blender/intern/cycles/render/mesh.cpp
Lukas Stockner 43b374e8c5 Cycles: Implement denoising option for reducing noise in the rendered image
This commit contains the first part of the new Cycles denoising option,
which filters the resulting image using information gathered during rendering
to get rid of noise while preserving visual features as well as possible.

To use the option, enable it in the render layer options. The default settings
fit a wide range of scenes, but the user can tweak individual settings to
control the tradeoff between a noise-free image, image details, and calculation
time.

Note that the denoiser may still change in the future and that some features
are not implemented yet. The most important missing feature is animation
denoising, which uses information from multiple frames at once to produce a
flicker-free and smoother result. These features will be added in the future.

Finally, thanks to all the people who supported this project:

- Google (through the GSoC) and Theory Studios for sponsoring the development
- The authors of the papers I used for implementing the denoiser (more details
  on them will be included in the technical docs)
- The other Cycles devs for feedback on the code, especially Sergey for
  mentoring the GSoC project and Brecht for the code review!
- And of course the users who helped with testing, reported bugs and things
  that could and/or should work better!
2017-05-07 14:40:58 +02:00

2242 lines
66 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "bvh/bvh.h"
#include "bvh/bvh_build.h"
#include "render/camera.h"
#include "render/curves.h"
#include "device/device.h"
#include "render/graph.h"
#include "render/shader.h"
#include "render/light.h"
#include "render/mesh.h"
#include "render/nodes.h"
#include "render/object.h"
#include "render/scene.h"
#include "kernel/osl/osl_globals.h"
#include "subd/subd_split.h"
#include "subd/subd_patch_table.h"
#include "util/util_foreach.h"
#include "util/util_logging.h"
#include "util/util_progress.h"
#include "util/util_set.h"
CCL_NAMESPACE_BEGIN
/* Triangle */
void Mesh::Triangle::bounds_grow(const float3 *verts, BoundBox& bounds) const
{
bounds.grow(verts[v[0]]);
bounds.grow(verts[v[1]]);
bounds.grow(verts[v[2]]);
}
void Mesh::Triangle::motion_verts(const float3 *verts,
const float3 *vert_steps,
size_t num_verts,
size_t num_steps,
float time,
float3 r_verts[3]) const
{
/* Figure out which steps we need to fetch and their interpolation factor. */
const size_t max_step = num_steps - 1;
const size_t step = min((int)(time * max_step), max_step - 1);
const float t = time*max_step - step;
/* Fetch vertex coordinates. */
float3 curr_verts[3];
float3 next_verts[3];
verts_for_step(verts,
vert_steps,
num_verts,
num_steps,
step,
curr_verts);
verts_for_step(verts,
vert_steps,
num_verts,
num_steps,
step + 1,
next_verts);
/* Interpolate between steps. */
r_verts[0] = (1.0f - t)*curr_verts[0] + t*next_verts[0];
r_verts[1] = (1.0f - t)*curr_verts[1] + t*next_verts[1];
r_verts[2] = (1.0f - t)*curr_verts[2] + t*next_verts[2];
}
void Mesh::Triangle::verts_for_step(const float3 *verts,
const float3 *vert_steps,
size_t num_verts,
size_t num_steps,
size_t step,
float3 r_verts[3]) const
{
const size_t center_step = ((num_steps - 1) / 2);
if(step == center_step) {
/* Center step: regular vertex location. */
r_verts[0] = verts[v[0]];
r_verts[1] = verts[v[1]];
r_verts[2] = verts[v[2]];
}
else {
/* Center step not stored in the attribute array array. */
if(step > center_step) {
step--;
}
size_t offset = step * num_verts;
r_verts[0] = vert_steps[offset + v[0]];
r_verts[1] = vert_steps[offset + v[1]];
r_verts[2] = vert_steps[offset + v[2]];
}
}
/* Curve */
void Mesh::Curve::bounds_grow(const int k, const float3 *curve_keys, const float *curve_radius, BoundBox& bounds) const
{
float3 P[4];
P[0] = curve_keys[max(first_key + k - 1,first_key)];
P[1] = curve_keys[first_key + k];
P[2] = curve_keys[first_key + k + 1];
P[3] = curve_keys[min(first_key + k + 2, first_key + num_keys - 1)];
float3 lower;
float3 upper;
curvebounds(&lower.x, &upper.x, P, 0);
curvebounds(&lower.y, &upper.y, P, 1);
curvebounds(&lower.z, &upper.z, P, 2);
float mr = max(curve_radius[first_key + k], curve_radius[first_key + k + 1]);
bounds.grow(lower, mr);
bounds.grow(upper, mr);
}
void Mesh::Curve::bounds_grow(const int k,
const float3 *curve_keys,
const float *curve_radius,
const Transform& aligned_space,
BoundBox& bounds) const
{
float3 P[4];
P[0] = curve_keys[max(first_key + k - 1,first_key)];
P[1] = curve_keys[first_key + k];
P[2] = curve_keys[first_key + k + 1];
P[3] = curve_keys[min(first_key + k + 2, first_key + num_keys - 1)];
P[0] = transform_point(&aligned_space, P[0]);
P[1] = transform_point(&aligned_space, P[1]);
P[2] = transform_point(&aligned_space, P[2]);
P[3] = transform_point(&aligned_space, P[3]);
float3 lower;
float3 upper;
curvebounds(&lower.x, &upper.x, P, 0);
curvebounds(&lower.y, &upper.y, P, 1);
curvebounds(&lower.z, &upper.z, P, 2);
float mr = max(curve_radius[first_key + k], curve_radius[first_key + k + 1]);
bounds.grow(lower, mr);
bounds.grow(upper, mr);
}
void Mesh::Curve::bounds_grow(float4 keys[4], BoundBox& bounds) const
{
float3 P[4] = {
float4_to_float3(keys[0]),
float4_to_float3(keys[1]),
float4_to_float3(keys[2]),
float4_to_float3(keys[3]),
};
float3 lower;
float3 upper;
curvebounds(&lower.x, &upper.x, P, 0);
curvebounds(&lower.y, &upper.y, P, 1);
curvebounds(&lower.z, &upper.z, P, 2);
float mr = max(keys[1].w, keys[2].w);
bounds.grow(lower, mr);
bounds.grow(upper, mr);
}
void Mesh::Curve::motion_keys(const float3 *curve_keys,
const float *curve_radius,
const float3 *key_steps,
size_t num_curve_keys,
size_t num_steps,
float time,
size_t k0, size_t k1,
float4 r_keys[2]) const
{
/* Figure out which steps we need to fetch and their interpolation factor. */
const size_t max_step = num_steps - 1;
const size_t step = min((int)(time * max_step), max_step - 1);
const float t = time*max_step - step;
/* Fetch vertex coordinates. */
float4 curr_keys[2];
float4 next_keys[2];
keys_for_step(curve_keys,
curve_radius,
key_steps,
num_curve_keys,
num_steps,
step,
k0, k1,
curr_keys);
keys_for_step(curve_keys,
curve_radius,
key_steps,
num_curve_keys,
num_steps,
step + 1,
k0, k1,
next_keys);
/* Interpolate between steps. */
r_keys[0] = (1.0f - t)*curr_keys[0] + t*next_keys[0];
r_keys[1] = (1.0f - t)*curr_keys[1] + t*next_keys[1];
}
void Mesh::Curve::cardinal_motion_keys(const float3 *curve_keys,
const float *curve_radius,
const float3 *key_steps,
size_t num_curve_keys,
size_t num_steps,
float time,
size_t k0, size_t k1,
size_t k2, size_t k3,
float4 r_keys[4]) const
{
/* Figure out which steps we need to fetch and their interpolation factor. */
const size_t max_step = num_steps - 1;
const size_t step = min((int)(time * max_step), max_step - 1);
const float t = time*max_step - step;
/* Fetch vertex coordinates. */
float4 curr_keys[4];
float4 next_keys[4];
cardinal_keys_for_step(curve_keys,
curve_radius,
key_steps,
num_curve_keys,
num_steps,
step,
k0, k1, k2, k3,
curr_keys);
cardinal_keys_for_step(curve_keys,
curve_radius,
key_steps,
num_curve_keys,
num_steps,
step + 1,
k0, k1, k2, k3,
next_keys);
/* Interpolate between steps. */
r_keys[0] = (1.0f - t)*curr_keys[0] + t*next_keys[0];
r_keys[1] = (1.0f - t)*curr_keys[1] + t*next_keys[1];
r_keys[2] = (1.0f - t)*curr_keys[2] + t*next_keys[2];
r_keys[3] = (1.0f - t)*curr_keys[3] + t*next_keys[3];
}
void Mesh::Curve::keys_for_step(const float3 *curve_keys,
const float *curve_radius,
const float3 *key_steps,
size_t num_curve_keys,
size_t num_steps,
size_t step,
size_t k0, size_t k1,
float4 r_keys[2]) const
{
k0 = max(k0, 0);
k1 = min(k1, num_keys - 1);
const size_t center_step = ((num_steps - 1) / 2);
if(step == center_step) {
/* Center step: regular key location. */
/* TODO(sergey): Consider adding make_float4(float3, float)
* function.
