blender/source/gameengine/Ketsji/KX_Camera.cpp
Benoit Bolsee 77b4c66cc3 Preparation to VideoTexture: everything but the VideoTexture module itself.
Rename PHY_GetActiveScene() to KX_GetActiveScene(): more logical name
Add KX_GetActiveEngine()

new KX_KetsjiEngine::GetClockTime(void) to return current 
render frame time: if the CPU does not keep up with the 
frame rate, up to 5 consecutive logic frames are processed 
between each render frame, so that the logic system stays 
accurate even if the graphic system is slow. For the video 
texture module, it is important to stay in sync with the
render frame: no need to update the texture for logic frame.

BL_Texture::swapTexture(): texture id manipulation
BL_Texture::getTex() : return material texture

Enable video support in ffmpeg for Linux.
2008-10-31 21:06:48 +00:00

801 lines
19 KiB
C++

/*
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
* Camera in the gameengine. Cameras are also used for views.
*/
#include "KX_Camera.h"
#include "KX_Scene.h"
#include "KX_PythonInit.h"
#include "KX_Python.h"
#include "KX_PyMath.h"
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
KX_Camera::KX_Camera(void* sgReplicationInfo,
SG_Callbacks callbacks,
const RAS_CameraData& camdata,
bool frustum_culling,
PyTypeObject *T)
:
KX_GameObject(sgReplicationInfo,callbacks,T),
m_camdata(camdata),
m_dirty(true),
m_normalized(false),
m_frustum_culling(frustum_culling && camdata.m_perspective),
m_set_projection_matrix(false),
m_set_frustum_center(false)
{
// setting a name would be nice...
m_name = "cam";
m_projection_matrix.setIdentity();
m_modelview_matrix.setIdentity();
CValue* val = new CIntValue(1);
SetProperty("camera",val);
val->Release();
}
KX_Camera::~KX_Camera()
{
}
CValue* KX_Camera::GetReplica()
{
KX_Camera* replica = new KX_Camera(*this);
// this will copy properties and so on...
CValue::AddDataToReplica(replica);
ProcessReplica(replica);
return replica;
}
void KX_Camera::ProcessReplica(KX_Camera* replica)
{
KX_GameObject::ProcessReplica(replica);
}
MT_Transform KX_Camera::GetWorldToCamera() const
{
MT_Transform camtrans;
camtrans.invert(MT_Transform(NodeGetWorldPosition(), NodeGetWorldOrientation()));
return camtrans;
}
MT_Transform KX_Camera::GetCameraToWorld() const
{
return MT_Transform(NodeGetWorldPosition(), NodeGetWorldOrientation());
}
void KX_Camera::CorrectLookUp(MT_Scalar speed)
{
}
const MT_Point3 KX_Camera::GetCameraLocation() const
{
/* this is the camera locatio in cam coords... */
//return m_trans1.getOrigin();
//return MT_Point3(0,0,0); <-----
/* .... I want it in world coords */
//MT_Transform trans;
//trans.setBasis(NodeGetWorldOrientation());
return NodeGetWorldPosition();
}
/* I want the camera orientation as well. */
const MT_Quaternion KX_Camera::GetCameraOrientation() const
{
return NodeGetWorldOrientation().getRotation();
}
/**
* Sets the projection matrix that is used by the rasterizer.
*/
void KX_Camera::SetProjectionMatrix(const MT_Matrix4x4 & mat)
{
m_projection_matrix = mat;
m_dirty = true;
m_set_projection_matrix = true;
m_set_frustum_center = false;
}
/**
* Sets the modelview matrix that is used by the rasterizer.
*/
void KX_Camera::SetModelviewMatrix(const MT_Matrix4x4 & mat)
{
m_modelview_matrix = mat;
m_dirty = true;
m_set_frustum_center = false;
}
/**
* Gets the projection matrix that is used by the rasterizer.
*/
const MT_Matrix4x4& KX_Camera::GetProjectionMatrix() const
{
return m_projection_matrix;
}
/**
* Gets the modelview matrix that is used by the rasterizer.
