blender/source/gameengine/Physics/BlOde/OdePhysicsController.cpp
Chris Want 5d0a207ecb Patch from GSR that a) fixes a whole bunch of GPL/BL license
blocks that were previously missed; and b) greatly increase my
ohloh stats!
2008-04-16 22:40:48 +00:00

623 lines
21 KiB
C++

/**
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* The contents of this file may be used under the terms of either the GNU
* General Public License Version 2 or later (the "GPL", see
* http://www.gnu.org/licenses/gpl.html ), or the Blender License 1.0 or
* later (the "BL", see http://www.blender.org/BL/ ) which has to be
* bought from the Blender Foundation to become active, in which case the
* above mentioned GPL option does not apply.
*
* The Original Code is Copyright (C) 2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
#define USE_ODE
#ifdef USE_ODE
#include "OdePhysicsController.h"
#include "PHY_IMotionState.h"
#include <ode/ode.h>
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
///////////////////////////////////////////////////////////////////////////
//
// general to-do list for ODE physics. This is maintained in doxygen format.
//
/// \todo determine assignment time for bounding spheres.
///
/// it appears you have to select "sphere" for bounding volume AND "draw bounds"
/// in order for a bounding sphere to be generated. otherwise a box is generated.
/// determine exactly when and how the bounding volumes are generated and make
/// this consistent.
/// }
///
/// \todo bounding sphere size incorrect
///
/// it appears NOT to use the size of the shown bounding sphere (button "draw bounds").
/// it appears instead to use the size of the "size" dynamic parameter in the
/// gamebuttons but this "size" draws an incorrectly-sized circle on screen for the
/// bounding sphere (leftover skewed size calculation from sumo?) so figure out WHERE
/// its getting the radius from.
///
/// \todo ODE collisions must fire collision actuator
///
/// See OdePhysicsEnvironment::OdeNearCallback. If a sensor was created to check
/// for the presence of this collision, then in the NearCallback you need to
/// take appropriate action regarding the sensor - something like checking its
/// controller and if needed firing its actuator. Need to find similar code in
/// Fuzzics which fires collision controllers/actuators.
///
/// \todo Are ghost collisions possible?
///
/// How do ghost collisions work? Do they require collision detection through ODE
/// and NON-CREATION of contact-joint in OdeNearCallback? Currently OdeNearCallback
/// creates joints ALWAYS for collisions.
///
/// \todo Why is KX_GameObject::addLinearVelocity commented out?
///
/// Try putting this code back in.
///
/// \todo Too many non-dynamic actors bogs down ODE physics
///
/// Lots of "geoms" (ODE static geometry) probably slows down ode. Try a test file
/// with lots of static geometry - the game performance in Blender says it is
/// spending all its time in physics, and I bet all that time is in collision
/// detection. It's ode's non-hierarchical collision detection.
/// try making a separate ode test program (not within blender) with 1000 geoms and
/// see how fast it is. if it is really slow, there is the culprit.
/// isnt someone working on an improved ODE collision detector? check
/// ode mailing list.
///
///
/// \todo support collision of dynas with non-dynamic triangle meshes
///
/// ODE has trimesh-collision support but only for trimeshes without a transform
/// matrix. update ODE tricollider to support a transform matrix. this will allow
/// moving trimeshes non-dynamically (e.g. through Ipos). then collide trimeshes
/// with dynas. this allows dynamic primitives (spheres, boxes) to collide with
/// non-dynamic or kinematically controlled tri-meshes. full dynamic trimesh to
/// dynamic trimesh support is hard because it requires (a) collision and penetration
/// depth for trimesh to trimesh and (hard to compute) (b) an intertia tensor
/// (easy to compute).
///
/// a triangle mesh collision geometry should be created when the blender
/// bounding volume (F9, EDITBUTTONS) is set to "polyheder", since this is
/// currently the place where sphere/box selection is made
///
/// \todo specify ODE ERP+CFM in blender interface
///
/// when ODE physics selected, have to be able to set global cfm and erp.
/// per-joint erp/cfm could be handled in constraint window.