*/
r_keys[0] = make_float4(curve_keys[first_key + k0].x,
curve_keys[first_key + k0].y,
curve_keys[first_key + k0].z,
curve_radius[first_key + k0]);
r_keys[1] = make_float4(curve_keys[first_key + k1].x,
curve_keys[first_key + k1].y,
curve_keys[first_key + k1].z,
curve_radius[first_key + k1]);
}
else {
/* Center step is not stored in this array. */
if(step > center_step) {
step--;
}
const size_t offset = first_key + step * num_curve_keys;
r_keys[0] = make_float4(key_steps[offset + k0].x,
key_steps[offset + k0].y,
key_steps[offset + k0].z,
curve_radius[first_key + k0]);
r_keys[1] = make_float4(key_steps[offset + k1].x,
key_steps[offset + k1].y,
key_steps[offset + k1].z,
curve_radius[first_key + k1]);
}
}
void Mesh::Curve::cardinal_keys_for_step(const float3 *curve_keys,
const float *curve_radius,
const float3 *key_steps,
size_t num_curve_keys,
size_t num_steps,
size_t step,
size_t k0, size_t k1,
size_t k2, size_t k3,
float4 r_keys[4]) const
{
k0 = max(k0, 0);
k3 = min(k3, num_keys - 1);
const size_t center_step = ((num_steps - 1) / 2);
if(step == center_step) {
/* Center step: regular key location. */
r_keys[0] = make_float4(curve_keys[first_key + k0].x,
curve_keys[first_key + k0].y,
curve_keys[first_key + k0].z,
curve_radius[first_key + k0]);
r_keys[1] = make_float4(curve_keys[first_key + k1].x,
curve_keys[first_key + k1].y,
curve_keys[first_key + k1].z,
curve_radius[first_key + k1]);
r_keys[2] = make_float4(curve_keys[first_key + k2].x,
curve_keys[first_key + k2].y,
curve_keys[first_key + k2].z,
curve_radius[first_key + k2]);
r_keys[3] = make_float4(curve_keys[first_key + k3].x,
curve_keys[first_key + k3].y,
curve_keys[first_key + k3].z,
curve_radius[first_key + k3]);
}
else {
/* Center step is not stored in this array. */
if(step > center_step) {
step--;
}
const size_t offset = first_key + step * num_curve_keys;
r_keys[0] = make_float4(key_steps[offset + k0].x,
key_steps[offset + k0].y,
key_steps[offset + k0].z,
curve_radius[first_key + k0]);
r_keys[1] = make_float4(key_steps[offset + k1].x,
key_steps[offset + k1].y,
key_steps[offset + k1].z,
curve_radius[first_key + k1]);
r_keys[2] = make_float4(key_steps[offset + k2].x,
key_steps[offset + k2].y,
key_steps[offset + k2].z,
curve_radius[first_key + k2]);
r_keys[3] = make_float4(key_steps[offset + k3].x,
key_steps[offset + k3].y,
key_steps[offset + k3].z,
curve_radius[first_key + k3]);
}
}
/* SubdFace */
float3 Mesh::SubdFace::normal(const Mesh *mesh) const
{
float3 v0 = mesh->verts[mesh->subd_face_corners[start_corner+0]];
float3 v1 = mesh->verts[mesh->subd_face_corners[start_corner+1]];
float3 v2 = mesh->verts[mesh->subd_face_corners[start_corner+2]];
return safe_normalize(cross(v1 - v0, v2 - v0));
}
/* Mesh */
NODE_DEFINE(Mesh)
{
NodeType* type = NodeType::add("mesh", create);
SOCKET_UINT(motion_steps, "Motion Steps", 3);
SOCKET_BOOLEAN(use_motion_blur, "Use Motion Blur", false);
SOCKET_INT_ARRAY(triangles, "Triangles", array<int>());
SOCKET_POINT_ARRAY(verts, "Vertices", array<float3>());
SOCKET_INT_ARRAY(shader, "Shader", array<int>());
SOCKET_BOOLEAN_ARRAY(smooth, "Smooth", array<bool>());
SOCKET_POINT_ARRAY(curve_keys, "Curve Keys", array<float3>());
SOCKET_FLOAT_ARRAY(curve_radius, "Curve Radius", array<float>());
SOCKET_INT_ARRAY(curve_first_key, "Curve First Key", array<int>());
SOCKET_INT_ARRAY(curve_shader, "Curve Shader", array<int>());
return type;
}
Mesh::Mesh()
: Node(node_type)
{
need_update = true;
need_update_rebuild = false;
transform_applied = false;
transform_negative_scaled = false;
transform_normal = transform_identity();
bounds = BoundBox::empty;
bvh = NULL;
tri_offset = 0;
vert_offset = 0;
curve_offset = 0;
curvekey_offset = 0;
patch_offset = 0;
face_offset = 0;
corner_offset = 0;
num_subd_verts = 0;
attributes.triangle_mesh = this;
curve_attributes.curve_mesh = this;
subd_attributes.subd_mesh = this;
geometry_flags = GEOMETRY_NONE;
has_volume = false;
has_surface_bssrdf = false;
num_ngons = 0;
subdivision_type = SUBDIVISION_NONE;
subd_params = NULL;
patch_table = NULL;
}
Mesh::~Mesh()
{
delete bvh;
delete patch_table;
delete subd_params;
}
void Mesh::resize_mesh(int numverts, int numtris)
{
verts.resize(numverts);
triangles.resize(numtris * 3);
shader.resize(numtris);
smooth.resize(numtris);
if(subd_faces.size()) {
triangle_patch.resize(numtris);
vert_patch_uv.resize(numverts);
}
attributes.resize();
}
void Mesh::reserve_mesh(int numverts, int numtris)
{
/* reserve space to add verts and triangles later */
verts.reserve(numverts);
triangles.reserve(numtris * 3);
shader.reserve(numtris);
smooth.reserve(numtris);
if(subd_faces.size()) {
triangle_patch.reserve(numtris);
vert_patch_uv.reserve(numverts);
}
attributes.resize(true);
}
void Mesh::resize_curves(int numcurves, int numkeys)
{
curve_keys.resize(numkeys);
curve_radius.resize(numkeys);
curve_first_key.resize(numcurves);
curve_shader.resize(numcurves);
curve_attributes.resize();
}
void Mesh::reserve_curves(int numcurves, int numkeys)
{
curve_keys.reserve(numkeys);
curve_radius.reserve(numkeys);
curve_first_key.reserve(numcurves);
curve_shader.reserve(numcurves);
curve_attributes.resize(true);
}
void Mesh::resize_subd_faces(int numfaces, int num_ngons_, int numcorners)
{
subd_faces.resize(numfaces);
subd_face_corners.resize(numcorners);
num_ngons = num_ngons_;
subd_attributes.resize();
}
void Mesh::reserve_subd_faces(int numfaces, int num_ngons_, int numcorners)
{
subd_faces.reserve(numfaces);
subd_face_corners.reserve(numcorners);
num_ngons = num_ngons_;
subd_attributes.resize(true);
}
void Mesh::clear()
{
/* clear all verts and triangles */
verts.clear();
triangles.clear();
shader.clear();
smooth.clear();
triangle_patch.clear();
vert_patch_uv.clear();
curve_keys.clear();
curve_radius.clear();
curve_first_key.clear();
curve_shader.clear();
subd_faces.clear();
subd_face_corners.clear();
num_subd_verts = 0;
subd_creases.clear();
attributes.clear();
curve_attributes.clear();
subd_attributes.clear();
used_shaders.clear();
transform_applied = false;
transform_negative_scaled = false;
transform_normal = transform_identity();
geometry_flags = GEOMETRY_NONE;
delete patch_table;
patch_table = NULL;
}
int Mesh::split_vertex(int vertex)
{
/* copy vertex location and vertex attributes */
add_vertex_slow(verts[vertex]);
foreach(Attribute& attr, attributes.attributes) {
if(attr.element == ATTR_ELEMENT_VERTEX) {
array<char> tmp(attr.data_sizeof());
memcpy(tmp.data(), attr.data() + tmp.size()*vertex, tmp.size());
attr.add(tmp.data());
}
}
foreach(Attribute& attr, subd_attributes.attributes) {
if(attr.element == ATTR_ELEMENT_VERTEX) {
array<char> tmp(attr.data_sizeof());
memcpy(tmp.data(), attr.data() + tmp.size()*vertex, tmp.size());
attr.add(tmp.data());
}
}
return verts.size() - 1;
}
void Mesh::add_vertex(float3 P)
{
verts.push_back_reserved(P);
if(subd_faces.size()) {
