i = 0; i < nmeshes; ++i)
{
vmin(mesh.bmin, meshes[i]->bmin);
vmax(mesh.bmax, meshes[i]->bmax);
maxVertsPerMesh = rcMax(maxVertsPerMesh, meshes[i]->nverts);
maxVerts += meshes[i]->nverts;
maxPolys += meshes[i]->npolys;
}
mesh.nverts = 0;
mesh.verts = new unsigned short[maxVerts*3];
if (!mesh.verts)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.verts' (%d).", maxVerts*3);
return false;
}
mesh.npolys = 0;
mesh.polys = new unsigned short[maxPolys*2*mesh.nvp];
if (!mesh.polys)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.polys' (%d).", maxPolys*2*mesh.nvp);
return false;
}
memset(mesh.polys, 0xff, sizeof(unsigned short)*maxPolys*2*mesh.nvp);
mesh.regs = new unsigned short[maxPolys];
if (!mesh.regs)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.regs' (%d).", maxPolys);
return false;
}
memset(mesh.regs, 0, sizeof(unsigned short)*maxPolys);
nextVert = new int[maxVerts];
if (!nextVert)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'nextVert' (%d).", maxVerts);
goto failure;
}
memset(nextVert, 0, sizeof(int)*maxVerts);
firstVert = new int[VERTEX_BUCKET_COUNT];
if (!firstVert)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'firstVert' (%d).", VERTEX_BUCKET_COUNT);
goto failure;
}
for (int i = 0; i < VERTEX_BUCKET_COUNT; ++i)
firstVert[i] = -1;
vremap = new unsigned short[maxVertsPerMesh];
if (!vremap)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'vremap' (%d).", maxVertsPerMesh);
goto failure;
}
memset(nextVert, 0, sizeof(int)*maxVerts);
for (int i = 0; i < nmeshes; ++i)
{
const rcPolyMesh* pmesh = meshes[i];
const unsigned short ox = (unsigned short)floorf((pmesh->bmin[0]-mesh.bmin[0])/mesh.cs+0.5f);
const unsigned short oz = (unsigned short)floorf((pmesh->bmin[2]-mesh.bmin[2])/mesh.cs+0.5f);
for (int j = 0; j < pmesh->nverts; ++j)
{
unsigned short* v = &pmesh->verts[j*3];
vremap[j] = addVertex(v[0]+ox, v[1], v[2]+oz,
mesh.verts, firstVert, nextVert, mesh.nverts);
}
for (int j = 0; j < pmesh->npolys; ++j)
{
unsigned short* tgt = &mesh.polys[mesh.npolys*2*mesh.nvp];
unsigned short* src = &pmesh->polys[j*2*mesh.nvp];
mesh.regs[mesh.npolys] = pmesh->regs[j];
mesh.npolys++;
for (int k = 0; k < mesh.nvp; ++k)
{
if (src[k] == 0xffff) break;
tgt[k] = vremap[src[k]];
}
}
}
// Calculate adjacency.
if (!buildMeshAdjacency(mesh.polys, mesh.npolys, mesh.nverts, mesh.nvp))
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcMergePolyMeshes: Adjacency failed.");
return false;
}
delete [] firstVert;
delete [] nextVert;
delete [] vremap;
endTime = rcGetPerformanceTimer();
if (rcGetBuildTimes())
rcGetBuildTimes()->mergePolyMesh += rcGetDeltaTimeUsec(startTime, endTime);
return true;
failure:
delete [] firstVert;
delete [] nextVert;
delete [] vremap;
return false;
}