forked from bartvdbraak/blender
07fc2aa526
Servo control motion actuator did not work as expected when the object is moving on a moving platform. This patch introduces a new Ref field in the servo motion actuator to set a reference object for the velocity calculation. You can set the object during the game using the actuator "reference" attribute; use an object name or an object reference. The servo controller takes into account the angular velocity of the reference object to compute the relative local velocity.
869 lines
28 KiB
C++
869 lines
28 KiB
C++
/**
|
|
* Do translation/rotation actions
|
|
*
|
|
* $Id$
|
|
*
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
|
* All rights reserved.
|
|
*
|
|
* The Original Code is: all of this file.
|
|
*
|
|
* Contributor(s): none yet.
|
|
*
|
|
* ***** END GPL LICENSE BLOCK *****
|
|
*/
|
|
|
|
#include "KX_ObjectActuator.h"
|
|
#include "KX_GameObject.h"
|
|
#include "KX_PyMath.h" // For PyVecTo - should this include be put in PyObjectPlus?
|
|
#include "KX_IPhysicsController.h"
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* Native functions */
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
KX_ObjectActuator::
|
|
KX_ObjectActuator(
|
|
SCA_IObject* gameobj,
|
|
KX_GameObject* refobj,
|
|
const MT_Vector3& force,
|
|
const MT_Vector3& torque,
|
|
const MT_Vector3& dloc,
|
|
const MT_Vector3& drot,
|
|
const MT_Vector3& linV,
|
|
const MT_Vector3& angV,
|
|
const short damping,
|
|
const KX_LocalFlags& flag,
|
|
PyTypeObject* T
|
|
) :
|
|
SCA_IActuator(gameobj,T),
|
|
m_force(force),
|
|
m_torque(torque),
|
|
m_dloc(dloc),
|
|
m_drot(drot),
|
|
m_linear_velocity(linV),
|
|
m_angular_velocity(angV),
|
|
m_linear_length2(0.0),
|
|
m_current_linear_factor(0.0),
|
|
m_current_angular_factor(0.0),
|
|
m_damping(damping),
|
|
m_previous_error(0.0,0.0,0.0),
|
|
m_error_accumulator(0.0,0.0,0.0),
|
|
m_bitLocalFlag (flag),
|
|
m_reference(refobj),
|
|
m_active_combined_velocity (false),
|
|
m_linear_damping_active(false),
|
|
m_angular_damping_active(false)
|
|
{
|
|
if (m_bitLocalFlag.ServoControl)
|
|
{
|
|
// in servo motion, the force is local if the target velocity is local
|
|
m_bitLocalFlag.Force = m_bitLocalFlag.LinearVelocity;
|
|
|
|
m_pid = m_torque;
|
|
}
|
|
if (m_reference)
|
|
m_reference->RegisterActuator(this);
|
|
UpdateFuzzyFlags();
|
|
}
|
|
|
|
KX_ObjectActuator::~KX_ObjectActuator()
|
|
{
|
|
if (m_reference)
|
|
m_reference->UnregisterActuator(this);
|
|
}
|
|
|
|
bool KX_ObjectActuator::Update()
|
|
{
|
|
|
|
bool bNegativeEvent = IsNegativeEvent();
|
|
RemoveAllEvents();
|
|
|
|
KX_GameObject *parent = static_cast<KX_GameObject *>(GetParent());
|
|
|
|
if (bNegativeEvent) {
|
|
// If we previously set the linear velocity we now have to inform
|
|
// the physics controller that we no longer wish to apply it and that
|
|
// it should reconcile the externally set velocity with it's
|
|
// own velocity.
|
|
if (m_active_combined_velocity) {
|
|
if (parent)
|
|
parent->ResolveCombinedVelocities(
|
|
m_linear_velocity,
|
|
m_angular_velocity,
|
|
(m_bitLocalFlag.LinearVelocity) != 0,
|
|
(m_bitLocalFlag.AngularVelocity) != 0
|
|
);
|
|
m_active_combined_velocity = false;
|
|
}
|
|
m_linear_damping_active = false;
|
|
m_angular_damping_active = false;
|
|
m_error_accumulator.setValue(0.0,0.0,0.0);
|
|
m_previous_error.setValue(0.0,0.0,0.0);
|
|
return false;
|
|
|
|
} else if (parent)
|
|
{
|
|
if (m_bitLocalFlag.ServoControl)
|
|
{
|
|
// In this mode, we try to reach a target speed using force
|
|
// As we don't know the friction, we must implement a generic
|
|
// servo control to achieve the speed in a configurable
|
|
// v = current velocity
|
|
// V = target velocity
|
|
// e = V-v = speed error
|
|
// dt = time interval since previous update
|
|
// I = sum(e(t)*dt)
|
|
// dv = e(t) - e(t-1)
|
|
// KP, KD, KI : coefficient
|
|
// F = KP*e+KI*I+KD*dv
|
|
MT_Scalar mass = parent->GetMass();
|
|
if (mass < MT_EPSILON)
|
|
return false;
|
|
MT_Vector3 v = parent->GetLinearVelocity(m_bitLocalFlag.LinearVelocity);
|
|
if (m_reference)
|
|
{
|
|
const MT_Point3& mypos = parent->NodeGetWorldPosition();
|
|
const MT_Point3& refpos = m_reference->NodeGetWorldPosition();
|
|
MT_Point3 relpos;
|
|
relpos = (mypos-refpos);
|
|
MT_Vector3 vel= m_reference->GetVelocity(relpos);
|
|