*/
const MT_Matrix4x4& KX_Camera::GetModelviewMatrix() const
{
return m_modelview_matrix;
}
bool KX_Camera::hasValidProjectionMatrix() const
{
return m_set_projection_matrix;
}
void KX_Camera::InvalidateProjectionMatrix(bool valid)
{
m_set_projection_matrix = valid;
}
/*
* These getters retrieve the clip data and the focal length
*/
float KX_Camera::GetLens() const
{
return m_camdata.m_lens;
}
float KX_Camera::GetCameraNear() const
{
return m_camdata.m_clipstart;
}
float KX_Camera::GetCameraFar() const
{
return m_camdata.m_clipend;
}
float KX_Camera::GetFocalLength() const
{
return m_camdata.m_focallength;
}
RAS_CameraData* KX_Camera::GetCameraData()
{
return &m_camdata;
}
void KX_Camera::ExtractClipPlanes()
{
if (!m_dirty)
return;
MT_Matrix4x4 m = m_projection_matrix * m_modelview_matrix;
// Left clip plane
m_planes[0] = m[3] + m[0];
// Right clip plane
m_planes[1] = m[3] - m[0];
// Top clip plane
m_planes[2] = m[3] - m[1];
// Bottom clip plane
m_planes[3] = m[3] + m[1];
// Near clip plane
m_planes[4] = m[3] + m[2];
// Far clip plane
m_planes[5] = m[3] - m[2];
m_dirty = false;
m_normalized = false;
}
void KX_Camera::NormalizeClipPlanes()
{
if (m_normalized)
return;
for (unsigned int p = 0; p < 6; p++)
{
MT_Scalar factor = sqrt(m_planes[p][0]*m_planes[p][0] + m_planes[p][1]*m_planes[p][1] + m_planes[p][2]*m_planes[p][2]);
if (!MT_fuzzyZero(factor))
m_planes[p] /= factor;
}
m_normalized = true;
}
void KX_Camera::ExtractFrustumSphere()
{
if (m_set_frustum_center)
return;
// The most extreme points on the near and far plane. (normalized device coords)
MT_Vector4 hnear(1., 1., 0., 1.), hfar(1., 1., 1., 1.);
MT_Matrix4x4 clip_camcs_matrix = m_projection_matrix;
clip_camcs_matrix.invert();
// Transform to hom camera local space
hnear = clip_camcs_matrix*hnear;
hfar = clip_camcs_matrix*hfar;
// Tranform to 3d camera local space.
MT_Point3 nearpoint(hnear[0]/hnear[3], hnear[1]/hnear[3], hnear[2]/hnear[3]);
MT_Point3 farpoint(hfar[0]/hfar[3], hfar[1]/hfar[3], hfar[2]/hfar[3]);
// Compute center
m_frustum_center = MT_Point3(0., 0.,
(nearpoint.dot(nearpoint) - farpoint.dot(farpoint))/(2.0*(m_camdata.m_clipend - m_camdata.m_clipstart)));
m_frustum_radius = m_frustum_center.distance(farpoint);
// Transform to world space.
m_frustum_center = GetCameraToWorld()(m_frustum_center);
m_frustum_radius /= fabs(NodeGetWorldScaling()[NodeGetWorldScaling().closestAxis()]);
m_set_frustum_center = true;
}
bool KX_Camera::PointInsideFrustum(const MT_Point3& x)
{
ExtractClipPlanes();
for( unsigned int i = 0; i < 6 ; i++ )
{
if (m_planes[i][0]*x[0] + m_planes[i][1]*x[1] + m_planes[i][2]*x[2] + m_planes[i][3] < 0.)
return false;
}
return true;
}
int KX_Camera::BoxInsideFrustum(const MT_Point3 *box)
{
ExtractClipPlanes();
unsigned int insideCount = 0;
// 6 view frustum planes
for( unsigned int p = 0; p < 6 ; p++ )
{
unsigned int behindCount = 0;
// 8 box verticies.
for (unsigned int v = 0; v < 8 ; v++)
{
if (m_planes[p][0]*box[v][0] + m_planes[p][1]*box[v][1] + m_planes[p][2]*box[v][2] + m_planes[p][3] < 0.)
behindCount++;
}
// 8 points behind this plane
if (behindCount == 8)
return OUTSIDE;
// Every box vertex is on the front side of this plane
if (!behindCount)
insideCount++;
}
// All box verticies are on the front side of all frustum planes.
