blender/intern/cycles/kernel/kernel_accumulate.h
Lukas Stockner 43b374e8c5 Cycles: Implement denoising option for reducing noise in the rendered image
This commit contains the first part of the new Cycles denoising option,
which filters the resulting image using information gathered during rendering
to get rid of noise while preserving visual features as well as possible.

To use the option, enable it in the render layer options. The default settings
fit a wide range of scenes, but the user can tweak individual settings to
control the tradeoff between a noise-free image, image details, and calculation
time.

Note that the denoiser may still change in the future and that some features
are not implemented yet. The most important missing feature is animation
denoising, which uses information from multiple frames at once to produce a
flicker-free and smoother result. These features will be added in the future.

Finally, thanks to all the people who supported this project:

- Google (through the GSoC) and Theory Studios for sponsoring the development
- The authors of the papers I used for implementing the denoiser (more details
  on them will be included in the technical docs)
- The other Cycles devs for feedback on the code, especially Sergey for
  mentoring the GSoC project and Brecht for the code review!
- And of course the users who helped with testing, reported bugs and things
  that could and/or should work better!
2017-05-07 14:40:58 +02:00

676 lines
20 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
CCL_NAMESPACE_BEGIN
/* BSDF Eval
*
* BSDF evaluation result, split per BSDF type. This is used to accumulate
* render passes separately. */
ccl_device_inline void bsdf_eval_init(BsdfEval *eval, ClosureType type, float3 value, int use_light_pass)
{
#ifdef __PASSES__
eval->use_light_pass = use_light_pass;
if(eval->use_light_pass) {
eval->diffuse = make_float3(0.0f, 0.0f, 0.0f);
eval->glossy = make_float3(0.0f, 0.0f, 0.0f);
eval->transmission = make_float3(0.0f, 0.0f, 0.0f);
eval->transparent = make_float3(0.0f, 0.0f, 0.0f);
eval->subsurface = make_float3(0.0f, 0.0f, 0.0f);
eval->scatter = make_float3(0.0f, 0.0f, 0.0f);
if(type == CLOSURE_BSDF_TRANSPARENT_ID)
eval->transparent = value;
else if(CLOSURE_IS_BSDF_DIFFUSE(type))
eval->diffuse = value;
else if(CLOSURE_IS_BSDF_GLOSSY(type))
eval->glossy = value;
else if(CLOSURE_IS_BSDF_TRANSMISSION(type))
eval->transmission = value;
else if(CLOSURE_IS_BSDF_BSSRDF(type))
eval->subsurface = value;
else if(CLOSURE_IS_PHASE(type))
eval->scatter = value;
}
else
#endif
{
eval->diffuse = value;
}
#ifdef __SHADOW_TRICKS__
eval->sum_no_mis = make_float3(0.0f, 0.0f, 0.0f);
#endif
}
ccl_device_inline void bsdf_eval_accum(BsdfEval *eval, ClosureType type, float3 value, float mis_weight)
{
#ifdef __SHADOW_TRICKS__
eval->sum_no_mis += value;
#endif
value *= mis_weight;
#ifdef __PASSES__
if(eval->use_light_pass) {
if(CLOSURE_IS_BSDF_DIFFUSE(type))
eval->diffuse += value;
else if(CLOSURE_IS_BSDF_GLOSSY(type))
eval->glossy += value;
else if(CLOSURE_IS_BSDF_TRANSMISSION(type))
eval->transmission += value;
else if(CLOSURE_IS_BSDF_BSSRDF(type))
eval->subsurface += value;
else if(CLOSURE_IS_PHASE(type))
eval->scatter += value;