///
/// \todo moving infinite mass objects should impart extra impulse to objects they collide with
///
/// currently ODE's ERP pushes them apart but doesn't account for their motion.
/// you have to detect if one body in a collision is a non-dyna. This
/// requires adding a new accessor method to
/// KX_IPhysicsInterfaceController to access the hidden m_isDyna variable,
/// currently it can only be written, not read). If one of the bodies in a
/// collision is a non-dyna, then impart an extra impulse based on the
/// motion of the static object (using its last 2 frames as an approximation
/// of its linear and angular velocity). Linear velocity is easy to
/// approximate, but angular? you have orientation at this frame and
/// orientation at previous frame. The question is what is the angular
/// velocity which would have taken you from the previous frame's orientation
/// to this frame's orientation?
///
/// \todo allow tweaking bounding volume size
///
/// the scene converter currently uses the blender bounding volume of the selected
/// object as the geometry for ODE collision purposes. this is good and automatic
/// intuitive - lets you choose between cube, sphere, mesh. but you need to be able
/// to tweak this size for physics.
///
/// \todo off center meshes totally wrong for ode
///
/// ode uses x, y, z extents regradless of center. then places geom at center of object.
/// but visual geom is not necessarily at center. need to detect off-center situations.
/// then do what? treat it as an encapsulated off-center mass, or recenter it?
///
/// i.o.w. recalculate center, or recalculate mass distribution (using encapsulation)?
///
/// \todo allow off-center mass
///
/// using ode geometry encapsulators
///
/// \todo allow entering compound geoms for complex collision shapes specified as a union of simpler shapes
///
/// The collision shape for arbitrary triangle meshes can probably in general be
///well approximated by a compound ODE geometry object, which is merely a combination
///of many primitives (capsule, sphere, box). I eventually want to add the ability
///to associate compound geometry objects with Blender gameobjects. I think one
///way of doing this would be to add a new button in the GameButtons, "RigidBodyCompound".
///If the object is "Dynamic" + "RigidBody", then the object's bounding volume (sphere,
///box) is created. If an object is "Dynamic" + "RigidBodyCompound", then the object itself
///will merely create a "wrapper" compound object, with the actual geometry objects
///being created from the object's children in Blender. E.g. if I wanted to make a
///compound collision object consisting of a sphere and 2 boxes, I would create a
///parent gameobject with the actual triangle mesh, and set its GameButtons to
///"RigidBodyCompound". I would then create 3 children of this object, 1 sphere and
///2 boxes, and set the GameButtons for the children to be "RigidBody". Then at
///scene conversion time, the scene converter sees "RigidBodyCompound" for the
///top-level object, then appropriately traverses the children and creates the compound
///collision geometry consisting of 2 boxes and a sphere. In this way, arbitrary
///mesh-mesh collision becomes much less necessary - the artist can (or must,
///depending on your point of view!) approximate the collision shape for arbitrary
///meshes with a combination of one or more primitive shapes. I think using the
///parent/child relationship in Blender and a new button "RigidBodyCompound" for the
///parent object of a compound is a feasible way of doing this in Blender.
///
///See ODE demo test_boxstack and look at the code when you drop a compound object
///with the "X" key.
///
/// \todo add visual specification of constraints
///
/// extend the armature constraint system. by using empties and constraining one empty
/// to "copy location" of another, you can get a p2p constraint between the two empties.
/// by making the two empties each a parent of a blender object, you effectively have
/// a p2p constraint between 2 blender bodies. the scene converter can detect these
/// empties, detect the constraint, and generate an ODE constraint.
///
/// then add a new constraint type "hinge" and "slider" to correspond to ODE joints.
/// e.g. a slider would be a constraint which restricts the axis of its object to lie
/// along the same line as another axis of a different object. e.g. you constrain x-axis
/// of one empty to lie along the same line as the z-axis of another empty; this gives
/// a slider joint.
///
/// open questions: how to handle powered joints? to what extent should/must constraints
/// be enforced during modeling? use CCD-style algorithm in modeler to enforce constraints?
/// how about ODE powered constraints e.g. motors?