vert_patch_uv.push_back_reserved(make_float2(0.0f, 0.0f));
}
}
void Mesh::add_vertex_slow(float3 P)
{
verts.push_back_slow(P);
if(subd_faces.size()) {
vert_patch_uv.push_back_slow(make_float2(0.0f, 0.0f));
}
}
void Mesh::add_triangle(int v0, int v1, int v2, int shader_, bool smooth_)
{
triangles.push_back_reserved(v0);
triangles.push_back_reserved(v1);
triangles.push_back_reserved(v2);
shader.push_back_reserved(shader_);
smooth.push_back_reserved(smooth_);
if(subd_faces.size()) {
triangle_patch.push_back_reserved(-1);
}
}
void Mesh::add_curve_key(float3 co, float radius)
{
curve_keys.push_back_reserved(co);
curve_radius.push_back_reserved(radius);
}
void Mesh::add_curve(int first_key, int shader)
{
curve_first_key.push_back_reserved(first_key);
curve_shader.push_back_reserved(shader);
}
void Mesh::add_subd_face(int* corners, int num_corners, int shader_, bool smooth_)
{
int start_corner = subd_face_corners.size();
for(int i = 0; i < num_corners; i++) {
subd_face_corners.push_back_reserved(corners[i]);
}
int ptex_offset = 0;
if(subd_faces.size()) {
SubdFace& s = subd_faces[subd_faces.size()-1];
ptex_offset = s.ptex_offset + s.num_ptex_faces();
}
SubdFace face = {start_corner, num_corners, shader_, smooth_, ptex_offset};
subd_faces.push_back_reserved(face);
}
void Mesh::compute_bounds()
{
BoundBox bnds = BoundBox::empty;
size_t verts_size = verts.size();
size_t curve_keys_size = curve_keys.size();
if(verts_size + curve_keys_size > 0) {
for(size_t i = 0; i < verts_size; i++)
bnds.grow(verts[i]);
for(size_t i = 0; i < curve_keys_size; i++)
bnds.grow(curve_keys[i], curve_radius[i]);
Attribute *attr = attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
if(use_motion_blur && attr) {
size_t steps_size = verts.size() * (motion_steps - 1);
float3 *vert_steps = attr->data_float3();
for(size_t i = 0; i < steps_size; i++)
bnds.grow(vert_steps[i]);
}
Attribute *curve_attr = curve_attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
if(use_motion_blur && curve_attr) {
size_t steps_size = curve_keys.size() * (motion_steps - 1);
float3 *key_steps = curve_attr->data_float3();
for(size_t i = 0; i < steps_size; i++)
bnds.grow(key_steps[i]);
}
if(!bnds.valid()) {
bnds = BoundBox::empty;
/* skip nan or inf coordinates */
for(size_t i = 0; i < verts_size; i++)
bnds.grow_safe(verts[i]);
for(size_t i = 0; i < curve_keys_size; i++)
bnds.grow_safe(curve_keys[i], curve_radius[i]);
if(use_motion_blur && attr) {
size_t steps_size = verts.size() * (motion_steps - 1);
float3 *vert_steps = attr->data_float3();
for(size_t i = 0; i < steps_size; i++)
bnds.grow_safe(vert_steps[i]);
}
if(use_motion_blur && curve_attr) {
size_t steps_size = curve_keys.size() * (motion_steps - 1);
float3 *key_steps = curve_attr->data_float3();
for(size_t i = 0; i < steps_size; i++)
bnds.grow_safe(key_steps[i]);
}
}
}
if(!bnds.valid()) {
/* empty mesh */
bnds.grow(make_float3(0.0f, 0.0f, 0.0f));
}
bounds = bnds;
}
static float3 compute_face_normal(const Mesh::Triangle& t, float3 *verts)
{
float3 v0 = verts[t.v[0]];
float3 v1 = verts[t.v[1]];
float3 v2 = verts[t.v[2]];
float3 norm = cross(v1 - v0, v2 - v0);
float normlen = len(norm);
if(normlen == 0.0f)
return make_float3(1.0f, 0.0f, 0.0f);
return norm / normlen;
}
void Mesh::add_face_normals()
{
/* don't compute if already there */
if(attributes.find(ATTR_STD_FACE_NORMAL))
return;
/* get attributes */
Attribute *attr_fN = attributes.add(ATTR_STD_FACE_NORMAL);
float3 *fN = attr_fN->data_float3();
/* compute face normals */
size_t triangles_size = num_triangles();
if(triangles_size) {
float3 *verts_ptr = verts.data();
for(size_t i = 0; i < triangles_size; i++) {
fN[i] = compute_face_normal(get_triangle(i), verts_ptr);
}
}
/* expected to be in local space */
if(transform_applied) {
Transform ntfm = transform_inverse(transform_normal);
for(size_t i = 0; i < triangles_size; i++)
fN[i] = normalize(transform_direction(&ntfm, fN[i]));
}
}
void Mesh::add_vertex_normals()
{
bool flip = transform_negative_scaled;
size_t verts_size = verts.size();
size_t triangles_size = num_triangles();
/* static vertex normals */
if(!attributes.find(ATTR_STD_VERTEX_NORMAL) && triangles_size) {
/* get attributes */
Attribute *attr_fN = attributes.find(ATTR_STD_FACE_NORMAL);
Attribute *attr_vN = attributes.add(ATTR_STD_VERTEX_NORMAL);
float3 *fN = attr_fN->data_float3();
float3 *vN = attr_vN->data_float3();
/* compute vertex normals */
memset(vN, 0, verts.size()*sizeof(float3));
for(size_t i = 0; i < triangles_size; i++) {
for(size_t j = 0; j < 3; j++) {
vN[get_triangle(i).v[j]] += fN[i];
}
}
for(size_t i = 0; i < verts_size; i++) {
vN[i] = normalize(vN[i]);
if(flip) {
vN[i] = -vN[i];
}
}
}
/* motion vertex normals */
Attribute *attr_mP = attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
Attribute *attr_mN = attributes.find(ATTR_STD_MOTION_VERTEX_NORMAL);
if(has_motion_blur() && attr_mP && !attr_mN && triangles_size) {
/* create attribute */
attr_mN = attributes.add(ATTR_STD_MOTION_VERTEX_NORMAL);
for(int step = 0; step < motion_steps - 1; step++) {
float3 *mP = attr_mP->data_float3() + step*verts.size();
float3 *mN = attr_mN->data_float3() + step*verts.size();
/* compute */
memset(mN, 0, verts.size()*sizeof(float3));
for(size_t i = 0; i < triangles_size; i++) {
for(size_t j = 0; j < 3; j++) {
float3 fN = compute_face_normal(get_triangle(i), mP);
mN[get_triangle(i).v[j]] += fN;
}
}
for(size_t i = 0; i < verts_size; i++) {
mN[i] = normalize(mN[i]);
if(flip) {
mN[i] = -mN[i];
}
}
}
}
/* subd vertex normals */
if(!subd_attributes.find(ATTR_STD_VERTEX_NORMAL) && subd_faces.size()) {
/* get attributes */
Attribute *attr_vN = subd_attributes.add(ATTR_STD_VERTEX_NORMAL);
float3 *vN = attr_vN->data_float3();
/* compute vertex normals */
memset(vN, 0, verts.size()*sizeof(float3));
for(size_t i = 0; i < subd_faces.size(); i++) {
SubdFace& face = subd_faces[i];
float3 fN = face.normal(this);
for(size_t j = 0; j < face.num_corners; j++) {
size_t corner = subd_face_corners[face.start_corner+j];
vN[corner] += fN;
}
}
for(size_t i = 0; i < verts_size; i++) {
vN[i] = normalize(vN[i]);
if(flip) {
vN[i] = -vN[i];
}
}
}
}
void Mesh::add_undisplaced()
{
AttributeSet& attrs = (subdivision_type == SUBDIVISION_NONE) ? attributes : subd_attributes;
/* don't compute if already there */
if(attrs.find(ATTR_STD_POSITION_UNDISPLACED)) {
return;
}
/* get attribute */
Attribute *attr = attrs.add(ATTR_STD_POSITION_UNDISPLACED);
attr->flags |= ATTR_SUBDIVIDED;
float3 *data = attr->data_float3();
/* copy verts */
size_t size = attr->buffer_size(this, (subdivision_type == SUBDIVISION_NONE) ? ATTR_PRIM_TRIANGLE : ATTR_PRIM_SUBD);
/* Center points for ngons aren't stored in Mesh::verts but are included in size since they will be
* calculated later, we subtract them from size here so we don't have an overflow while copying.