/* skipping transparent, this function is used by for eval(), will be zero then */
}
else
#endif
{
eval->diffuse += value;
}
}
ccl_device_inline bool bsdf_eval_is_zero(BsdfEval *eval)
{
#ifdef __PASSES__
if(eval->use_light_pass) {
return is_zero(eval->diffuse)
&& is_zero(eval->glossy)
&& is_zero(eval->transmission)
&& is_zero(eval->transparent)
&& is_zero(eval->subsurface)
&& is_zero(eval->scatter);
}
else
#endif
{
return is_zero(eval->diffuse);
}
}
ccl_device_inline void bsdf_eval_mis(BsdfEval *eval, float value)
{
#ifdef __PASSES__
if(eval->use_light_pass) {
eval->diffuse *= value;
eval->glossy *= value;
eval->transmission *= value;
eval->subsurface *= value;
eval->scatter *= value;
/* skipping transparent, this function is used by for eval(), will be zero then */
}
else
#endif
{
eval->diffuse *= value;
}
}
ccl_device_inline void bsdf_eval_mul(BsdfEval *eval, float value)
{
#ifdef __SHADOW_TRICKS__
eval->sum_no_mis *= value;
#endif
bsdf_eval_mis(eval, value);
}
ccl_device_inline void bsdf_eval_mul3(BsdfEval *eval, float3 value)
{
#ifdef __SHADOW_TRICKS__
eval->sum_no_mis *= value;
#endif
#ifdef __PASSES__
if(eval->use_light_pass) {
eval->diffuse *= value;
eval->glossy *= value;
eval->transmission *= value;
eval->subsurface *= value;
eval->scatter *= value;
/* skipping transparent, this function is used by for eval(), will be zero then */
}
else
eval->diffuse *= value;
#else
eval->diffuse *= value;
#endif
}
ccl_device_inline float3 bsdf_eval_sum(const BsdfEval *eval)
{
#ifdef __PASSES__
if(eval->use_light_pass) {
return eval->diffuse + eval->glossy + eval->transmission + eval->subsurface + eval->scatter;
}
else
#endif
return eval->diffuse;
}
/* Path Radiance
*
* We accumulate different render passes separately. After summing at the end
* to get the combined result, it should be identical. We definite directly
* visible as the first non-transparent hit, while indirectly visible are the
* bounces after that. */
ccl_device_inline void path_radiance_init(PathRadiance *L, int use_light_pass)
{
/* clear all */
#ifdef __PASSES__
L->use_light_pass = use_light_pass;
if(use_light_pass) {
L->indirect = make_float3(0.0f, 0.0f, 0.0f);
L->direct_throughput = make_float3(0.0f, 0.0f, 0.0f);
L->direct_emission = make_float3(0.0f, 0.0f, 0.0f);
L->color_diffuse = make_float3(0.0f, 0.0f, 0.0f);
L->color_glossy = make_float3(0.0f, 0.0f, 0.0f);
L->color_transmission = make_float3(0.0f, 0.0f, 0.0f);
L->color_subsurface = make_float3(0.0f, 0.0f, 0.0f);
L->color_scatter = make_float3(0.0f, 0.0f, 0.0f);
L->direct_diffuse = make_float3(0.0f, 0.0f, 0.0f);
L->direct_glossy = make_float3(0.0f, 0.0f, 0.0f);
L->direct_transmission = make_float3(0.0f, 0.0f, 0.0f);
L->direct_subsurface = make_float3(0.0f, 0.0f, 0.0f);
L->direct_scatter = make_float3(0.0f, 0.0f, 0.0f);
L->indirect_diffuse = make_float3(0.0f, 0.0f, 0.0f);
L->indirect_glossy = make_float3(0.0f, 0.0f, 0.0f);
L->indirect_transmission = make_float3(0.0f, 0.0f, 0.0f);
L->indirect_subsurface = make_float3(0.0f, 0.0f, 0.0f);
L->indirect_scatter = make_float3(0.0f, 0.0f, 0.0f);
L->path_diffuse = make_float3(0.0f, 0.0f, 0.0f);
L->path_glossy = make_float3(0.0f, 0.0f, 0.0f);
L->path_transmission = make_float3(0.0f, 0.0f, 0.0f);