if (m_bitLocalFlag.LinearVelocity)
|
|
// must convert in local space
|
|
vel = parent->NodeGetWorldOrientation().transposed()*vel;
|
|
v -= vel;
|
|
}
|
|
MT_Vector3 e = m_linear_velocity - v;
|
|
MT_Vector3 dv = e - m_previous_error;
|
|
MT_Vector3 I = m_error_accumulator + e;
|
|
|
|
m_force = m_pid.x()*e+m_pid.y()*I+m_pid.z()*dv;
|
|
// to automatically adapt the PID coefficient to mass;
|
|
m_force *= mass;
|
|
if (m_bitLocalFlag.Torque)
|
|
{
|
|
if (m_force[0] > m_dloc[0])
|
|
{
|
|
m_force[0] = m_dloc[0];
|
|
I[0] = m_error_accumulator[0];
|
|
} else if (m_force[0] < m_drot[0])
|
|
{
|
|
m_force[0] = m_drot[0];
|
|
I[0] = m_error_accumulator[0];
|
|
}
|
|
}
|
|
if (m_bitLocalFlag.DLoc)
|
|
{
|
|
if (m_force[1] > m_dloc[1])
|
|
{
|
|
m_force[1] = m_dloc[1];
|
|
I[1] = m_error_accumulator[1];
|
|
} else if (m_force[1] < m_drot[1])
|
|
{
|
|
m_force[1] = m_drot[1];
|
|
I[1] = m_error_accumulator[1];
|
|
}
|
|
}
|
|
if (m_bitLocalFlag.DRot)
|
|
{
|
|
if (m_force[2] > m_dloc[2])
|
|
{
|
|
m_force[2] = m_dloc[2];
|
|
I[2] = m_error_accumulator[2];
|
|
} else if (m_force[2] < m_drot[2])
|
|
{
|
|
m_force[2] = m_drot[2];
|
|
I[2] = m_error_accumulator[2];
|
|
}
|
|
}
|
|
m_previous_error = e;
|
|
m_error_accumulator = I;
|
|
parent->ApplyForce(m_force,(m_bitLocalFlag.LinearVelocity) != 0);
|
|
} else
|
|
{
|
|
if (!m_bitLocalFlag.ZeroForce)
|
|
{
|
|
parent->ApplyForce(m_force,(m_bitLocalFlag.Force) != 0);
|
|
}
|
|
if (!m_bitLocalFlag.ZeroTorque)
|
|
{
|
|
parent->ApplyTorque(m_torque,(m_bitLocalFlag.Torque) != 0);
|
|
}
|
|
if (!m_bitLocalFlag.ZeroDLoc)
|
|
{
|
|
parent->ApplyMovement(m_dloc,(m_bitLocalFlag.DLoc) != 0);
|
|
}
|
|
if (!m_bitLocalFlag.ZeroDRot)
|
|
{
|
|
parent->ApplyRotation(m_drot,(m_bitLocalFlag.DRot) != 0);
|
|
}
|
|
if (!m_bitLocalFlag.ZeroLinearVelocity)
|
|
{
|
|
if (m_bitLocalFlag.AddOrSetLinV) {
|
|
parent->addLinearVelocity(m_linear_velocity,(m_bitLocalFlag.LinearVelocity) != 0);
|
|
} else {
|
|
m_active_combined_velocity = true;
|
|
if (m_damping > 0) {
|
|
MT_Vector3 linV;
|
|
if (!m_linear_damping_active) {
|
|
// delta and the start speed (depends on the existing speed in that direction)
|
|
linV = parent->GetLinearVelocity(m_bitLocalFlag.LinearVelocity);
|
|
// keep only the projection along the desired direction
|
|
m_current_linear_factor = linV.dot(m_linear_velocity)/m_linear_length2;
|
|
m_linear_damping_active = true;
|
|
}
|
|
if (m_current_linear_factor < 1.0)
|
|
m_current_linear_factor += 1.0/m_damping;
|
|
if (m_current_linear_factor > 1.0)
|
|
m_current_linear_factor = 1.0;
|
|
linV = m_current_linear_factor * m_linear_velocity;
|
|
parent->setLinearVelocity(linV,(m_bitLocalFlag.LinearVelocity) != 0);
|
|
} else {
|
|
parent->setLinearVelocity(m_linear_velocity,(m_bitLocalFlag.LinearVelocity) != 0);
|
|
}
|
|
}
|
|
}
|
|
if (!m_bitLocalFlag.ZeroAngularVelocity)
|
|
{
|
|
m_active_combined_velocity = true;
|
|
if (m_damping > 0) {
|
|
MT_Vector3 angV;
|
|
if (!m_angular_damping_active) {
|
|
// delta and the start speed (depends on the existing speed in that direction)
|
|
angV = parent->GetAngularVelocity(m_bitLocalFlag.AngularVelocity);
|
|
// keep only the projection along the desired direction
|
|
m_current_angular_factor = angV.dot(m_angular_velocity)/m_angular_length2;
|
|
m_angular_damping_active = true;
|
|
}
|
|
if (m_current_angular_factor < 1.0)
|
|
m_current_angular_factor += 1.0/m_damping;
|
|
if (m_current_angular_factor > 1.0)
|
|
m_current_angular_factor = 1.0;
|
|
angV = m_current_angular_factor * m_angular_velocity;
|
|
parent->setAngularVelocity(angV,(m_bitLocalFlag.AngularVelocity) != 0);
|
|
} else {
|
|
parent->setAngularVelocity(m_angular_velocity,(m_bitLocalFlag.AngularVelocity) != 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
CValue* KX_ObjectActuator::GetReplica()
|
|
{
|
|
KX_ObjectActuator* replica = new KX_ObjectActuator(*this);//m_float,GetName());
|
|
replica->ProcessReplica();
|
|
|
|
return replica;
|
|
}
|
|
|
|
void KX_ObjectActuator::ProcessReplica()
|
|
{
|
|
SCA_IActuator::ProcessReplica();
|
|
if (m_reference)
|
|
m_reference->RegisterActuator(this);
|
|
}
|
|
|
|
bool KX_ObjectActuator::UnlinkObject(SCA_IObject* clientobj)
|
|
{
|
|
if (clientobj == (SCA_IObject*)m_reference)
|
|
{
|
|
// this object is being deleted, we cannot continue to use it as reference.