if (insideCount == 6)
return INSIDE;
return INTERSECT;
}
int KX_Camera::SphereInsideFrustum(const MT_Point3& center, const MT_Scalar &radius)
{
ExtractFrustumSphere();
if (center.distance2(m_frustum_center) > (radius + m_frustum_radius)*(radius + m_frustum_radius))
return OUTSIDE;
unsigned int p;
ExtractClipPlanes();
NormalizeClipPlanes();
MT_Scalar distance;
int intersect = INSIDE;
// distance: <-------- OUTSIDE -----|----- INTERSECT -----0----- INTERSECT -----|----- INSIDE -------->
// -radius radius
for (p = 0; p < 6; p++)
{
distance = m_planes[p][0]*center[0] + m_planes[p][1]*center[1] + m_planes[p][2]*center[2] + m_planes[p][3];
if (fabs(distance) <= radius)
intersect = INTERSECT;
else if (distance < -radius)
return OUTSIDE;
}
return intersect;
}
bool KX_Camera::GetFrustumCulling() const
{
return m_frustum_culling;
}
void KX_Camera::EnableViewport(bool viewport)
{
m_camdata.m_viewport = viewport;
}
void KX_Camera::SetViewport(int left, int bottom, int right, int top)
{
m_camdata.m_viewportleft = left;
m_camdata.m_viewportbottom = bottom;
m_camdata.m_viewportright = right;
m_camdata.m_viewporttop = top;
}
bool KX_Camera::GetViewport() const
{
return m_camdata.m_viewport;
}
int KX_Camera::GetViewportLeft() const
{
return m_camdata.m_viewportleft;
}
int KX_Camera::GetViewportBottom() const
{
return m_camdata.m_viewportbottom;
}
int KX_Camera::GetViewportRight() const
{
return m_camdata.m_viewportright;
}
int KX_Camera::GetViewportTop() const
{
return m_camdata.m_viewporttop;
}
//----------------------------------------------------------------------------
//Python
PyMethodDef KX_Camera::Methods[] = {
KX_PYMETHODTABLE(KX_Camera, sphereInsideFrustum),
KX_PYMETHODTABLE(KX_Camera, boxInsideFrustum),
KX_PYMETHODTABLE(KX_Camera, pointInsideFrustum),
KX_PYMETHODTABLE(KX_Camera, getCameraToWorld),
KX_PYMETHODTABLE(KX_Camera, getWorldToCamera),
KX_PYMETHODTABLE(KX_Camera, getProjectionMatrix),
KX_PYMETHODTABLE(KX_Camera, setProjectionMatrix),
KX_PYMETHODTABLE(KX_Camera, enableViewport),
KX_PYMETHODTABLE(KX_Camera, setViewport),
KX_PYMETHODTABLE(KX_Camera, setOnTop),
{NULL,NULL} //Sentinel
};
char KX_Camera::doc[] = "Module KX_Camera\n\n"
"Constants:\n"
"\tINSIDE\n"
"\tINTERSECT\n"
"\tOUTSIDE\n"
"Attributes:\n"
"\tlens -> float\n"
"\t\tThe camera's lens value\n"
"\tnear -> float\n"
"\t\tThe camera's near clip distance\n"
"\tfar -> float\n"
"\t\tThe camera's far clip distance\n"
"\tfrustum_culling -> bool\n"
"\t\tNon zero if this camera is frustum culling.\n"
"\tprojection_matrix -> [[float]]\n"
"\t\tThis camera's projection matrix.\n"
"\tmodelview_matrix -> [[float]] (read only)\n"
"\t\tThis camera's model view matrix.\n"
"\t\tRegenerated every frame from the camera's position and orientation.\n"
"\tcamera_to_world -> [[float]] (read only)\n"
"\t\tThis camera's camera to world transform.\n"
"\t\tRegenerated every frame from the camera's position and orientation.\n"
"\tworld_to_camera -> [[float]] (read only)\n"
"\t\tThis camera's world to camera transform.\n"
