blender/release/scripts/startup/bl_operators/rigidbody.py
Sergej Reich 47c96081d0 rigidbody: Add rigid body constraints
Constraints connect two rigid bodies.
Depending on which constraint is used different degrees of freedom
are limited, e.g. a hinge constraint only allows the objects to rotate
around a common axis.

Constraints are implemented as individual objects and bahave similar to
rigid bodies in terms of adding/removing/validating.

The position and orientation of the constraint object is the pivot point
of the constraint.

Constraints have their own group in the rigid body world.

To make connecting rigid bodies easier, there is a "Connect" operator that
creates an empty objects with a rigid body constraint connecting the selected
objects to active.

Currently the following constraints are implemented:
* Fixed
* Point
* Hinge
* Slider
* Piston
* Generic

Note: constraint limits aren't animatable yet).
2013-01-23 05:56:56 +00:00

251 lines
9.3 KiB
Python

# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
# <pep8-80 compliant>
import bpy
from bpy.types import Operator
from bpy.props import IntProperty
from bpy.props import EnumProperty
class CopyRigidbodySettings(Operator):
'''Copy Rigid Body settings from active object to selected'''
bl_idname = "rigidbody.object_settings_copy"
bl_label = "Copy Rigidbody Settings"
bl_options = {'REGISTER', 'UNDO'}
@classmethod
def poll(cls, context):
obj = bpy.context.object
return (obj and obj.rigid_body)
def execute(self, context):
obj = context.object
scn = context.scene
# deselect all but mesh objects
for o in context.selected_objects:
if o.type != 'MESH':
o.select = False
sel = context.selected_objects
if sel:
# add selected objects to active one groups and recalculate
bpy.ops.group.objects_add_active()
scn.frame_set(scn.frame_current)
# copy settings
for o in sel:
if o.rigid_body is None:
continue
o.rigid_body.type = obj.rigid_body.type
o.rigid_body.kinematic = obj.rigid_body.kinematic
o.rigid_body.mass = obj.rigid_body.mass
o.rigid_body.collision_shape = obj.rigid_body.collision_shape
o.rigid_body.use_margin = obj.rigid_body.use_margin
o.rigid_body.collision_margin = obj.rigid_body.collision_margin
o.rigid_body.friction = obj.rigid_body.friction
o.rigid_body.restitution = obj.rigid_body.restitution
o.rigid_body.use_deactivation = obj.rigid_body.use_deactivation
o.rigid_body.start_deactivated = obj.rigid_body.start_deactivated
o.rigid_body.deactivate_linear_velocity = obj.rigid_body.deactivate_linear_velocity
o.rigid_body.deactivate_angular_velocity = obj.rigid_body.deactivate_angular_velocity
o.rigid_body.linear_damping = obj.rigid_body.linear_damping
o.rigid_body.angular_damping = obj.rigid_body.angular_damping
o.rigid_body.collision_groups = obj.rigid_body.collision_groups
return {'FINISHED'}
class BakeToKeyframes(Operator):
'''Bake rigid body transformations of selected objects to keyframes'''
bl_idname = "rigidbody.bake_to_keyframes"
bl_label = "Bake To Keyframes"
bl_options = {'REGISTER', 'UNDO'}
frame_start = IntProperty(
name="Start Frame",
description="Start frame for baking",
min=0, max=300000,
default=1,
)
frame_end = IntProperty(
name="End Frame",
description="End frame for baking",
min=1, max=300000,
default=250,
)
step = IntProperty(
name="Frame Step",
description="Frame Step",
min=1, max=120,
default=1,
)
@classmethod
def poll(cls, context):
obj = bpy.context.object
return (obj and obj.rigid_body)
def execute(self, context):
bake = []
objs = []
scene = bpy.context.scene
frame_orig = scene.frame_current
frames = list(range(self.frame_start, self.frame_end + 1, self.step))
# filter objects selection
for ob in bpy.context.selected_objects:
if not ob.rigid_body or ob.rigid_body.type != 'ACTIVE':