|
|
m_reference = NULL;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void KX_ObjectActuator::Relink(GEN_Map<GEN_HashedPtr, void*> *obj_map)
|
|
{
|
|
void **h_obj = (*obj_map)[m_reference];
|
|
if (h_obj) {
|
|
if (m_reference)
|
|
m_reference->UnregisterActuator(this);
|
|
m_reference = (KX_GameObject*)(*h_obj);
|
|
m_reference->RegisterActuator(this);
|
|
}
|
|
}
|
|
|
|
/* some 'standard' utilities... */
|
|
bool KX_ObjectActuator::isValid(KX_ObjectActuator::KX_OBJECT_ACT_VEC_TYPE type)
|
|
{
|
|
bool res = false;
|
|
res = (type > KX_OBJECT_ACT_NODEF) && (type < KX_OBJECT_ACT_MAX);
|
|
return res;
|
|
}
|
|
|
|
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* Python functions */
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
/* Integration hooks ------------------------------------------------------- */
|
|
PyTypeObject KX_ObjectActuator::Type = {
|
|
#if (PY_VERSION_HEX >= 0x02060000)
|
|
PyVarObject_HEAD_INIT(NULL, 0)
|
|
#else
|
|
/* python 2.5 and below */
|
|
PyObject_HEAD_INIT( NULL ) /* required py macro */
|
|
0, /* ob_size */
|
|
#endif
|
|
"KX_ObjectActuator",
|
|
sizeof(PyObjectPlus_Proxy),
|
|
0,
|
|
py_base_dealloc,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
py_base_repr,
|
|
0,0,0,0,0,0,
|
|
py_base_getattro,
|
|
py_base_setattro,
|
|
0,0,0,0,0,0,0,0,0,
|
|
Methods
|
|
};
|
|
|
|
PyParentObject KX_ObjectActuator::Parents[] = {
|
|
&KX_ObjectActuator::Type,
|
|
&SCA_IActuator::Type,
|
|
&SCA_ILogicBrick::Type,
|
|
&CValue::Type,
|
|
NULL
|
|
};
|
|
|
|
PyMethodDef KX_ObjectActuator::Methods[] = {
|
|
// Deprecated ----->
|
|
{"getForce", (PyCFunction) KX_ObjectActuator::sPyGetForce, METH_NOARGS},
|
|
{"setForce", (PyCFunction) KX_ObjectActuator::sPySetForce, METH_VARARGS},
|
|
{"getTorque", (PyCFunction) KX_ObjectActuator::sPyGetTorque, METH_NOARGS},
|
|
{"setTorque", (PyCFunction) KX_ObjectActuator::sPySetTorque, METH_VARARGS},
|
|
{"getDLoc", (PyCFunction) KX_ObjectActuator::sPyGetDLoc, METH_NOARGS},
|
|
{"setDLoc", (PyCFunction) KX_ObjectActuator::sPySetDLoc, METH_VARARGS},
|
|
{"getDRot", (PyCFunction) KX_ObjectActuator::sPyGetDRot, METH_NOARGS},
|
|
{"setDRot", (PyCFunction) KX_ObjectActuator::sPySetDRot, METH_VARARGS},
|
|
{"getLinearVelocity", (PyCFunction) KX_ObjectActuator::sPyGetLinearVelocity, METH_NOARGS},
|
|
{"setLinearVelocity", (PyCFunction) KX_ObjectActuator::sPySetLinearVelocity, METH_VARARGS},
|
|
{"getAngularVelocity", (PyCFunction) KX_ObjectActuator::sPyGetAngularVelocity, METH_NOARGS},
|
|
{"setAngularVelocity", (PyCFunction) KX_ObjectActuator::sPySetAngularVelocity, METH_VARARGS},
|
|
{"setDamping", (PyCFunction) KX_ObjectActuator::sPySetDamping, METH_VARARGS},
|
|
{"getDamping", (PyCFunction) KX_ObjectActuator::sPyGetDamping, METH_NOARGS},
|
|
{"setForceLimitX", (PyCFunction) KX_ObjectActuator::sPySetForceLimitX, METH_VARARGS},
|
|
{"getForceLimitX", (PyCFunction) KX_ObjectActuator::sPyGetForceLimitX, METH_NOARGS},
|
|
{"setForceLimitY", (PyCFunction) KX_ObjectActuator::sPySetForceLimitY, METH_VARARGS},
|
|
{"getForceLimitY", (PyCFunction) KX_ObjectActuator::sPyGetForceLimitY, METH_NOARGS},
|
|
{"setForceLimitZ", (PyCFunction) KX_ObjectActuator::sPySetForceLimitZ, METH_VARARGS},
|
|
{"getForceLimitZ", (PyCFunction) KX_ObjectActuator::sPyGetForceLimitZ, METH_NOARGS},
|
|
{"setPID", (PyCFunction) KX_ObjectActuator::sPyGetPID, METH_NOARGS},
|
|
{"getPID", (PyCFunction) KX_ObjectActuator::sPySetPID, METH_VARARGS},
|
|
|
|
// <----- Deprecated
|
|
|
|