L->path_subsurface = make_float3(0.0f, 0.0f, 0.0f);
L->path_scatter = make_float3(0.0f, 0.0f, 0.0f);
L->emission = make_float3(0.0f, 0.0f, 0.0f);
L->background = make_float3(0.0f, 0.0f, 0.0f);
L->ao = make_float3(0.0f, 0.0f, 0.0f);
L->shadow = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
L->mist = 0.0f;
}
else
#endif
{
L->emission = make_float3(0.0f, 0.0f, 0.0f);
}
#ifdef __SHADOW_TRICKS__
L->path_total = make_float3(0.0f, 0.0f, 0.0f);
L->path_total_shaded = make_float3(0.0f, 0.0f, 0.0f);
L->shadow_color = make_float3(0.0f, 0.0f, 0.0f);
#endif
#ifdef __DENOISING_FEATURES__
L->denoising_normal = make_float3(0.0f, 0.0f, 0.0f);
L->denoising_albedo = make_float3(0.0f, 0.0f, 0.0f);
L->denoising_depth = 0.0f;
#endif /* __DENOISING_FEATURES__ */
}
ccl_device_inline void path_radiance_bsdf_bounce(PathRadiance *L, ccl_addr_space float3 *throughput,
BsdfEval *bsdf_eval, float bsdf_pdf, int bounce, int bsdf_label)
{
float inverse_pdf = 1.0f/bsdf_pdf;
#ifdef __PASSES__
if(L->use_light_pass) {
if(bounce == 0 && !(bsdf_label & LABEL_TRANSPARENT)) {
/* first on directly visible surface */
float3 value = *throughput*inverse_pdf;
L->path_diffuse = bsdf_eval->diffuse*value;
L->path_glossy = bsdf_eval->glossy*value;
L->path_transmission = bsdf_eval->transmission*value;
L->path_subsurface = bsdf_eval->subsurface*value;
L->path_scatter = bsdf_eval->scatter*value;
*throughput = L->path_diffuse + L->path_glossy + L->path_transmission + L->path_subsurface + L->path_scatter;
L->direct_throughput = *throughput;
}
else {
/* transparent bounce before first hit, or indirectly visible through BSDF */
float3 sum = (bsdf_eval_sum(bsdf_eval) + bsdf_eval->transparent) * inverse_pdf;
*throughput *= sum;
}
}
else
#endif
{
*throughput *= bsdf_eval->diffuse*inverse_pdf;
}
}
ccl_device_inline void path_radiance_accum_emission(PathRadiance *L, float3 throughput, float3 value, int bounce)
{
#ifdef __PASSES__
if(L->use_light_pass) {
if(bounce == 0)
L->emission += throughput*value;
else if(bounce == 1)
L->direct_emission += throughput*value;
else
L->indirect += throughput*value;
}
else
#endif
{
L->emission += throughput*value;
}
}
ccl_device_inline void path_radiance_accum_ao(PathRadiance *L,
ccl_addr_space PathState *state,
float3 throughput,
float3 alpha,
float3 bsdf,
float3 ao)
{
#ifdef __PASSES__
if(L->use_light_pass) {
if(state->bounce == 0) {
/* directly visible lighting */
L->direct_diffuse += throughput*bsdf*ao;
L->ao += alpha*throughput*ao;
}
else {
/* indirectly visible lighting after BSDF bounce */
L->indirect += throughput*bsdf*ao;
}
}
else
#endif
{
L->emission += throughput*bsdf*ao;
}
#ifdef __SHADOW_TRICKS__
if(state->flag & PATH_RAY_STORE_SHADOW_INFO) {
float3 light = throughput * bsdf;
L->path_total += light;
L->path_total_shaded += ao * light;
}
#endif
}
ccl_device_inline void path_radiance_accum_total_ao(
PathRadiance *L,
ccl_addr_space PathState *state,
float3 throughput,
float3 bsdf)
{
#ifdef __SHADOW_TRICKS__
if(state->flag & PATH_RAY_STORE_SHADOW_INFO) {
L->path_total += throughput * bsdf;
}
#else
(void) L;
(void) state;
(void) throughput;
(void) bsdf;
#endif
}
ccl_device_inline void path_radiance_accum_light(PathRadiance *L,
ccl_addr_space PathState *state,