"\t\tRegenerated every frame from the camera's position and orientation.\n"
"\t\tThis is camera_to_world inverted.\n";
PyTypeObject KX_Camera::Type = {
PyObject_HEAD_INIT(&PyType_Type)
0,
"KX_Camera",
sizeof(KX_Camera),
0,
PyDestructor,
0,
__getattr,
__setattr,
0, //&MyPyCompare,
__repr,
0, //&cvalue_as_number,
0,
0,
0,
0, 0, 0, 0, 0, 0,
doc
};
PyParentObject KX_Camera::Parents[] = {
&KX_Camera::Type,
&KX_GameObject::Type,
&SCA_IObject::Type,
&CValue::Type,
NULL
};
PyObject* KX_Camera::_getattr(const STR_String& attr)
{
if (attr == "INSIDE")
return PyInt_FromLong(INSIDE); /* new ref */
if (attr == "OUTSIDE")
return PyInt_FromLong(OUTSIDE); /* new ref */
if (attr == "INTERSECT")
return PyInt_FromLong(INTERSECT); /* new ref */
if (attr == "lens")
return PyFloat_FromDouble(GetLens()); /* new ref */
if (attr == "near")
return PyFloat_FromDouble(GetCameraNear()); /* new ref */
if (attr == "far")
return PyFloat_FromDouble(GetCameraFar()); /* new ref */
if (attr == "frustum_culling")
return PyInt_FromLong(m_frustum_culling); /* new ref */
if (attr == "perspective")
return PyInt_FromLong(m_camdata.m_perspective); /* new ref */
if (attr == "projection_matrix")
return PyObjectFrom(GetProjectionMatrix()); /* new ref */
if (attr == "modelview_matrix")
return PyObjectFrom(GetModelviewMatrix()); /* new ref */
if (attr == "camera_to_world")
return PyObjectFrom(GetCameraToWorld()); /* new ref */
if (attr == "world_to_camera")
return PyObjectFrom(GetWorldToCamera()); /* new ref */
_getattr_up(KX_GameObject);
}
int KX_Camera::_setattr(const STR_String &attr, PyObject *pyvalue)
{
if (PyInt_Check(pyvalue))
{
if (attr == "frustum_culling")
{
m_frustum_culling = PyInt_AsLong(pyvalue);
return 0;
}
if (attr == "perspective")
{
m_camdata.m_perspective = PyInt_AsLong(pyvalue);
return 0;
}
}
if (PyFloat_Check(pyvalue))
{
if (attr == "lens")
{
m_camdata.m_lens = PyFloat_AsDouble(pyvalue);
m_set_projection_matrix = false;
return 0;
}
if (attr == "near")
{
m_camdata.m_clipstart = PyFloat_AsDouble(pyvalue);
m_set_projection_matrix = false;
return 0;
}
if (attr == "far")
{
m_camdata.m_clipend = PyFloat_AsDouble(pyvalue);
m_set_projection_matrix = false;
return 0;
}
}
if (PyObject_IsMT_Matrix(pyvalue, 4))
{
if (attr == "projection_matrix")
{
MT_Matrix4x4 mat;
if (PyMatTo(pyvalue, mat))
{
SetProjectionMatrix(mat);
return 0;
}
return 1;
}
}
return KX_GameObject::_setattr(attr, pyvalue);
}
KX_PYMETHODDEF_DOC(KX_Camera, sphereInsideFrustum,
"sphereInsideFrustum(center, radius) -> Integer\n"
"\treturns INSIDE, OUTSIDE or INTERSECT if the given sphere is\n"
"\tinside/outside/intersects this camera's viewing frustum.\n\n"
"\tcenter = the center of the sphere (in world coordinates.)\n"
"\tradius = the radius of the sphere\n\n"
"\tExample:\n"
"\timport GameLogic\n\n"
"\tco = GameLogic.getCurrentController()\n"
"\tcam = co.GetOwner()\n\n"
"\t# A sphere of radius 4.0 located at [x, y, z] = [1.0, 1.0, 1.0]\n"
"\tif (cam.sphereInsideFrustum([1.0, 1.0, 1.0], 4) != cam.OUTSIDE):\n"