{NULL,NULL} //Sentinel
|
|
};
|
|
|
|
PyAttributeDef KX_ObjectActuator::Attributes[] = {
|
|
KX_PYATTRIBUTE_VECTOR_RW_CHECK("force", -1000, 1000, false, KX_ObjectActuator, m_force, PyUpdateFuzzyFlags),
|
|
KX_PYATTRIBUTE_BOOL_RW("useLocalForce", KX_ObjectActuator, m_bitLocalFlag.Force),
|
|
KX_PYATTRIBUTE_VECTOR_RW_CHECK("torque", -1000, 1000, false, KX_ObjectActuator, m_torque, PyUpdateFuzzyFlags),
|
|
KX_PYATTRIBUTE_BOOL_RW("useLocalTorque", KX_ObjectActuator, m_bitLocalFlag.Torque),
|
|
KX_PYATTRIBUTE_VECTOR_RW_CHECK("dLoc", -1000, 1000, false, KX_ObjectActuator, m_dloc, PyUpdateFuzzyFlags),
|
|
KX_PYATTRIBUTE_BOOL_RW("useLocalDLoc", KX_ObjectActuator, m_bitLocalFlag.DLoc),
|
|
KX_PYATTRIBUTE_VECTOR_RW_CHECK("dRot", -1000, 1000, false, KX_ObjectActuator, m_drot, PyUpdateFuzzyFlags),
|
|
KX_PYATTRIBUTE_BOOL_RW("useLocalDRot", KX_ObjectActuator, m_bitLocalFlag.DRot),
|
|
KX_PYATTRIBUTE_VECTOR_RW_CHECK("linV", -1000, 1000, false, KX_ObjectActuator, m_linear_velocity, PyUpdateFuzzyFlags),
|
|
KX_PYATTRIBUTE_BOOL_RW("useLocalLinV", KX_ObjectActuator, m_bitLocalFlag.LinearVelocity),
|
|
KX_PYATTRIBUTE_VECTOR_RW_CHECK("angV", -1000, 1000, false, KX_ObjectActuator, m_angular_velocity, PyUpdateFuzzyFlags),
|
|
KX_PYATTRIBUTE_BOOL_RW("useLocalAngV", KX_ObjectActuator, m_bitLocalFlag.AngularVelocity),
|
|
KX_PYATTRIBUTE_SHORT_RW("damping", 0, 1000, false, KX_ObjectActuator, m_damping),
|
|
KX_PYATTRIBUTE_RW_FUNCTION("forceLimitX", KX_ObjectActuator, pyattr_get_forceLimitX, pyattr_set_forceLimitX),
|
|
KX_PYATTRIBUTE_RW_FUNCTION("forceLimitY", KX_ObjectActuator, pyattr_get_forceLimitY, pyattr_set_forceLimitY),
|
|
KX_PYATTRIBUTE_RW_FUNCTION("forceLimitZ", KX_ObjectActuator, pyattr_get_forceLimitZ, pyattr_set_forceLimitZ),
|
|
KX_PYATTRIBUTE_VECTOR_RW_CHECK("pid", -100, 200, true, KX_ObjectActuator, m_pid, PyCheckPid),
|
|
KX_PYATTRIBUTE_RW_FUNCTION("reference", KX_ObjectActuator,pyattr_get_reference,pyattr_set_reference),
|
|
{ NULL } //Sentinel
|
|
};
|
|
|
|
PyObject* KX_ObjectActuator::py_getattro(PyObject *attr) {
|
|
py_getattro_up(SCA_IActuator);
|
|
}
|
|
|
|
|
|
PyObject* KX_ObjectActuator::py_getattro_dict() {
|
|
py_getattro_dict_up(SCA_IActuator);
|
|
}
|
|
|
|
int KX_ObjectActuator::py_setattro(PyObject *attr, PyObject *value)
|
|
{
|
|
py_setattro_up(SCA_IActuator);
|
|
}
|
|
|
|
/* Attribute get/set functions */
|
|
|
|
PyObject* KX_ObjectActuator::pyattr_get_forceLimitX(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
|
|
{
|
|
KX_ObjectActuator* self = reinterpret_cast<KX_ObjectActuator*>(self_v);
|
|
PyObject *retVal = PyList_New(3);
|
|
|
|
PyList_SET_ITEM(retVal, 0, PyFloat_FromDouble(self->m_drot[0]));
|
|
PyList_SET_ITEM(retVal, 1, PyFloat_FromDouble(self->m_dloc[0]));
|
|
PyList_SET_ITEM(retVal, 2, PyBool_FromLong(self->m_bitLocalFlag.Torque));
|
|
|
|
return retVal;
|
|
}
|
|
|
|
int KX_ObjectActuator::pyattr_set_forceLimitX(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
|
|
{
|
|
KX_ObjectActuator* self = reinterpret_cast<KX_ObjectActuator*>(self_v);
|
|
|
|
PyObject* seq = PySequence_Fast(value, "");
|
|
if (seq && PySequence_Fast_GET_SIZE(seq) == 3)
|
|
{
|
|
self->m_drot[0] = PyFloat_AsDouble(PySequence_Fast_GET_ITEM(value, 0));
|
|
self->m_dloc[0] = PyFloat_AsDouble(PySequence_Fast_GET_ITEM(value, 1));
|
|
self->m_bitLocalFlag.Torque = (PyInt_AsLong(PySequence_Fast_GET_ITEM(value, 2)) != 0);
|
|
|
|
if (!PyErr_Occurred())
|
|
{
|
|
Py_DECREF(seq);
|
|
return PY_SET_ATTR_SUCCESS;
|
|
}
|
|
}
|
|
|
|
Py_XDECREF(seq);