///
/// \todo enable suspension of bodies
/// ODE offers native support for suspending dynas. but what about suspending non-dynas
/// (e.g. geoms)? suspending geoms is also necessary to ease the load of ODE's (simple?)
/// collision detector. suspending dynas and geoms is important for the activity culling,
/// which apparently works at a simple level. perhaps suspension should actually
/// remove or insert geoms/dynas into the ODE space/world? is this operation (insertion/
/// removal) fast enough at run-time? test it. if fast enough, then suspension=remove from
/// ODE simulation, awakening=insertion into ODE simulation.
///
/// \todo python interface for tweaking constraints via python
///
/// \todo raytesting to support gameengine sensors that need it
///
/// \todo investigate compatibility issues with old Blender 2.25 physics engine (sumo/fuzzics)
/// is it possible to have compatibility? how hard is it? how important is it?
ODEPhysicsController::ODEPhysicsController(bool dyna, bool fullRigidBody,
bool phantom, class PHY_IMotionState* motionstate, struct dxSpace* space,
struct dxWorld* world, float mass,float friction,float restitution,
bool implicitsphere,float center[3],float extents[3],float radius)
:
m_OdeDyna(dyna),
m_firstTime(true),
m_bFullRigidBody(fullRigidBody),
m_bPhantom(phantom),
m_bKinematic(false),
m_bPrevKinematic(false),
m_MotionState(motionstate),
m_OdeSuspendDynamics(false),
m_space(space),
m_world(world),
m_mass(mass),
m_friction(friction),
m_restitution(restitution),
m_bodyId(0),
m_geomId(0),
m_implicitsphere(implicitsphere),
m_radius(radius)
{
m_center[0] = center[0];
m_center[1] = center[1];
m_center[2] = center[2];
m_extends[0] = extents[0];
m_extends[1] = extents[1];
m_extends[2] = extents[2];
};
ODEPhysicsController::~ODEPhysicsController()
{
if (m_geomId)
{
dGeomDestroy (m_geomId);
}
}
float ODEPhysicsController::getMass()
{
dMass mass;
dBodyGetMass(m_bodyId,&mass);
return mass.mass;
}
//////////////////////////////////////////////////////////////////////
/// \todo Impart some extra impulse to dynamic objects when they collide with kinematically controlled "static" objects (ODE geoms), by using last 2 frames as 1st order approximation to the linear/angular velocity, and computing an appropriate impulse. Sumo (old physics engine) did this, see for details.
/// \todo handle scaling of static ODE geoms or fail with error message if Ipo tries to change scale of a static geom object
bool ODEPhysicsController::SynchronizeMotionStates(float time)
{
/**
'Late binding' of the rigidbody, because the World Scaling is not available until the scenegraph is traversed
*/
if (m_firstTime)
{
m_firstTime=false;
m_MotionState->calculateWorldTransformations();
dQuaternion worldquat;
float worldpos[3];
#ifdef dDOUBLE
m_MotionState->getWorldOrientation((float)worldquat[1],
(float)worldquat[2],(float)worldquat[3],(float)worldquat[0]);
#else
m_MotionState->getWorldOrientation(worldquat[1],
worldquat[2],worldquat[3],worldquat[0]);
#endif
m_MotionState->getWorldPosition(worldpos[0],worldpos[1],worldpos[2]);
float scaling[3];
m_MotionState->getWorldScaling(scaling[0],scaling[1],scaling[2]);
if (!m_bPhantom)
{
if (m_implicitsphere)
{
m_geomId = dCreateSphere (m_space,m_radius*scaling[0]);
} else
{
m_geomId = dCreateBox (m_space, m_extends[0]*scaling[0],m_extends[1]*scaling[1],m_extends[2]*scaling[2]);
}
} else
{
m_geomId=0;
}
if (m_geomId)
dGeomSetData(m_geomId,this);
if (!this->m_OdeDyna)
{
if (!m_bPhantom)
{
dGeomSetPosition (this->m_geomId,worldpos[0],worldpos[1],worldpos[2]);
dMatrix3 R;
dQtoR (worldquat, R);
dGeomSetRotation (this->m_geomId,R);
}
} else
{
//it's dynamic, so create a 'model'
m_bodyId = dBodyCreate(this->m_world);
dBodySetPosition (m_bodyId,worldpos[0],worldpos[1],worldpos[2]);
dBodySetQuaternion (this->m_bodyId,worldquat);
//this contains both scalar mass and inertia tensor
dMass m;
float length=1,width=1,height=1;
dMassSetBox (&m,1,m_extends[0]*scaling[0],m_extends[1]*scaling[1],m_extends[2]*scaling[2]);
dMassAdjust (&m,this->m_mass);
dBodySetMass (m_bodyId,&m);
if (!m_bPhantom)
{
dGeomSetBody (m_geomId,m_bodyId);
}
}
if (this->m_OdeDyna && !m_bFullRigidBody)
{
// ?? huh? what to do here?