"\t\t# Sphere is inside frustum !\n"
"\t\t# Do something useful !\n"
"\telse:\n"
"\t\t# Sphere is outside frustum\n"
)
{
PyObject *pycenter;
float radius;
if (PyArg_ParseTuple(args, "Of", &pycenter, &radius))
{
MT_Point3 center;
if (PyVecTo(pycenter, center))
{
return PyInt_FromLong(SphereInsideFrustum(center, radius)); /* new ref */
}
}
PyErr_SetString(PyExc_TypeError, "sphereInsideFrustum: Expected arguments: (center, radius)");
return NULL;
}
KX_PYMETHODDEF_DOC(KX_Camera, boxInsideFrustum,
"boxInsideFrustum(box) -> Integer\n"
"\treturns INSIDE, OUTSIDE or INTERSECT if the given box is\n"
"\tinside/outside/intersects this camera's viewing frustum.\n\n"
"\tbox = a list of the eight (8) corners of the box (in world coordinates.)\n\n"
"\tExample:\n"
"\timport GameLogic\n\n"
"\tco = GameLogic.getCurrentController()\n"
"\tcam = co.GetOwner()\n\n"
"\tbox = []\n"
"\tbox.append([-1.0, -1.0, -1.0])\n"
"\tbox.append([-1.0, -1.0, 1.0])\n"
"\tbox.append([-1.0, 1.0, -1.0])\n"
"\tbox.append([-1.0, 1.0, 1.0])\n"
"\tbox.append([ 1.0, -1.0, -1.0])\n"
"\tbox.append([ 1.0, -1.0, 1.0])\n"
"\tbox.append([ 1.0, 1.0, -1.0])\n"
"\tbox.append([ 1.0, 1.0, 1.0])\n\n"
"\tif (cam.boxInsideFrustum(box) != cam.OUTSIDE):\n"
"\t\t# Box is inside/intersects frustum !\n"
"\t\t# Do something useful !\n"
"\telse:\n"
"\t\t# Box is outside the frustum !\n"
)
{
PyObject *pybox;
if (PyArg_ParseTuple(args, "O", &pybox))
{
unsigned int num_points = PySequence_Size(pybox);
if (num_points != 8)
{
PyErr_Format(PyExc_TypeError, "boxInsideFrustum: Expected eight (8) points, got %d", num_points);
return NULL;
}
MT_Point3 box[8];
for (unsigned int p = 0; p < 8 ; p++)
{
PyObject *item = PySequence_GetItem(pybox, p); /* new ref */
bool error = !PyVecTo(item, box[p]);
Py_DECREF(item);
if (error)
return NULL;
}
return PyInt_FromLong(BoxInsideFrustum(box)); /* new ref */
}
PyErr_SetString(PyExc_TypeError, "boxInsideFrustum: Expected argument: list of points.");
return NULL;
}
KX_PYMETHODDEF_DOC(KX_Camera, pointInsideFrustum,
"pointInsideFrustum(point) -> Bool\n"
"\treturns 1 if the given point is inside this camera's viewing frustum.\n\n"
"\tpoint = The point to test (in world coordinates.)\n\n"
"\tExample:\n"
"\timport GameLogic\n\n"
"\tco = GameLogic.getCurrentController()\n"
"\tcam = co.GetOwner()\n\n"
"\t# Test point [0.0, 0.0, 0.0]"
"\tif (cam.pointInsideFrustum([0.0, 0.0, 0.0])):\n"
"\t\t# Point is inside frustum !\n"
"\t\t# Do something useful !\n"
"\telse:\n"
"\t\t# Box is outside the frustum !\n"
)
{
MT_Point3 point;
if (PyVecArgTo(args, point))
{
return PyInt_FromLong(PointInsideFrustum(point)); /* new ref */
}
PyErr_SetString(PyExc_TypeError, "pointInsideFrustum: Expected point argument.");
return NULL;
}
KX_PYMETHODDEF_DOC(KX_Camera, getCameraToWorld,
"getCameraToWorld() -> Matrix4x4\n"
"\treturns the camera to world transformation matrix, as a list of four lists of four values.\n\n"
"\tie: [[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0]])\n"
)
{