*/
size -= num_ngons * attr->data_sizeof();
if(size) {
memcpy(data, verts.data(), size);
}
}
void Mesh::pack_normals(Scene *scene, uint *tri_shader, float4 *vnormal)
{
Attribute *attr_vN = attributes.find(ATTR_STD_VERTEX_NORMAL);
if(attr_vN == NULL) {
/* Happens on objects with just hair. */
return;
}
float3 *vN = attr_vN->data_float3();
uint shader_id = 0;
uint last_shader = -1;
bool last_smooth = false;
size_t triangles_size = num_triangles();
int *shader_ptr = shader.data();
bool do_transform = transform_applied;
Transform ntfm = transform_normal;
/* save shader */
for(size_t i = 0; i < triangles_size; i++) {
if(shader_ptr[i] != last_shader || last_smooth != smooth[i]) {
last_shader = shader_ptr[i];
last_smooth = smooth[i];
Shader *shader = (last_shader < used_shaders.size()) ?
used_shaders[last_shader] : scene->default_surface;
shader_id = scene->shader_manager->get_shader_id(shader, last_smooth);
}
tri_shader[i] = shader_id;
}
size_t verts_size = verts.size();
for(size_t i = 0; i < verts_size; i++) {
float3 vNi = vN[i];
if(do_transform)
vNi = safe_normalize(transform_direction(&ntfm, vNi));
vnormal[i] = make_float4(vNi.x, vNi.y, vNi.z, 0.0f);
}
}
void Mesh::pack_verts(const vector<uint>& tri_prim_index,
uint4 *tri_vindex,
uint *tri_patch,
float2 *tri_patch_uv,
size_t vert_offset,
size_t tri_offset)
{
size_t verts_size = verts.size();
if(verts_size && subd_faces.size()) {
float2 *vert_patch_uv_ptr = vert_patch_uv.data();
for(size_t i = 0; i < verts_size; i++) {
tri_patch_uv[i] = vert_patch_uv_ptr[i];
}
}
size_t triangles_size = num_triangles();
for(size_t i = 0; i < triangles_size; i++) {
Triangle t = get_triangle(i);
tri_vindex[i] = make_uint4(t.v[0] + vert_offset,
t.v[1] + vert_offset,
t.v[2] + vert_offset,
tri_prim_index[i + tri_offset]);
tri_patch[i] = (!subd_faces.size()) ? -1 : (triangle_patch[i]*8 + patch_offset);
}
}
void Mesh::pack_curves(Scene *scene, float4 *curve_key_co, float4 *curve_data, size_t curvekey_offset)
{
size_t curve_keys_size = curve_keys.size();
/* pack curve keys */
if(curve_keys_size) {
float3 *keys_ptr = curve_keys.data();
float *radius_ptr = curve_radius.data();
for(size_t i = 0; i < curve_keys_size; i++)
curve_key_co[i] = make_float4(keys_ptr[i].x, keys_ptr[i].y, keys_ptr[i].z, radius_ptr[i]);
}
/* pack curve segments */
size_t curve_num = num_curves();
for(size_t i = 0; i < curve_num; i++) {
Curve curve = get_curve(i);
int shader_id = curve_shader[i];
Shader *shader = (shader_id < used_shaders.size()) ?
used_shaders[shader_id] : scene->default_surface;
shader_id = scene->shader_manager->get_shader_id(shader, false);
curve_data[i] = make_float4(
__int_as_float(curve.first_key + curvekey_offset),
__int_as_float(curve.num_keys),
__int_as_float(shader_id),
0.0f);
}
}
void Mesh::pack_patches(uint *patch_data, uint vert_offset, uint face_offset, uint corner_offset)
{
size_t num_faces = subd_faces.size();
int ngons = 0;
for(size_t f = 0; f < num_faces; f++) {
SubdFace face = subd_faces[f];
if(face.is_quad()) {
int c[4];
memcpy(c, &subd_face_corners[face.start_corner], sizeof(int)*4);
*(patch_data++) = c[0] + vert_offset;
*(patch_data++) = c[1] + vert_offset;
*(patch_data++) = c[2] + vert_offset;
*(patch_data++) = c[3] + vert_offset;
*(patch_data++) = f+face_offset;
*(patch_data++) = face.num_corners;
*(patch_data++) = face.start_corner + corner_offset;
*(patch_data++) = 0;
}
else {
for(int i = 0; i < face.num_corners; i++) {
int c[4];
c[0] = subd_face_corners[face.start_corner + mod(i + 0, face.num_corners)];
c[1] = subd_face_corners[face.start_corner + mod(i + 1, face.num_corners)];
c[2] = verts.size() - num_subd_verts + ngons;
c[3] = subd_face_corners[face.start_corner + mod(i - 1, face.num_corners)];
*(patch_data++) = c[0] + vert_offset;
*(patch_data++) = c[1] + vert_offset;
*(patch_data++) = c[2] + vert_offset;
*(patch_data++) = c[3] + vert_offset;
*(patch_data++) = f+face_offset;
*(patch_data++) = face.num_corners | (i << 16);
*(patch_data++) = face.start_corner + corner_offset;
*(patch_data++) = subd_face_corners.size() + ngons + corner_offset;
}
ngons++;
}
}
}
void Mesh::compute_bvh(DeviceScene *dscene,
SceneParams *params,
Progress *progress,
int n,
int total)
{
if(progress->get_cancel())
return;
compute_bounds();
if(need_build_bvh()) {
string msg = "Updating Mesh BVH ";
if(name == "")
msg += string_printf("%u/%u", (uint)(n+1), (uint)total);
else
msg += string_printf("%s %u/%u", name.c_str(), (uint)(n+1), (uint)total);
Object object;
object.mesh = this;
vector<Object*> objects;
objects.push_back(&object);
if(bvh && !need_update_rebuild) {
progress->set_status(msg, "Refitting BVH");
bvh->objects = objects;
bvh->refit(*progress);
}
else {
progress->set_status(msg, "Building BVH");
BVHParams bparams;
bparams.use_spatial_split = params->use_bvh_spatial_split;
bparams.use_qbvh = params->use_qbvh;
bparams.use_unaligned_nodes = dscene->data.bvh.have_curves &&
params->use_bvh_unaligned_nodes;
bparams.num_motion_triangle_steps = params->num_bvh_time_steps;
bparams.num_motion_curve_steps = params->num_bvh_time_steps;
delete bvh;
bvh = BVH::create(bparams, objects);
MEM_GUARDED_CALL(progress, bvh->build, *progress);
}
}
need_update = false;
need_update_rebuild = false;
}
void Mesh::tag_update(Scene *scene, bool rebuild)
{
need_update = true;
if(rebuild) {
need_update_rebuild = true;
scene->light_manager->need_update = true;
}
else {
foreach(Shader *shader, used_shaders)
if(shader->has_surface_emission)
scene->light_manager->need_update = true;
}
scene->mesh_manager->need_update = true;
scene->object_manager->need_update = true;
}
bool Mesh::has_motion_blur() const
{
return (use_motion_blur &&
(attributes.find(ATTR_STD_MOTION_VERTEX_POSITION) ||
curve_attributes.find(ATTR_STD_MOTION_VERTEX_POSITION)));
}
bool Mesh::has_true_displacement() const
{
foreach(Shader *shader, used_shaders) {
if(shader->has_displacement && shader->displacement_method != DISPLACE_BUMP) {
return true;
}
}
return false;
}
bool Mesh::need_build_bvh() const
{
return !transform_applied || has_surface_bssrdf;
}
bool Mesh::is_instanced() const
{
/* Currently we treat subsurface objects as instanced.
*
* While it might be not very optimal for ray traversal, it avoids having
* duplicated BVH in the memory, saving quite some space.