|
|
|
|
PyErr_SetString(PyExc_ValueError, "expected a sequence of 2 floats and a bool");
|
|
return PY_SET_ATTR_FAIL;
|
|
}
|
|
|
|
PyObject* KX_ObjectActuator::pyattr_get_forceLimitY(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
|
|
{
|
|
KX_ObjectActuator* self = reinterpret_cast<KX_ObjectActuator*>(self_v);
|
|
PyObject *retVal = PyList_New(3);
|
|
|
|
PyList_SET_ITEM(retVal, 0, PyFloat_FromDouble(self->m_drot[1]));
|
|
PyList_SET_ITEM(retVal, 1, PyFloat_FromDouble(self->m_dloc[1]));
|
|
PyList_SET_ITEM(retVal, 2, PyBool_FromLong(self->m_bitLocalFlag.DLoc));
|
|
|
|
return retVal;
|
|
}
|
|
|
|
int KX_ObjectActuator::pyattr_set_forceLimitY(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
|
|
{
|
|
KX_ObjectActuator* self = reinterpret_cast<KX_ObjectActuator*>(self_v);
|
|
|
|
PyObject* seq = PySequence_Fast(value, "");
|
|
if (seq && PySequence_Fast_GET_SIZE(seq) == 3)
|
|
{
|
|
self->m_drot[1] = PyFloat_AsDouble(PySequence_Fast_GET_ITEM(value, 0));
|
|
self->m_dloc[1] = PyFloat_AsDouble(PySequence_Fast_GET_ITEM(value, 1));
|
|
self->m_bitLocalFlag.DLoc = (PyInt_AsLong(PySequence_Fast_GET_ITEM(value, 2)) != 0);
|
|
|
|
if (!PyErr_Occurred())
|
|
{
|
|
Py_DECREF(seq);
|
|
return PY_SET_ATTR_SUCCESS;
|
|
}
|
|
}
|
|
|
|
Py_XDECREF(seq);
|
|
|
|
PyErr_SetString(PyExc_ValueError, "expected a sequence of 2 floats and a bool");
|
|
return PY_SET_ATTR_FAIL;
|
|
}
|
|
|
|
PyObject* KX_ObjectActuator::pyattr_get_forceLimitZ(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
|
|
{
|
|
KX_ObjectActuator* self = reinterpret_cast<KX_ObjectActuator*>(self_v);
|
|
PyObject *retVal = PyList_New(3);
|
|
|
|
PyList_SET_ITEM(retVal, 0, PyFloat_FromDouble(self->m_drot[2]));
|
|
PyList_SET_ITEM(retVal, 1, PyFloat_FromDouble(self->m_dloc[2]));
|
|
PyList_SET_ITEM(retVal, 2, PyBool_FromLong(self->m_bitLocalFlag.DRot));
|
|
|
|
return retVal;
|
|
}
|
|
|
|
int KX_ObjectActuator::pyattr_set_forceLimitZ(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
|
|
{
|
|
KX_ObjectActuator* self = reinterpret_cast<KX_ObjectActuator*>(self_v);
|
|
|
|
PyObject* seq = PySequence_Fast(value, "");
|
|
if (seq && PySequence_Fast_GET_SIZE(seq) == 3)
|
|
{
|
|
self->m_drot[2] = PyFloat_AsDouble(PySequence_Fast_GET_ITEM(value, 0));
|
|
self->m_dloc[2] = PyFloat_AsDouble(PySequence_Fast_GET_ITEM(value, 1));
|
|
self->m_bitLocalFlag.DRot = (PyInt_AsLong(PySequence_Fast_GET_ITEM(value, 2)) != 0);
|
|
|
|
if (!PyErr_Occurred())
|
|
{
|
|
Py_DECREF(seq);
|
|
return PY_SET_ATTR_SUCCESS;
|
|
}
|
|
}
|
|
|
|
Py_XDECREF(seq);
|
|
|
|
PyErr_SetString(PyExc_ValueError, "expected a sequence of 2 floats and a bool");
|
|
return PY_SET_ATTR_FAIL;
|
|
}
|
|
|
|
PyObject* KX_ObjectActuator::pyattr_get_reference(void *self, const struct KX_PYATTRIBUTE_DEF *attrdef)
|
|
{
|
|
KX_ObjectActuator* actuator = static_cast<KX_ObjectActuator*>(self);
|
|
if (!actuator->m_reference)
|
|
Py_RETURN_NONE;
|
|
|
|
return actuator->m_reference->GetProxy();
|
|
}
|
|
|
|
int KX_ObjectActuator::pyattr_set_reference(void *self, const struct KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
|
|
{
|
|
KX_ObjectActuator* actuator = static_cast<KX_ObjectActuator*>(self);
|
|
KX_GameObject *refOb;
|
|
|
|
if (!ConvertPythonToGameObject(value, &refOb, true, "actu.reference = value: KX_ObjectActuator"))
|
|
return PY_SET_ATTR_FAIL;
|
|
|
|
if (actuator->m_reference)
|
|
actuator->m_reference->UnregisterActuator(actuator);
|
|
|
|
if(refOb==NULL) {
|
|
actuator->m_reference= NULL;