return PyObjectFrom(GetCameraToWorld()); /* new ref */
}
KX_PYMETHODDEF_DOC(KX_Camera, getWorldToCamera,
"getWorldToCamera() -> Matrix4x4\n"
"\treturns the world to camera transformation matrix, as a list of four lists of four values.\n\n"
"\tie: [[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0]])\n"
)
{
return PyObjectFrom(GetWorldToCamera()); /* new ref */
}
KX_PYMETHODDEF_DOC(KX_Camera, getProjectionMatrix,
"getProjectionMatrix() -> Matrix4x4\n"
"\treturns this camera's projection matrix, as a list of four lists of four values.\n\n"
"\tie: [[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0]])\n"
)
{
return PyObjectFrom(GetProjectionMatrix()); /* new ref */
}
KX_PYMETHODDEF_DOC(KX_Camera, setProjectionMatrix,
"setProjectionMatrix(MT_Matrix4x4 m) -> None\n"
"\tSets this camera's projection matrix\n"
"\n"
"\tExample:\n"
"\timport GameLogic\n"
"\t# Set a perspective projection matrix\n"
"\tdef Perspective(left, right, bottom, top, near, far):\n"
"\t\tm = MT_Matrix4x4()\n"
"\t\tm[0][0] = m[0][2] = right - left\n"
"\t\tm[1][1] = m[1][2] = top - bottom\n"
"\t\tm[2][2] = m[2][3] = -far - near\n"
"\t\tm[3][2] = -1\n"
"\t\tm[3][3] = 0\n"
"\t\treturn m\n"
"\n"
"\t# Set an orthographic projection matrix\n"
"\tdef Orthographic(left, right, bottom, top, near, far):\n"
"\t\tm = MT_Matrix4x4()\n"
"\t\tm[0][0] = right - left\n"
"\t\tm[0][3] = -right - left\n"
"\t\tm[1][1] = top - bottom\n"
"\t\tm[1][3] = -top - bottom\n"
"\t\tm[2][2] = far - near\n"
"\t\tm[2][3] = -far - near\n"
"\t\tm[3][3] = 1\n"
"\t\treturn m\n"
"\n"
"\t# Set an isometric projection matrix\n"
"\tdef Isometric(left, right, bottom, top, near, far):\n"
"\t\tm = MT_Matrix4x4()\n"
"\t\tm[0][0] = m[0][2] = m[1][1] = 0.8660254037844386\n"
"\t\tm[1][0] = 0.25\n"
"\t\tm[1][2] = -0.25\n"
"\t\tm[3][3] = 1\n"
"\t\treturn m\n"
"\n"
"\t"
"\tco = GameLogic.getCurrentController()\n"
"\tcam = co.getOwner()\n"
"\tcam.setProjectionMatrix(Perspective(-1.0, 1.0, -1.0, 1.0, 0.1, 1))\n")
{
PyObject *pymat;
if (PyArg_ParseTuple(args, "O", &pymat))
{
MT_Matrix4x4 mat;
if (PyMatTo(pymat, mat))
{
SetProjectionMatrix(mat);
Py_Return;
}
}
PyErr_SetString(PyExc_TypeError, "setProjectionMatrix: Expected 4x4 list as matrix argument.");
return NULL;
}
KX_PYMETHODDEF_DOC(KX_Camera, enableViewport,
"enableViewport(viewport)\n"
"Sets this camera's viewport status\n"
)
{
int viewport;
if (PyArg_ParseTuple(args,"i",&viewport))
{
if(viewport)
EnableViewport(true);
else
EnableViewport(false);
}
else {
return NULL;
}
Py_Return;
}
KX_PYMETHODDEF_DOC(KX_Camera, setViewport,
"setViewport(left, bottom, right, top)\n"
"Sets this camera's viewport\n")
{
int left, bottom, right, top;
if (PyArg_ParseTuple(args,"iiii",&left, &bottom, &right, &top))
{
SetViewport(left, bottom, right, top);
} else {
return NULL;
}
Py_Return;
}
KX_PYMETHODDEF_DOC(KX_Camera, setOnTop,
"setOnTop()\n"
"Sets this camera's viewport on top\n")
{
class KX_Scene* scene;
scene = KX_GetActiveScene();
MT_assert(scene);
scene->SetCameraOnTop(this);
Py_Return;
}