*/
return !transform_applied || has_surface_bssrdf;
}
/* Mesh Manager */
MeshManager::MeshManager()
{
bvh = NULL;
need_update = true;
need_flags_update = true;
}
MeshManager::~MeshManager()
{
delete bvh;
}
void MeshManager::update_osl_attributes(Device *device, Scene *scene, vector<AttributeRequestSet>& mesh_attributes)
{
#ifdef WITH_OSL
/* for OSL, a hash map is used to lookup the attribute by name. */
OSLGlobals *og = (OSLGlobals*)device->osl_memory();
og->object_name_map.clear();
og->attribute_map.clear();
og->object_names.clear();
og->attribute_map.resize(scene->objects.size()*ATTR_PRIM_TYPES);
for(size_t i = 0; i < scene->objects.size(); i++) {
/* set object name to object index map */
Object *object = scene->objects[i];
og->object_name_map[object->name] = i;
og->object_names.push_back(object->name);
/* set object attributes */
foreach(ParamValue& attr, object->attributes) {
OSLGlobals::Attribute osl_attr;
osl_attr.type = attr.type();
osl_attr.desc.element = ATTR_ELEMENT_OBJECT;
osl_attr.value = attr;
osl_attr.desc.offset = 0;
osl_attr.desc.flags = 0;
og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_TRIANGLE][attr.name()] = osl_attr;
og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_CURVE][attr.name()] = osl_attr;
og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_SUBD][attr.name()] = osl_attr;
}
/* find mesh attributes */
size_t j;
for(j = 0; j < scene->meshes.size(); j++)
if(scene->meshes[j] == object->mesh)
break;
AttributeRequestSet& attributes = mesh_attributes[j];
/* set object attributes */
foreach(AttributeRequest& req, attributes.requests) {
OSLGlobals::Attribute osl_attr;
if(req.triangle_desc.element != ATTR_ELEMENT_NONE) {
osl_attr.desc = req.triangle_desc;
if(req.triangle_type == TypeDesc::TypeFloat)
osl_attr.type = TypeDesc::TypeFloat;
else if(req.triangle_type == TypeDesc::TypeMatrix)
osl_attr.type = TypeDesc::TypeMatrix;
else
osl_attr.type = TypeDesc::TypeColor;
if(req.std != ATTR_STD_NONE) {
/* if standard attribute, add lookup by geom: name convention */
ustring stdname(string("geom:") + string(Attribute::standard_name(req.std)));
og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_TRIANGLE][stdname] = osl_attr;
}
else if(req.name != ustring()) {
/* add lookup by mesh attribute name */
og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_TRIANGLE][req.name] = osl_attr;
}
}
if(req.curve_desc.element != ATTR_ELEMENT_NONE) {
osl_attr.desc = req.curve_desc;
if(req.curve_type == TypeDesc::TypeFloat)
osl_attr.type = TypeDesc::TypeFloat;
else if(req.curve_type == TypeDesc::TypeMatrix)
osl_attr.type = TypeDesc::TypeMatrix;
else
osl_attr.type = TypeDesc::TypeColor;
if(req.std != ATTR_STD_NONE) {
/* if standard attribute, add lookup by geom: name convention */
ustring stdname(string("geom:") + string(Attribute::standard_name(req.std)));
og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_CURVE][stdname] = osl_attr;
}
else if(req.name != ustring()) {
/* add lookup by mesh attribute name */
og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_CURVE][req.name] = osl_attr;
}
}
if(req.subd_desc.element != ATTR_ELEMENT_NONE) {
osl_attr.desc = req.subd_desc;
if(req.subd_type == TypeDesc::TypeFloat)
osl_attr.type = TypeDesc::TypeFloat;
else if(req.subd_type == TypeDesc::TypeMatrix)
osl_attr.type = TypeDesc::TypeMatrix;
else
osl_attr.type = TypeDesc::TypeColor;
if(req.std != ATTR_STD_NONE) {
/* if standard attribute, add lookup by geom: name convention */
ustring stdname(string("geom:") + string(Attribute::standard_name(req.std)));
og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_SUBD][stdname] = osl_attr;
}
else if(req.name != ustring()) {
/* add lookup by mesh attribute name */
og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_SUBD][req.name] = osl_attr;
}
}
}
}
#else
(void)device;
(void)scene;
(void)mesh_attributes;
#endif
}
void MeshManager::update_svm_attributes(Device *device, DeviceScene *dscene, Scene *scene, vector<AttributeRequestSet>& mesh_attributes)
{
/* for SVM, the attributes_map table is used to lookup the offset of an
* attribute, based on a unique shader attribute id. */
/* compute array stride */
int attr_map_stride = 0;
for(size_t i = 0; i < scene->meshes.size(); i++)
attr_map_stride = max(attr_map_stride, (mesh_attributes[i].size() + 1)*ATTR_PRIM_TYPES);
if(attr_map_stride == 0)
return;
/* create attribute map */
uint4 *attr_map = dscene->attributes_map.resize(attr_map_stride*scene->objects.size());
memset(attr_map, 0, dscene->attributes_map.size()*sizeof(uint));
for(size_t i = 0; i < scene->objects.size(); i++) {
Object *object = scene->objects[i];
Mesh *mesh = object->mesh;
/* find mesh attributes */
size_t j;
for(j = 0; j < scene->meshes.size(); j++)
if(scene->meshes[j] == mesh)
break;
AttributeRequestSet& attributes = mesh_attributes[j];
/* set object attributes */
int index = i*attr_map_stride;
foreach(AttributeRequest& req, attributes.requests) {
uint id;
if(req.std == ATTR_STD_NONE)
id = scene->shader_manager->get_attribute_id(req.name);
else
id = scene->shader_manager->get_attribute_id(req.std);
if(mesh->num_triangles()) {
attr_map[index].x = id;
attr_map[index].y = req.triangle_desc.element;
attr_map[index].z = as_uint(req.triangle_desc.offset);
if(req.triangle_type == TypeDesc::TypeFloat)
attr_map[index].w = NODE_ATTR_FLOAT;
else if(req.triangle_type == TypeDesc::TypeMatrix)
attr_map[index].w = NODE_ATTR_MATRIX;
else
attr_map[index].w = NODE_ATTR_FLOAT3;
attr_map[index].w |= req.triangle_desc.flags << 8;
}
index++;
if(mesh->num_curves()) {
attr_map[index].x = id;
attr_map[index].y = req.curve_desc.element;
attr_map[index].z = as_uint(req.curve_desc.offset);
if(req.curve_type == TypeDesc::TypeFloat)
attr_map[index].w = NODE_ATTR_FLOAT;
else if(req.curve_type == TypeDesc::TypeMatrix)
attr_map[index].w = NODE_ATTR_MATRIX;
else
attr_map[index].w = NODE_ATTR_FLOAT3;
attr_map[index].w |= req.curve_desc.flags << 8;
}
index++;
if(mesh->subd_faces.size()) {
attr_map[index].x = id;
attr_map[index].y = req.subd_desc.element;
attr_map[index].z = as_uint(req.subd_desc.offset);
if(req.subd_type == TypeDesc::TypeFloat)
attr_map[index].w = NODE_ATTR_FLOAT;
else if(req.subd_type == TypeDesc::TypeMatrix)
attr_map[index].w = NODE_ATTR_MATRIX;
else
attr_map[index].w = NODE_ATTR_FLOAT3;
attr_map[index].w |= req.subd_desc.flags << 8;
}
index++;
}
/* terminator */
for(int j = 0; j < ATTR_PRIM_TYPES; j++) {
attr_map[index].x = ATTR_STD_NONE;
attr_map[index].y = 0;
attr_map[index].z = 0;
attr_map[index].w = 0;
index++;
}
}
/* copy to device */
dscene->data.bvh.attributes_map_stride = attr_map_stride;
device->tex_alloc("__attributes_map", dscene->attributes_map);
}
static void update_attribute_element_size(Mesh *mesh,
Attribute *mattr,
AttributePrimitive prim,
size_t *attr_float_size,
size_t *attr_float3_size,
size_t *attr_uchar4_size)
{
if(mattr) {
size_t size = mattr->element_size(mesh, prim);
if(mattr->element == ATTR_ELEMENT_VOXEL) {
/* pass */
}
else if(mattr->element == ATTR_ELEMENT_CORNER_BYTE) {
*attr_uchar4_size += size;
}
else if(mattr->type == TypeDesc::TypeFloat) {
*attr_float_size += size;
}
else if(mattr->type == TypeDesc::TypeMatrix) {
*attr_float3_size += size * 4;
}
else {
*attr_float3_size += size;
}
}
}
static void update_attribute_element_offset(Mesh *mesh,
vector<float>& attr_float,
size_t& attr_float_offset,
vector<float4>& attr_float3,
size_t& attr_float3_offset,
vector<uchar4>& attr_uchar4,
size_t& attr_uchar4_offset,
Attribute *mattr,
AttributePrimitive prim,
TypeDesc& type,
AttributeDescriptor& desc)
{
if(mattr) {
/* store element and type */
desc.element = mattr->element;
desc.flags = mattr->flags;
type = mattr->type;
/* store attribute data in arrays */
size_t size = mattr->element_size(mesh, prim);
AttributeElement& element = desc.element;
int& offset = desc.offset;
if(mattr->element == ATTR_ELEMENT_VOXEL) {
/* store slot in offset value */
VoxelAttribute *voxel_data = mattr->data_voxel();
offset = voxel_data->slot;
}
else if(mattr->element == ATTR_ELEMENT_CORNER_BYTE) {
uchar4 *data = mattr->data_uchar4();
offset = attr_uchar4_offset;
assert(attr_uchar4.capacity() >= offset + size);