|
|
}
|
|
else {
|
|
actuator->m_reference = refOb;
|
|
actuator->m_reference->RegisterActuator(actuator);
|
|
}
|
|
|
|
return PY_SET_ATTR_SUCCESS;
|
|
}
|
|
|
|
|
|
/* 1. set ------------------------------------------------------------------ */
|
|
/* Removed! */
|
|
|
|
/* 2. getForce */
|
|
PyObject* KX_ObjectActuator::PyGetForce()
|
|
{
|
|
ShowDeprecationWarning("getForce()", "the force and the useLocalForce properties");
|
|
PyObject *retVal = PyList_New(4);
|
|
|
|
PyList_SET_ITEM(retVal, 0, PyFloat_FromDouble(m_force[0]));
|
|
PyList_SET_ITEM(retVal, 1, PyFloat_FromDouble(m_force[1]));
|
|
PyList_SET_ITEM(retVal, 2, PyFloat_FromDouble(m_force[2]));
|
|
PyList_SET_ITEM(retVal, 3, BoolToPyArg(m_bitLocalFlag.Force));
|
|
|
|
return retVal;
|
|
}
|
|
/* 3. setForce */
|
|
PyObject* KX_ObjectActuator::PySetForce(PyObject* args)
|
|
{
|
|
ShowDeprecationWarning("setForce()", "the force and the useLocalForce properties");
|
|
float vecArg[3];
|
|
int bToggle = 0;
|
|
if (!PyArg_ParseTuple(args, "fffi:setForce", &vecArg[0], &vecArg[1],
|
|
&vecArg[2], &bToggle)) {
|
|
return NULL;
|
|
}
|
|
m_force.setValue(vecArg);
|
|
m_bitLocalFlag.Force = PyArgToBool(bToggle);
|
|
UpdateFuzzyFlags();
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
/* 4. getTorque */
|
|
PyObject* KX_ObjectActuator::PyGetTorque()
|
|
{
|
|
ShowDeprecationWarning("getTorque()", "the torque and the useLocalTorque properties");
|
|
PyObject *retVal = PyList_New(4);
|
|
|
|
PyList_SET_ITEM(retVal, 0, PyFloat_FromDouble(m_torque[0]));
|
|
PyList_SET_ITEM(retVal, 1, PyFloat_FromDouble(m_torque[1]));
|
|
PyList_SET_ITEM(retVal, 2, PyFloat_FromDouble(m_torque[2]));
|
|
PyList_SET_ITEM(retVal, 3, BoolToPyArg(m_bitLocalFlag.Torque));
|
|
|
|
return retVal;
|
|
}
|
|
/* 5. setTorque */
|
|
PyObject* KX_ObjectActuator::PySetTorque(PyObject* args)
|
|
{
|
|
ShowDeprecationWarning("setTorque()", "the torque and the useLocalTorque properties");
|
|
float vecArg[3];
|
|
int bToggle = 0;
|
|
if (!PyArg_ParseTuple(args, "fffi:setTorque", &vecArg[0], &vecArg[1],
|
|
&vecArg[2], &bToggle)) {
|
|
return NULL;
|
|
}
|
|
m_torque.setValue(vecArg);
|
|
m_bitLocalFlag.Torque = PyArgToBool(bToggle);
|
|
UpdateFuzzyFlags();
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
/* 6. getDLoc */
|
|
PyObject* KX_ObjectActuator::PyGetDLoc()
|
|
{
|
|
ShowDeprecationWarning("getDLoc()", "the dLoc and the useLocalDLoc properties");
|
|
PyObject *retVal = PyList_New(4);
|
|
|
|
PyList_SET_ITEM(retVal, 0, PyFloat_FromDouble(m_dloc[0]));
|
|
PyList_SET_ITEM(retVal, 1, PyFloat_FromDouble(m_dloc[1]));
|
|
PyList_SET_ITEM(retVal, 2, PyFloat_FromDouble(m_dloc[2]));
|
|
PyList_SET_ITEM(retVal, 3, BoolToPyArg(m_bitLocalFlag.DLoc));
|
|
|
|
return retVal;
|
|
}
|
|
/* 7. setDLoc */
|
|
PyObject* KX_ObjectActuator::PySetDLoc(PyObject* args)
|
|
{
|
|
ShowDeprecationWarning("setDLoc()", "the dLoc and the useLocalDLoc properties");
|
|
float vecArg[3];
|
|
int bToggle = 0;
|
|
if(!PyArg_ParseTuple(args, "fffi:setDLoc", &vecArg[0], &vecArg[1],
|
|
&vecArg[2], &bToggle)) {
|
|
return NULL;
|
|
}
|
|
m_dloc.setValue(vecArg);
|
|
m_bitLocalFlag.DLoc = PyArgToBool(bToggle);
|
|
UpdateFuzzyFlags();
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
/* 8. getDRot */
|
|
PyObject* KX_ObjectActuator::PyGetDRot()
|
|
{
|
|
ShowDeprecationWarning("getDRot()", "the dRot and the useLocalDRot properties");
|
|
PyObject *retVal = PyList_New(4);
|
|
|
|
PyList_SET_ITEM(retVal, 0, PyFloat_FromDouble(m_drot[0]));