float3 throughput,
BsdfEval *bsdf_eval,
float3 shadow,
float shadow_fac,
bool is_lamp)
{
#ifdef __PASSES__
if(L->use_light_pass) {
if(state->bounce == 0) {
/* directly visible lighting */
L->direct_diffuse += throughput*bsdf_eval->diffuse*shadow;
L->direct_glossy += throughput*bsdf_eval->glossy*shadow;
L->direct_transmission += throughput*bsdf_eval->transmission*shadow;
L->direct_subsurface += throughput*bsdf_eval->subsurface*shadow;
L->direct_scatter += throughput*bsdf_eval->scatter*shadow;
if(is_lamp) {
L->shadow.x += shadow.x*shadow_fac;
L->shadow.y += shadow.y*shadow_fac;
L->shadow.z += shadow.z*shadow_fac;
}
}
else {
/* indirectly visible lighting after BSDF bounce */
L->indirect += throughput*bsdf_eval_sum(bsdf_eval)*shadow;
}
}
else
#endif
{
L->emission += throughput*bsdf_eval->diffuse*shadow;
}
#ifdef __SHADOW_TRICKS__
if(state->flag & PATH_RAY_STORE_SHADOW_INFO) {
float3 light = throughput * bsdf_eval->sum_no_mis;
L->path_total += light;
L->path_total_shaded += shadow * light;
}
#endif
}
ccl_device_inline void path_radiance_accum_total_light(
PathRadiance *L,
ccl_addr_space PathState *state,
float3 throughput,
const BsdfEval *bsdf_eval)
{
#ifdef __SHADOW_TRICKS__
if(state->flag & PATH_RAY_STORE_SHADOW_INFO) {
L->path_total += throughput * bsdf_eval->sum_no_mis;
}
#else
(void) L;
(void) state;
(void) throughput;
(void) bsdf_eval;
#endif
}
ccl_device_inline void path_radiance_accum_background(PathRadiance *L,
ccl_addr_space PathState *state,
float3 throughput,
float3 value)
{
#ifdef __PASSES__
if(L->use_light_pass) {
if(state->bounce == 0)
L->background += throughput*value;
else if(state->bounce == 1)
L->direct_emission += throughput*value;
else
L->indirect += throughput*value;
}
else
#endif
{
L->emission += throughput*value;
}
#ifdef __SHADOW_TRICKS__
if(state->flag & PATH_RAY_STORE_SHADOW_INFO) {
L->path_total += throughput * value;
if(state->flag & PATH_RAY_SHADOW_CATCHER_ONLY) {
L->path_total_shaded += throughput * value;
}
}
#endif
#ifdef __DENOISING_FEATURES__
L->denoising_albedo += state->denoising_feature_weight * value;
#endif /* __DENOISING_FEATURES__ */
}
ccl_device_inline void path_radiance_sum_indirect(PathRadiance *L)
{
#ifdef __PASSES__
/* this division is a bit ugly, but means we only have to keep track of
* only a single throughput further along the path, here we recover just
* the indirect path that is not influenced by any particular BSDF type */
if(L->use_light_pass) {
L->direct_emission = safe_divide_color(L->direct_emission, L->direct_throughput);
L->direct_diffuse += L->path_diffuse*L->direct_emission;
L->direct_glossy += L->path_glossy*L->direct_emission;
L->direct_transmission += L->path_transmission*L->direct_emission;
L->direct_subsurface += L->path_subsurface*L->direct_emission;
L->direct_scatter += L->path_scatter*L->direct_emission;
L->indirect = safe_divide_color(L->indirect, L->direct_throughput);
L->indirect_diffuse += L->path_diffuse*L->indirect;
L->indirect_glossy += L->path_glossy*L->indirect;
L->indirect_transmission += L->path_transmission*L->indirect;
L->indirect_subsurface += L->path_subsurface*L->indirect;
L->indirect_scatter += L->path_scatter*L->indirect;
}
#endif
}
ccl_device_inline void path_radiance_reset_indirect(PathRadiance *L)