for(size_t k = 0; k < size; k++) {
attr_uchar4[offset+k] = data[k];
}
attr_uchar4_offset += size;
}
else if(mattr->type == TypeDesc::TypeFloat) {
float *data = mattr->data_float();
offset = attr_float_offset;
assert(attr_float.capacity() >= offset + size);
for(size_t k = 0; k < size; k++) {
attr_float[offset+k] = data[k];
}
attr_float_offset += size;
}
else if(mattr->type == TypeDesc::TypeMatrix) {
Transform *tfm = mattr->data_transform();
offset = attr_float3_offset;
assert(attr_float3.capacity() >= offset + size * 4);
for(size_t k = 0; k < size*4; k++) {
attr_float3[offset+k] = (&tfm->x)[k];
}
attr_float3_offset += size * 4;
}
else {
float4 *data = mattr->data_float4();
offset = attr_float3_offset;
assert(attr_float3.capacity() >= offset + size);
for(size_t k = 0; k < size; k++) {
attr_float3[offset+k] = data[k];
}
attr_float3_offset += size;
}
/* mesh vertex/curve index is global, not per object, so we sneak
* a correction for that in here */
if(mesh->subdivision_type == Mesh::SUBDIVISION_CATMULL_CLARK && desc.flags & ATTR_SUBDIVIDED) {
/* indices for subdivided attributes are retrieved
* from patch table so no need for correction here*/
}
else if(element == ATTR_ELEMENT_VERTEX)
offset -= mesh->vert_offset;
else if(element == ATTR_ELEMENT_VERTEX_MOTION)
offset -= mesh->vert_offset;
else if(element == ATTR_ELEMENT_FACE) {
if(prim == ATTR_PRIM_TRIANGLE)
offset -= mesh->tri_offset;
else
offset -= mesh->face_offset;
}
else if(element == ATTR_ELEMENT_CORNER || element == ATTR_ELEMENT_CORNER_BYTE) {
if(prim == ATTR_PRIM_TRIANGLE)
offset -= 3*mesh->tri_offset;
else
offset -= mesh->corner_offset;
}
else if(element == ATTR_ELEMENT_CURVE)
offset -= mesh->curve_offset;
else if(element == ATTR_ELEMENT_CURVE_KEY)
offset -= mesh->curvekey_offset;
else if(element == ATTR_ELEMENT_CURVE_KEY_MOTION)
offset -= mesh->curvekey_offset;
}
else {
/* attribute not found */
desc.element = ATTR_ELEMENT_NONE;
desc.offset = 0;
}
}
void MeshManager::device_update_attributes(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress)
{
progress.set_status("Updating Mesh", "Computing attributes");
/* gather per mesh requested attributes. as meshes may have multiple
* shaders assigned, this merges the requested attributes that have
* been set per shader by the shader manager */
vector<AttributeRequestSet> mesh_attributes(scene->meshes.size());
for(size_t i = 0; i < scene->meshes.size(); i++) {
Mesh *mesh = scene->meshes[i];
scene->need_global_attributes(mesh_attributes[i]);
foreach(Shader *shader, mesh->used_shaders) {
mesh_attributes[i].add(shader->attributes);
}
}
/* mesh attribute are stored in a single array per data type. here we fill
* those arrays, and set the offset and element type to create attribute
* maps next */
/* Pre-allocate attributes to avoid arrays re-allocation which would
* take 2x of overall attribute memory usage.
*/
size_t attr_float_size = 0;
size_t attr_float3_size = 0;
size_t attr_uchar4_size = 0;
for(size_t i = 0; i < scene->meshes.size(); i++) {
Mesh *mesh = scene->meshes[i];
AttributeRequestSet& attributes = mesh_attributes[i];
foreach(AttributeRequest& req, attributes.requests) {
Attribute *triangle_mattr = mesh->attributes.find(req);
Attribute *curve_mattr = mesh->curve_attributes.find(req);
Attribute *subd_mattr = mesh->subd_attributes.find(req);
update_attribute_element_size(mesh,
triangle_mattr,
ATTR_PRIM_TRIANGLE,
&attr_float_size,
&attr_float3_size,
&attr_uchar4_size);
update_attribute_element_size(mesh,
curve_mattr,
ATTR_PRIM_CURVE,
&attr_float_size,
&attr_float3_size,
&attr_uchar4_size);
update_attribute_element_size(mesh,
subd_mattr,
ATTR_PRIM_SUBD,
&attr_float_size,
&attr_float3_size,
&attr_uchar4_size);
}
}
vector<float> attr_float(attr_float_size);
vector<float4> attr_float3(attr_float3_size);
vector<uchar4> attr_uchar4(attr_uchar4_size);
size_t attr_float_offset = 0;
size_t attr_float3_offset = 0;
size_t attr_uchar4_offset = 0;
/* Fill in attributes. */
for(size_t i = 0; i < scene->meshes.size(); i++) {
Mesh *mesh = scene->meshes[i];
AttributeRequestSet& attributes = mesh_attributes[i];
/* todo: we now store std and name attributes from requests even if
* they actually refer to the same mesh attributes, optimize */
foreach(AttributeRequest& req, attributes.requests) {
Attribute *triangle_mattr = mesh->attributes.find(req);
Attribute *curve_mattr = mesh->curve_attributes.find(req);
Attribute *subd_mattr = mesh->subd_attributes.find(req);
update_attribute_element_offset(mesh,
attr_float, attr_float_offset,
attr_float3, attr_float3_offset,
attr_uchar4, attr_uchar4_offset,
triangle_mattr,
ATTR_PRIM_TRIANGLE,
req.triangle_type,
req.triangle_desc);
update_attribute_element_offset(mesh,
attr_float, attr_float_offset,
attr_float3, attr_float3_offset,
attr_uchar4, attr_uchar4_offset,
curve_mattr,
ATTR_PRIM_CURVE,
req.curve_type,
req.curve_desc);
update_attribute_element_offset(mesh,
attr_float, attr_float_offset,
attr_float3, attr_float3_offset,
attr_uchar4, attr_uchar4_offset,
subd_mattr,
ATTR_PRIM_SUBD,
req.subd_type,
req.subd_desc);
if(progress.get_cancel()) return;
}
}
/* create attribute lookup maps */
if(scene->shader_manager->use_osl())
update_osl_attributes(device, scene, mesh_attributes);
update_svm_attributes(device, dscene, scene, mesh_attributes);
if(progress.get_cancel()) return;
/* copy to device */
progress.set_status("Updating Mesh", "Copying Attributes to device");
if(attr_float.size()) {
dscene->attributes_float.copy(&attr_float[0], attr_float.size());
device->tex_alloc("__attributes_float", dscene->attributes_float);
}
if(attr_float3.size()) {
dscene->attributes_float3.copy(&attr_float3[0], attr_float3.size());
device->tex_alloc("__attributes_float3", dscene->attributes_float3);
}
if(attr_uchar4.size()) {
dscene->attributes_uchar4.copy(&attr_uchar4[0], attr_uchar4.size());
device->tex_alloc("__attributes_uchar4", dscene->attributes_uchar4);
}
}
void MeshManager::mesh_calc_offset(Scene *scene)
{
size_t vert_size = 0;
size_t tri_size = 0;
size_t curve_key_size = 0;
size_t curve_size = 0;
size_t patch_size = 0;
size_t face_size = 0;
size_t corner_size = 0;
foreach(Mesh *mesh, scene->meshes) {
mesh->vert_offset = vert_size;
mesh->tri_offset = tri_size;
mesh->curvekey_offset = curve_key_size;
mesh->curve_offset = curve_size;
mesh->patch_offset = patch_size;
mesh->face_offset = face_size;
mesh->corner_offset = corner_size;
vert_size += mesh->verts.size();
tri_size += mesh->num_triangles();
curve_key_size += mesh->curve_keys.size();
curve_size += mesh->num_curves();
if(mesh->subd_faces.size()) {
Mesh::SubdFace& last = mesh->subd_faces[mesh->subd_faces.size()-1];
patch_size += (last.ptex_offset + last.num_ptex_faces()) * 8;
/* patch tables are stored in same array so include them in patch_size */
if(mesh->patch_table) {
mesh->patch_table_offset = patch_size;
patch_size += mesh->patch_table->total_size();
}
}
face_size += mesh->subd_faces.size();
corner_size += mesh->subd_face_corners.size();
}
}
void MeshManager::device_update_mesh(Device *device,
DeviceScene *dscene,
Scene *scene,
bool for_displacement,
Progress& progress)
{
/* Count. */
size_t vert_size = 0;
size_t tri_size = 0;
size_t curve_key_size = 0;
size_t curve_size = 0;
size_t patch_size = 0;
foreach(Mesh *mesh, scene->meshes) {
vert_size += mesh->verts.size();
tri_size += mesh->num_triangles();
curve_key_size += mesh->curve_keys.size();
curve_size += mesh->num_curves();
if(mesh->subd_faces.size()) {
Mesh::SubdFace& last = mesh->subd_faces[mesh->subd_faces.size()-1];
patch_size += (last.ptex_offset + last.num_ptex_faces()) * 8;
/* patch tables are stored in same array so include them in patch_size */
if(mesh->patch_table) {
mesh->patch_table_offset = patch_size;
patch_size += mesh->patch_table->total_size();
}
}
}
/* Create mapping from triangle to primitive triangle array. */
vector<uint> tri_prim_index(tri_size);
if(for_displacement) {
/* For displacement kernels we do some trickery to make them believe
* we've got all required data ready. However, that data is different
* from final render kernels since we don't have BVH yet, so can't
* really use same semantic of arrays.