ob.select = False
objs = bpy.context.selected_objects
if objs:
# store transformation data
for f in list(range(self.frame_start, self.frame_end + 1)):
scene.frame_set(f)
if f in frames:
mat = {}
for i, ob in enumerate(objs):
mat[i] = ob.matrix_world.copy()
bake.append(mat)
# apply transformations as keyframes
for i, f in enumerate(frames):
scene.frame_set(f)
ob_prev = objs[0]
for j, ob in enumerate(objs):
mat = bake[i][j]
ob.location = mat.to_translation()
rot_mode = ob.rotation_mode
if rot_mode == 'QUATERNION':
ob.rotation_quaternion = mat.to_quaternion()
elif rot_mode == 'AXIS_ANGLE':
# this is a little roundabout but there's no better way right now
aa = mat.to_quaternion().to_axis_angle()
ob.rotation_axis_angle = (aa[1], ) + aa[0][:]
else: # euler
# make sure euler rotation is compatible to previous frame
ob.rotation_euler = mat.to_euler(rot_mode, ob_prev.rotation_euler)
ob_prev = ob
bpy.ops.anim.keyframe_insert(type='BUILTIN_KSI_LocRot', confirm_success=False)
# remove baked objects from simulation
bpy.ops.rigidbody.objects_remove()
# clean up keyframes
for ob in objs:
action = ob.animation_data.action
for fcu in action.fcurves:
keyframe_points = fcu.keyframe_points
i = 1
# remove unneeded keyframes
while i < len(keyframe_points) - 1:
val_prev = keyframe_points[i - 1].co[1]
val_next = keyframe_points[i + 1].co[1]
val = keyframe_points[i].co[1]
if abs(val - val_prev) + abs(val - val_next) < 0.0001:
keyframe_points.remove(keyframe_points[i])
else:
i += 1
# use linear interpolation for better visual results
for keyframe in keyframe_points:
keyframe.interpolation = 'LINEAR'
# return to the frame we started on
scene.frame_set(frame_orig)
return {'FINISHED'}
def invoke(self, context, event):
scene = context.scene
self.frame_start = scene.frame_start
self.frame_end = scene.frame_end
wm = context.window_manager
return wm.invoke_props_dialog(self)
class ConnectRigidBodies(Operator):
'''Connect selected rigid bodies to active'''
bl_idname = "rigidbody.connect"
bl_label = "ConnectRigidBodies"
bl_options = {'REGISTER', 'UNDO'}
con_type = EnumProperty(
name="Type",
description="Type of generated contraint",
items=(('FIXED', "Fixed", "Glues ridig bodies together"),
('POINT', "Point", "Constrains rigid bodies to move aound common pivot point"),
('HINGE', "Hinge", "Restricts rigid body rotation to one axis"),
('SLIDER', "Slider", "Restricts rigid boddy translation to one axis"),
('PISTON', "Piston", "Restricts rigid boddy translation and rotation to one axis"),
('GENERIC', "Generic", "Restricts translation and rotation to specified axes"),
default='FIXED',)
pivot_type = EnumProperty(
name="Location",
description="Constraint pivot location",
items=(('CENTER', "Center", "Pivot location is between the constrained rigid bodies"),
('ACTIVE', "Active", "Pivot location is at the active object position"),
('SELECTED', "Selected", "Pivot location is at the slected object position")),
default='CENTER',)
@classmethod
def poll(cls, context):
obj = bpy.context.object
objs = bpy.context.selected_objects
return (obj and obj.rigid_body and (len(objs) > 1))
def execute(self, context):
objs = bpy.context.selected_objects
ob_act = bpy.context.active_object
for ob in objs:
if ob == ob_act:
continue
if self.pivot_type == 'ACTIVE':
loc = ob_act.location
elif self.pivot_type == 'SELECTED':
loc = ob.location
else:
loc = (ob_act.location + ob.location) / 2
bpy.ops.object.add(type='EMPTY', view_align=False, enter_editmode=False, location=loc)
bpy.ops.rigidbody.constraint_group_add()
con = bpy.context.active_object.rigid_body_constraint
con.type = self.con_type
con.object1 = ob_act
con.object2 = ob
return {'FINISHED'}
def invoke(self, context, event):
wm = context.window_manager
return wm.invoke_props_dialog(self)