{
#ifdef __PASSES__
if(L->use_light_pass) {
L->path_diffuse = make_float3(0.0f, 0.0f, 0.0f);
L->path_glossy = make_float3(0.0f, 0.0f, 0.0f);
L->path_transmission = make_float3(0.0f, 0.0f, 0.0f);
L->path_subsurface = make_float3(0.0f, 0.0f, 0.0f);
L->path_scatter = make_float3(0.0f, 0.0f, 0.0f);
L->direct_emission = make_float3(0.0f, 0.0f, 0.0f);
L->indirect = make_float3(0.0f, 0.0f, 0.0f);
}
#endif
}
ccl_device_inline void path_radiance_copy_indirect(PathRadiance *L,
const PathRadiance *L_src)
{
#ifdef __PASSES__
if(L->use_light_pass) {
L->path_diffuse = L_src->path_diffuse;
L->path_glossy = L_src->path_glossy;
L->path_transmission = L_src->path_transmission;
L->path_subsurface = L_src->path_subsurface;
L->path_scatter = L_src->path_scatter;
L->direct_emission = L_src->direct_emission;
L->indirect = L_src->indirect;
}
#endif
}
ccl_device_inline float3 path_radiance_clamp_and_sum(KernelGlobals *kg, PathRadiance *L)
{
float3 L_sum;
/* Light Passes are used */
#ifdef __PASSES__
float3 L_direct, L_indirect;
float clamp_direct = kernel_data.integrator.sample_clamp_direct;
float clamp_indirect = kernel_data.integrator.sample_clamp_indirect;
if(L->use_light_pass) {
path_radiance_sum_indirect(L);
L_direct = L->direct_diffuse + L->direct_glossy + L->direct_transmission + L->direct_subsurface + L->direct_scatter + L->emission;
L_indirect = L->indirect_diffuse + L->indirect_glossy + L->indirect_transmission + L->indirect_subsurface + L->indirect_scatter;
if(!kernel_data.background.transparent)
L_direct += L->background;
L_sum = L_direct + L_indirect;
float sum = fabsf((L_sum).x) + fabsf((L_sum).y) + fabsf((L_sum).z);
/* Reject invalid value */
if(!isfinite_safe(sum)) {
kernel_assert(!"Non-finite sum in path_radiance_clamp_and_sum!");
L_sum = make_float3(0.0f, 0.0f, 0.0f);
L->direct_diffuse = make_float3(0.0f, 0.0f, 0.0f);
L->direct_glossy = make_float3(0.0f, 0.0f, 0.0f);
L->direct_transmission = make_float3(0.0f, 0.0f, 0.0f);
L->direct_subsurface = make_float3(0.0f, 0.0f, 0.0f);
L->direct_scatter = make_float3(0.0f, 0.0f, 0.0f);
L->indirect_diffuse = make_float3(0.0f, 0.0f, 0.0f);
L->indirect_glossy = make_float3(0.0f, 0.0f, 0.0f);
L->indirect_transmission = make_float3(0.0f, 0.0f, 0.0f);
L->indirect_subsurface = make_float3(0.0f, 0.0f, 0.0f);
L->indirect_scatter = make_float3(0.0f, 0.0f, 0.0f);
L->emission = make_float3(0.0f, 0.0f, 0.0f);
}
/* Clamp direct and indirect samples */
#ifdef __CLAMP_SAMPLE__
else if(sum > clamp_direct || sum > clamp_indirect) {
float scale;
/* Direct */
float sum_direct = fabsf(L_direct.x) + fabsf(L_direct.y) + fabsf(L_direct.z);
if(sum_direct > clamp_direct) {
scale = clamp_direct/sum_direct;
L_direct *= scale;
L->direct_diffuse *= scale;
L->direct_glossy *= scale;
L->direct_transmission *= scale;
L->direct_subsurface *= scale;
L->direct_scatter *= scale;
L->emission *= scale;
L->background *= scale;
}
/* Indirect */
float sum_indirect = fabsf(L_indirect.x) + fabsf(L_indirect.y) + fabsf(L_indirect.z);
if(sum_indirect > clamp_indirect) {
scale = clamp_indirect/sum_indirect;
L_indirect *= scale;
L->indirect_diffuse *= scale;
L->indirect_glossy *= scale;
L->indirect_transmission *= scale;
L->indirect_subsurface *= scale;