|
|
PyList_SET_ITEM(retVal, 1, PyFloat_FromDouble(m_drot[1]));
|
|
PyList_SET_ITEM(retVal, 2, PyFloat_FromDouble(m_drot[2]));
|
|
PyList_SET_ITEM(retVal, 3, BoolToPyArg(m_bitLocalFlag.DRot));
|
|
|
|
return retVal;
|
|
}
|
|
/* 9. setDRot */
|
|
PyObject* KX_ObjectActuator::PySetDRot(PyObject* args)
|
|
{
|
|
ShowDeprecationWarning("setDRot()", "the dRot and the useLocalDRot properties");
|
|
float vecArg[3];
|
|
int bToggle = 0;
|
|
if (!PyArg_ParseTuple(args, "fffi:setDRot", &vecArg[0], &vecArg[1],
|
|
&vecArg[2], &bToggle)) {
|
|
return NULL;
|
|
}
|
|
m_drot.setValue(vecArg);
|
|
m_bitLocalFlag.DRot = PyArgToBool(bToggle);
|
|
UpdateFuzzyFlags();
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
/* 10. getLinearVelocity */
|
|
PyObject* KX_ObjectActuator::PyGetLinearVelocity() {
|
|
ShowDeprecationWarning("getLinearVelocity()", "the linV and the useLocalLinV properties");
|
|
PyObject *retVal = PyList_New(4);
|
|
|
|
PyList_SET_ITEM(retVal, 0, PyFloat_FromDouble(m_linear_velocity[0]));
|
|
PyList_SET_ITEM(retVal, 1, PyFloat_FromDouble(m_linear_velocity[1]));
|
|
PyList_SET_ITEM(retVal, 2, PyFloat_FromDouble(m_linear_velocity[2]));
|
|
PyList_SET_ITEM(retVal, 3, BoolToPyArg(m_bitLocalFlag.LinearVelocity));
|
|
|
|
return retVal;
|
|
}
|
|
|
|
/* 11. setLinearVelocity */
|
|
PyObject* KX_ObjectActuator::PySetLinearVelocity(PyObject* args) {
|
|
ShowDeprecationWarning("setLinearVelocity()", "the linV and the useLocalLinV properties");
|
|
float vecArg[3];
|
|
int bToggle = 0;
|
|
if (!PyArg_ParseTuple(args, "fffi:setLinearVelocity", &vecArg[0], &vecArg[1],
|
|
&vecArg[2], &bToggle)) {
|
|
return NULL;
|
|
}
|
|
m_linear_velocity.setValue(vecArg);
|
|
m_bitLocalFlag.LinearVelocity = PyArgToBool(bToggle);
|
|
UpdateFuzzyFlags();
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
|
|
/* 12. getAngularVelocity */
|
|
PyObject* KX_ObjectActuator::PyGetAngularVelocity() {
|
|
ShowDeprecationWarning("getAngularVelocity()", "the angV and the useLocalAngV properties");
|
|
PyObject *retVal = PyList_New(4);
|
|
|
|
PyList_SET_ITEM(retVal, 0, PyFloat_FromDouble(m_angular_velocity[0]));
|
|
PyList_SET_ITEM(retVal, 1, PyFloat_FromDouble(m_angular_velocity[1]));
|
|
PyList_SET_ITEM(retVal, 2, PyFloat_FromDouble(m_angular_velocity[2]));
|
|
PyList_SET_ITEM(retVal, 3, BoolToPyArg(m_bitLocalFlag.AngularVelocity));
|
|
|
|
return retVal;
|
|
}
|
|
/* 13. setAngularVelocity */
|
|
PyObject* KX_ObjectActuator::PySetAngularVelocity(PyObject* args) {
|
|
ShowDeprecationWarning("setAngularVelocity()", "the angV and the useLocalAngV properties");
|
|
float vecArg[3];
|
|
int bToggle = 0;
|
|
if (!PyArg_ParseTuple(args, "fffi:setAngularVelocity", &vecArg[0], &vecArg[1],
|
|
&vecArg[2], &bToggle)) {
|
|
return NULL;
|
|
}
|
|
m_angular_velocity.setValue(vecArg);
|
|
m_bitLocalFlag.AngularVelocity = PyArgToBool(bToggle);
|
|
UpdateFuzzyFlags();
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
/* 13. setDamping */
|
|
PyObject* KX_ObjectActuator::PySetDamping(PyObject* args) {
|
|
ShowDeprecationWarning("setDamping()", "the damping property");
|
|
int damping = 0;
|
|
if (!PyArg_ParseTuple(args, "i:setDamping", &damping) || damping < 0 || damping > 1000) {
|
|
return NULL;
|
|
}
|
|
m_damping = damping;
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
/* 13. getVelocityDamping */
|
|
PyObject* KX_ObjectActuator::PyGetDamping() {
|
|
ShowDeprecationWarning("getDamping()", "the damping property");
|
|
return Py_BuildValue("i",m_damping);