*/
foreach(Mesh *mesh, scene->meshes) {
for(size_t i = 0; i < mesh->num_triangles(); ++i) {
tri_prim_index[i + mesh->tri_offset] = 3 * (i + mesh->tri_offset);
}
}
}
else {
PackedBVH& pack = bvh->pack;
for(size_t i = 0; i < pack.prim_index.size(); ++i) {
if((pack.prim_type[i] & PRIMITIVE_ALL_TRIANGLE) != 0) {
tri_prim_index[pack.prim_index[i]] = pack.prim_tri_index[i];
}
}
}
/* Fill in all the arrays. */
if(tri_size != 0) {
/* normals */
progress.set_status("Updating Mesh", "Computing normals");
uint *tri_shader = dscene->tri_shader.resize(tri_size);
float4 *vnormal = dscene->tri_vnormal.resize(vert_size);
uint4 *tri_vindex = dscene->tri_vindex.resize(tri_size);
uint *tri_patch = dscene->tri_patch.resize(tri_size);
float2 *tri_patch_uv = dscene->tri_patch_uv.resize(vert_size);
foreach(Mesh *mesh, scene->meshes) {
mesh->pack_normals(scene,
&tri_shader[mesh->tri_offset],
&vnormal[mesh->vert_offset]);
mesh->pack_verts(tri_prim_index,
&tri_vindex[mesh->tri_offset],
&tri_patch[mesh->tri_offset],
&tri_patch_uv[mesh->vert_offset],
mesh->vert_offset,
mesh->tri_offset);
if(progress.get_cancel()) return;
}
/* vertex coordinates */
progress.set_status("Updating Mesh", "Copying Mesh to device");
device->tex_alloc("__tri_shader", dscene->tri_shader);
device->tex_alloc("__tri_vnormal", dscene->tri_vnormal);
device->tex_alloc("__tri_vindex", dscene->tri_vindex);
device->tex_alloc("__tri_patch", dscene->tri_patch);
device->tex_alloc("__tri_patch_uv", dscene->tri_patch_uv);
}
if(curve_size != 0) {
progress.set_status("Updating Mesh", "Copying Strands to device");
float4 *curve_keys = dscene->curve_keys.resize(curve_key_size);
float4 *curves = dscene->curves.resize(curve_size);
foreach(Mesh *mesh, scene->meshes) {
mesh->pack_curves(scene, &curve_keys[mesh->curvekey_offset], &curves[mesh->curve_offset], mesh->curvekey_offset);
if(progress.get_cancel()) return;
}
device->tex_alloc("__curve_keys", dscene->curve_keys);
device->tex_alloc("__curves", dscene->curves);
}
if(patch_size != 0) {
progress.set_status("Updating Mesh", "Copying Patches to device");
uint *patch_data = dscene->patches.resize(patch_size);
foreach(Mesh *mesh, scene->meshes) {
mesh->pack_patches(&patch_data[mesh->patch_offset], mesh->vert_offset, mesh->face_offset, mesh->corner_offset);
if(mesh->patch_table) {
mesh->patch_table->copy_adjusting_offsets(&patch_data[mesh->patch_table_offset], mesh->patch_table_offset);
}
if(progress.get_cancel()) return;
}
device->tex_alloc("__patches", dscene->patches);
}
if(for_displacement) {
float4 *prim_tri_verts = dscene->prim_tri_verts.resize(tri_size * 3);
foreach(Mesh *mesh, scene->meshes) {
for(size_t i = 0; i < mesh->num_triangles(); ++i) {
Mesh::Triangle t = mesh->get_triangle(i);
size_t offset = 3 * (i + mesh->tri_offset);
prim_tri_verts[offset + 0] = float3_to_float4(mesh->verts[t.v[0]]);
prim_tri_verts[offset + 1] = float3_to_float4(mesh->verts[t.v[1]]);
prim_tri_verts[offset + 2] = float3_to_float4(mesh->verts[t.v[2]]);
}
}
device->tex_alloc("__prim_tri_verts", dscene->prim_tri_verts);
}
}
void MeshManager::device_update_bvh(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress)
{
/* bvh build */
progress.set_status("Updating Scene BVH", "Building");
VLOG(1) << (scene->params.use_qbvh ? "Using QBVH optimization structure"
: "Using regular BVH optimization structure");
BVHParams bparams;
bparams.top_level = true;
bparams.use_qbvh = scene->params.use_qbvh;
bparams.use_spatial_split = scene->params.use_bvh_spatial_split;
bparams.use_unaligned_nodes = dscene->data.bvh.have_curves &&
scene->params.use_bvh_unaligned_nodes;
bparams.num_motion_triangle_steps = scene->params.num_bvh_time_steps;
bparams.num_motion_curve_steps = scene->params.num_bvh_time_steps;
delete bvh;
bvh = BVH::create(bparams, scene->objects);
bvh->build(progress);
if(progress.get_cancel()) return;
/* copy to device */
progress.set_status("Updating Scene BVH", "Copying BVH to device");
PackedBVH& pack = bvh->pack;
if(pack.nodes.size()) {
dscene->bvh_nodes.reference((float4*)&pack.nodes[0], pack.nodes.size());
device->tex_alloc("__bvh_nodes", dscene->bvh_nodes);
}
if(pack.leaf_nodes.size()) {
dscene->bvh_leaf_nodes.reference((float4*)&pack.leaf_nodes[0], pack.leaf_nodes.size());
device->tex_alloc("__bvh_leaf_nodes", dscene->bvh_leaf_nodes);
}
if(pack.object_node.size()) {
dscene->object_node.reference((uint*)&pack.object_node[0], pack.object_node.size());
device->tex_alloc("__object_node", dscene->object_node);
}
if(pack.prim_tri_index.size()) {
dscene->prim_tri_index.reference((uint*)&pack.prim_tri_index[0], pack.prim_tri_index.size());
device->tex_alloc("__prim_tri_index", dscene->prim_tri_index);
}
if(pack.prim_tri_verts.size()) {
dscene->prim_tri_verts.reference((float4*)&pack.prim_tri_verts[0], pack.prim_tri_verts.size());
device->tex_alloc("__prim_tri_verts", dscene->prim_tri_verts);
}
if(pack.prim_type.size()) {
dscene->prim_type.reference((uint*)&pack.prim_type[0], pack.prim_type.size());
device->tex_alloc("__prim_type", dscene->prim_type);
}
if(pack.prim_visibility.size()) {
dscene->prim_visibility.reference((uint*)&pack.prim_visibility[0], pack.prim_visibility.size());
device->tex_alloc("__prim_visibility", dscene->prim_visibility);
}
if(pack.prim_index.size()) {
dscene->prim_index.reference((uint*)&pack.prim_index[0], pack.prim_index.size());
device->tex_alloc("__prim_index", dscene->prim_index);
}
if(pack.prim_object.size()) {
dscene->prim_object.reference((uint*)&pack.prim_object[0], pack.prim_object.size());
device->tex_alloc("__prim_object", dscene->prim_object);
}
if(pack.prim_time.size()) {
dscene->prim_time.reference((float2*)&pack.prim_time[0], pack.prim_time.size());
device->tex_alloc("__prim_time", dscene->prim_time);
}
dscene->data.bvh.root = pack.root_index;
dscene->data.bvh.use_qbvh = scene->params.use_qbvh;
dscene->data.bvh.use_bvh_steps = (scene->params.num_bvh_time_steps != 0);
}
void MeshManager::device_update_flags(Device * /*device*/,
DeviceScene * /*dscene*/,
Scene * scene,
Progress& /*progress*/)
{
if(!need_update && !need_flags_update) {
return;
}
/* update flags */
foreach(Mesh *mesh, scene->meshes) {
mesh->has_volume = false;
foreach(const Shader *shader, mesh->used_shaders) {
if(shader->has_volume) {
mesh->has_volume = true;
}
if(shader->has_surface_bssrdf) {
mesh->has_surface_bssrdf = true;
}
}
}
need_flags_update = false;
}
void MeshManager::device_update_displacement_images(Device *device,
DeviceScene *dscene,
Scene *scene,
Progress& progress)
{
progress.set_status("Updating Displacement Images");
TaskPool pool;
ImageManager *image_manager = scene->image_manager;
set<int> bump_images;
foreach(Mesh *mesh, scene->meshes) {
if(mesh->need_update) {
foreach(Shader *shader, mesh->used_shaders) {
if(!shader->has_displacement || shader->displacement_method == DISPLACE_BUMP) {
continue;
}
foreach(ShaderNode* node, shader->graph->nodes) {
if(node->special_type != SHADER_SPECIAL_TYPE_IMAGE_SLOT) {
continue;
}
if(device->info.pack_images) {
/* If device requires packed images we need to update all
* images now, even if they're not used for displacement.