L->indirect_scatter *= scale;
}
/* Sum again, after clamping */
L_sum = L_direct + L_indirect;
}
#endif
return L_sum;
}
/* No Light Passes */
else
#endif
{
L_sum = L->emission;
}
/* Reject invalid value */
float sum = fabsf((L_sum).x) + fabsf((L_sum).y) + fabsf((L_sum).z);
if(!isfinite_safe(sum)) {
kernel_assert(!"Non-finite final sum in path_radiance_clamp_and_sum!");
L_sum = make_float3(0.0f, 0.0f, 0.0f);
}
return L_sum;
}
ccl_device_inline void path_radiance_split_denoising(KernelGlobals *kg, PathRadiance *L, float3 *noisy, float3 *clean)
{
#ifdef __PASSES__
kernel_assert(L->use_light_pass);
*clean = L->emission + L->background;
*noisy = L->direct_scatter + L->indirect_scatter;
# define ADD_COMPONENT(flag, component) \
if(kernel_data.film.denoising_flags & flag) \
*clean += component; \
else \
*noisy += component;
ADD_COMPONENT(DENOISING_CLEAN_DIFFUSE_DIR, L->direct_diffuse);
ADD_COMPONENT(DENOISING_CLEAN_DIFFUSE_IND, L->indirect_diffuse);
ADD_COMPONENT(DENOISING_CLEAN_GLOSSY_DIR, L->direct_glossy);
ADD_COMPONENT(DENOISING_CLEAN_GLOSSY_IND, L->indirect_glossy);
ADD_COMPONENT(DENOISING_CLEAN_TRANSMISSION_DIR, L->direct_transmission);
ADD_COMPONENT(DENOISING_CLEAN_TRANSMISSION_IND, L->indirect_transmission);
ADD_COMPONENT(DENOISING_CLEAN_SUBSURFACE_DIR, L->direct_subsurface);
ADD_COMPONENT(DENOISING_CLEAN_SUBSURFACE_IND, L->indirect_subsurface);
# undef ADD_COMPONENT
#else
*noisy = L->emission;
*clean = make_float3(0.0f, 0.0f, 0.0f);
#endif
*noisy = ensure_finite3(*noisy);
*clean = ensure_finite3(*clean);
}
ccl_device_inline void path_radiance_accum_sample(PathRadiance *L, PathRadiance *L_sample, int num_samples)
{
float fac = 1.0f/num_samples;
#ifdef __PASSES__
L->direct_diffuse += L_sample->direct_diffuse*fac;
L->direct_glossy += L_sample->direct_glossy*fac;
L->direct_transmission += L_sample->direct_transmission*fac;
L->direct_subsurface += L_sample->direct_subsurface*fac;
L->direct_scatter += L_sample->direct_scatter*fac;
L->indirect_diffuse += L_sample->indirect_diffuse*fac;
L->indirect_glossy += L_sample->indirect_glossy*fac;
L->indirect_transmission += L_sample->indirect_transmission*fac;
L->indirect_subsurface += L_sample->indirect_subsurface*fac;
L->indirect_scatter += L_sample->indirect_scatter*fac;
L->background += L_sample->background*fac;
L->ao += L_sample->ao*fac;
L->shadow += L_sample->shadow*fac;
L->mist += L_sample->mist*fac;
#endif
L->emission += L_sample->emission * fac;
}
#ifdef __SHADOW_TRICKS__
/* Calculate current shadow of the path. */
ccl_device_inline float path_radiance_sum_shadow(const PathRadiance *L)
{
float path_total = average(L->path_total);
float path_total_shaded = average(L->path_total_shaded);
if(path_total != 0.0f) {
return path_total_shaded / path_total;
}
return 1.0f;
}
/* Calculate final light sum and transparency for shadow catcher object. */
ccl_device_inline float3 path_radiance_sum_shadowcatcher(KernelGlobals *kg,
const PathRadiance *L,
float* alpha)
{
const float shadow = path_radiance_sum_shadow(L);
float3 L_sum;
if(kernel_data.background.transparent) {
*alpha = 1.0f-shadow;
L_sum = make_float3(0.0f, 0.0f, 0.0f);
}
else {
L_sum = L->shadow_color * shadow;
}
return L_sum;
}
#endif
CCL_NAMESPACE_END