|
|
}
|
|
/* 6. getForceLimitX */
|
|
PyObject* KX_ObjectActuator::PyGetForceLimitX()
|
|
{
|
|
ShowDeprecationWarning("getForceLimitX()", "the forceLimitX property");
|
|
PyObject *retVal = PyList_New(3);
|
|
|
|
PyList_SET_ITEM(retVal, 0, PyFloat_FromDouble(m_drot[0]));
|
|
PyList_SET_ITEM(retVal, 1, PyFloat_FromDouble(m_dloc[0]));
|
|
PyList_SET_ITEM(retVal, 2, BoolToPyArg(m_bitLocalFlag.Torque));
|
|
|
|
return retVal;
|
|
}
|
|
/* 7. setForceLimitX */
|
|
PyObject* KX_ObjectActuator::PySetForceLimitX(PyObject* args)
|
|
{
|
|
ShowDeprecationWarning("setForceLimitX()", "the forceLimitX property");
|
|
float vecArg[2];
|
|
int bToggle = 0;
|
|
if(!PyArg_ParseTuple(args, "ffi:setForceLimitX", &vecArg[0], &vecArg[1], &bToggle)) {
|
|
return NULL;
|
|
}
|
|
m_drot[0] = vecArg[0];
|
|
m_dloc[0] = vecArg[1];
|
|
m_bitLocalFlag.Torque = PyArgToBool(bToggle);
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
/* 6. getForceLimitY */
|
|
PyObject* KX_ObjectActuator::PyGetForceLimitY()
|
|
{
|
|
ShowDeprecationWarning("getForceLimitY()", "the forceLimitY property");
|
|
PyObject *retVal = PyList_New(3);
|
|
|
|
PyList_SET_ITEM(retVal, 0, PyFloat_FromDouble(m_drot[1]));
|
|
PyList_SET_ITEM(retVal, 1, PyFloat_FromDouble(m_dloc[1]));
|
|
PyList_SET_ITEM(retVal, 2, BoolToPyArg(m_bitLocalFlag.DLoc));
|
|
|
|
return retVal;
|
|
}
|
|
/* 7. setForceLimitY */
|
|
PyObject* KX_ObjectActuator::PySetForceLimitY(PyObject* args)
|
|
{
|
|
ShowDeprecationWarning("setForceLimitY()", "the forceLimitY property");
|
|
float vecArg[2];
|
|
int bToggle = 0;
|
|
if(!PyArg_ParseTuple(args, "ffi:setForceLimitY", &vecArg[0], &vecArg[1], &bToggle)) {
|
|
return NULL;
|
|
}
|
|
m_drot[1] = vecArg[0];
|
|
m_dloc[1] = vecArg[1];
|
|
m_bitLocalFlag.DLoc = PyArgToBool(bToggle);
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
/* 6. getForceLimitZ */
|
|
PyObject* KX_ObjectActuator::PyGetForceLimitZ()
|
|
{
|
|
ShowDeprecationWarning("getForceLimitZ()", "the forceLimitZ property");
|
|
PyObject *retVal = PyList_New(3);
|
|
|
|
PyList_SET_ITEM(retVal, 0, PyFloat_FromDouble(m_drot[2]));
|
|
PyList_SET_ITEM(retVal, 1, PyFloat_FromDouble(m_dloc[2]));
|
|
PyList_SET_ITEM(retVal, 2, BoolToPyArg(m_bitLocalFlag.DRot));
|
|
|
|
return retVal;
|
|
}
|
|
/* 7. setForceLimitZ */
|
|
PyObject* KX_ObjectActuator::PySetForceLimitZ(PyObject* args)
|
|
{
|
|
ShowDeprecationWarning("setForceLimitZ()", "the forceLimitZ property");
|
|
float vecArg[2];
|
|
int bToggle = 0;
|
|
if(!PyArg_ParseTuple(args, "ffi:setForceLimitZ", &vecArg[0], &vecArg[1], &bToggle)) {
|
|
return NULL;
|
|
}
|
|
m_drot[2] = vecArg[0];
|
|
m_dloc[2] = vecArg[1];
|
|
m_bitLocalFlag.DRot = PyArgToBool(bToggle);
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
/* 4. getPID */
|
|
PyObject* KX_ObjectActuator::PyGetPID()
|
|
{
|
|
ShowDeprecationWarning("getPID()", "the pid property");
|
|
PyObject *retVal = PyList_New(3);
|
|
|
|
PyList_SET_ITEM(retVal, 0, PyFloat_FromDouble(m_pid[0]));
|
|
PyList_SET_ITEM(retVal, 1, PyFloat_FromDouble(m_pid[1]));
|
|
PyList_SET_ITEM(retVal, 2, PyFloat_FromDouble(m_pid[2]));
|
|
|
|
return retVal;
|
|
}
|
|
/* 5. setPID */
|
|
PyObject* KX_ObjectActuator::PySetPID(PyObject* args)
|
|
{
|
|
ShowDeprecationWarning("setPID()", "the pid property");
|
|
float vecArg[3];
|
|
if (!PyArg_ParseTuple(args, "fff:setPID", &vecArg[0], &vecArg[1], &vecArg[2])) {
|
|
return NULL;
|
|
}
|
|
m_pid.setValue(vecArg);
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* eof */
|