*/
image_manager->device_update(device,
dscene,
scene,
progress);
return;
}
ImageSlotTextureNode *image_node = static_cast<ImageSlotTextureNode*>(node);
int slot = image_node->slot;
if(slot != -1) {
bump_images.insert(slot);
}
}
}
}
}
image_manager->device_prepare_update(dscene);
foreach(int slot, bump_images) {
pool.push(function_bind(&ImageManager::device_update_slot,
image_manager,
device,
dscene,
scene,
slot,
&progress));
}
pool.wait_work();
}
void MeshManager::device_update(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress)
{
if(!need_update)
return;
VLOG(1) << "Total " << scene->meshes.size() << " meshes.";
/* Update normals. */
foreach(Mesh *mesh, scene->meshes) {
foreach(Shader *shader, mesh->used_shaders) {
if(shader->need_update_attributes)
mesh->need_update = true;
}
if(mesh->need_update) {
mesh->add_face_normals();
mesh->add_vertex_normals();
if(mesh->need_attribute(scene, ATTR_STD_POSITION_UNDISPLACED)) {
mesh->add_undisplaced();
}
if(progress.get_cancel()) return;
}
}
/* Tessellate meshes that are using subdivision */
size_t total_tess_needed = 0;
foreach(Mesh *mesh, scene->meshes) {
if(mesh->need_update &&
mesh->subdivision_type != Mesh::SUBDIVISION_NONE &&
mesh->num_subd_verts == 0 &&
mesh->subd_params)
{
total_tess_needed++;
}
}
size_t i = 0;
foreach(Mesh *mesh, scene->meshes) {
if(mesh->need_update &&
mesh->subdivision_type != Mesh::SUBDIVISION_NONE &&
mesh->num_subd_verts == 0 &&
mesh->subd_params)
{
string msg = "Tessellating ";
if(mesh->name == "")
msg += string_printf("%u/%u", (uint)(i+1), (uint)total_tess_needed);
else
msg += string_printf("%s %u/%u", mesh->name.c_str(), (uint)(i+1), (uint)total_tess_needed);
progress.set_status("Updating Mesh", msg);
DiagSplit dsplit(*mesh->subd_params);
mesh->tessellate(&dsplit);
i++;
if(progress.get_cancel()) return;
}
}
/* Update images needed for true displacement. */
bool true_displacement_used = false;
bool old_need_object_flags_update = false;
foreach(Mesh *mesh, scene->meshes) {
if(mesh->need_update &&
mesh->has_true_displacement())
{
true_displacement_used = true;
break;
}
}
if(true_displacement_used) {
VLOG(1) << "Updating images used for true displacement.";
device_update_displacement_images(device, dscene, scene, progress);
old_need_object_flags_update = scene->object_manager->need_flags_update;
scene->object_manager->device_update_flags(device,
dscene,
scene,
progress,
false);
}
/* Device update. */
device_free(device, dscene);
mesh_calc_offset(scene);
if(true_displacement_used) {
device_update_mesh(device, dscene, scene, true, progress);
}
if(progress.get_cancel()) return;
/* after mesh data has been copied to device memory we need to update
* offsets for patch tables as this can't be known before hand */
scene->object_manager->device_update_patch_map_offsets(device, dscene, scene);
device_update_attributes(device, dscene, scene, progress);
if(progress.get_cancel()) return;
/* Update displacement. */
bool displacement_done = false;
foreach(Mesh *mesh, scene->meshes) {
if(mesh->need_update &&
displace(device, dscene, scene, mesh, progress))
{
displacement_done = true;
}
}
/* TODO: properly handle cancel halfway displacement */
if(progress.get_cancel()) return;
/* Device re-update after displacement. */
if(displacement_done) {
device_free(device, dscene);
device_update_attributes(device, dscene, scene, progress);
if(progress.get_cancel()) return;
}
/* Update bvh. */
size_t num_bvh = 0;
foreach(Mesh *mesh, scene->meshes) {
if(mesh->need_update && mesh->need_build_bvh()) {
num_bvh++;
}
}
TaskPool pool;
i = 0;
foreach(Mesh *mesh, scene->meshes) {
if(mesh->need_update) {
pool.push(function_bind(&Mesh::compute_bvh,
mesh,
dscene,
&scene->params,
&progress,
i,
num_bvh));
if(mesh->need_build_bvh()) {
i++;
}
}
}
TaskPool::Summary summary;
pool.wait_work(&summary);
VLOG(2) << "Objects BVH build pool statistics:\n"
<< summary.full_report();
foreach(Shader *shader, scene->shaders) {
shader->need_update_attributes = false;
}
#ifdef __OBJECT_MOTION__
Scene::MotionType need_motion = scene->need_motion(device->info.advanced_shading);
bool motion_blur = need_motion == Scene::MOTION_BLUR;
#else
bool motion_blur = false;
#endif
/* Update objects. */
vector<Object *> volume_objects;
foreach(Object *object, scene->objects) {
object->compute_bounds(motion_blur);
}
if(progress.get_cancel()) return;
device_update_bvh(device, dscene, scene, progress);
if(progress.get_cancel()) return;
device_update_mesh(device, dscene, scene, false, progress);
if(progress.get_cancel()) return;
need_update = false;
if(true_displacement_used) {
/* Re-tag flags for update, so they're re-evaluated
* for meshes with correct bounding boxes.
*
* This wouldn't cause wrong results, just true
* displacement might be less optimal ot calculate.
*/
scene->object_manager->need_flags_update = old_need_object_flags_update;
}
}
void MeshManager::device_free(Device *device, DeviceScene *dscene)
{
device->tex_free(dscene->bvh_nodes);
device->tex_free(dscene->bvh_leaf_nodes);
device->tex_free(dscene->object_node);
device->tex_free(dscene->prim_tri_verts);
device->tex_free(dscene->prim_tri_index);
device->tex_free(dscene->prim_type);
device->tex_free(dscene->prim_visibility);
device->tex_free(dscene->prim_index);
device->tex_free(dscene->prim_object);
device->tex_free(dscene->prim_time);
device->tex_free(dscene->tri_shader);
device->tex_free(dscene->tri_vnormal);
device->tex_free(dscene->tri_vindex);
device->tex_free(dscene->tri_patch);
device->tex_free(dscene->tri_patch_uv);
device->tex_free(dscene->curves);
device->tex_free(dscene->curve_keys);
device->tex_free(dscene->patches);
device->tex_free(dscene->attributes_map);
device->tex_free(dscene->attributes_float);
device->tex_free(dscene->attributes_float3);
device->tex_free(dscene->attributes_uchar4);
dscene->bvh_nodes.clear();
dscene->object_node.clear();
dscene->prim_tri_verts.clear();
dscene->prim_tri_index.clear();
dscene->prim_type.clear();
dscene->prim_visibility.clear();
dscene->prim_index.clear();
dscene->prim_object.clear();
dscene->prim_time.clear();
dscene->tri_shader.clear();
dscene->tri_vnormal.clear();
dscene->tri_vindex.clear();
dscene->tri_patch.clear();
dscene->tri_patch_uv.clear();
dscene->curves.clear();
dscene->curve_keys.clear();
dscene->patches.clear();
dscene->attributes_map.clear();
dscene->attributes_float.clear();
dscene->attributes_float3.clear();
dscene->attributes_uchar4.clear();
#ifdef WITH_OSL
OSLGlobals *og = (OSLGlobals*)device->osl_memory();
if(og) {
og->object_name_map.clear();
og->attribute_map.clear();
og->object_names.clear();
}
#endif
}
void MeshManager::tag_update(Scene *scene)
{
need_update = true;
scene->object_manager->need_update = true;
}
bool Mesh::need_attribute(Scene *scene, AttributeStandard std)
{
if(std == ATTR_STD_NONE)
return false;
if(scene->need_global_attribute(std))
return true;
foreach(Shader *shader, used_shaders)
if(shader->attributes.find(std))
return true;
return false;
}
bool Mesh::need_attribute(Scene * /*scene*/, ustring name)
{
if(name == ustring())
return false;
foreach(Shader *shader, used_shaders)
if(shader->attributes.find(name))
return true;
return false;
}
CCL_NAMESPACE_END