}
}
if (m_OdeDyna)
{
if (this->m_OdeSuspendDynamics)
{
return false;
}
const float* worldPos = (float *)dBodyGetPosition(m_bodyId);
m_MotionState->setWorldPosition(worldPos[0],worldPos[1],worldPos[2]);
const float* worldquat = (float *)dBodyGetQuaternion(m_bodyId);
m_MotionState->setWorldOrientation(worldquat[1],worldquat[2],worldquat[3],worldquat[0]);
}
else {
// not a dyna, so dynamics (i.e. this controller) has not updated
// anything. BUT! an Ipo or something else might have changed the
// position/orientation of this geometry.
// so update the static geom position
/// \todo impart some extra impulse to colliding objects!
dQuaternion worldquat;
float worldpos[3];
#ifdef dDOUBLE
m_MotionState->getWorldOrientation((float)worldquat[1],
(float)worldquat[2],(float)worldquat[3],(float)worldquat[0]);
#else
m_MotionState->getWorldOrientation(worldquat[1],
worldquat[2],worldquat[3],worldquat[0]);
#endif
m_MotionState->getWorldPosition(worldpos[0],worldpos[1],worldpos[2]);
float scaling[3];
m_MotionState->getWorldScaling(scaling[0],scaling[1],scaling[2]);
/// \todo handle scaling! what if Ipo changes scale of object?
// Must propagate to geom... is scaling geoms possible with ODE? Also
// what about scaling trimeshes, that is certainly difficult...
dGeomSetPosition (this->m_geomId,worldpos[0],worldpos[1],worldpos[2]);
dMatrix3 R;
dQtoR (worldquat, R);
dGeomSetRotation (this->m_geomId,R);
}
return false; //it update the worldpos
}
// kinematic methods
void ODEPhysicsController::RelativeTranslate(float dlocX,float dlocY,float dlocZ,bool local)
{
}
void ODEPhysicsController::RelativeRotate(const float drot[9],bool local)
{
}
void ODEPhysicsController::setOrientation(float quatImag0,float quatImag1,float quatImag2,float quatReal)
{
dQuaternion worldquat;
worldquat[0] = quatReal;
worldquat[1] = quatImag0;
worldquat[2] = quatImag1;
worldquat[3] = quatImag2;
if (!this->m_OdeDyna)
{
dMatrix3 R;
dQtoR (worldquat, R);
dGeomSetRotation (this->m_geomId,R);
} else
{
dBodySetQuaternion (m_bodyId,worldquat);
this->m_MotionState->setWorldOrientation(quatImag0,quatImag1,quatImag2,quatReal);
}
}
void ODEPhysicsController::getOrientation(float &quatImag0,float &quatImag1,float &quatImag2,float &quatReal)
{
float q[4];
this->m_MotionState->getWorldOrientation(q[0],q[1],q[2],q[3]);
quatImag0=q[0];
quatImag1=q[1];
quatImag2=q[2];
quatReal=q[3];
}
void ODEPhysicsController::getPosition(PHY__Vector3& pos) const
{
m_MotionState->getWorldPosition(pos[0],pos[1],pos[2]);
}
void ODEPhysicsController::setPosition(float posX,float posY,float posZ)
{
if (!m_bPhantom)
{
if (!this->m_OdeDyna)
{
dGeomSetPosition (m_geomId, posX, posY, posZ);
} else
{
dBodySetPosition (m_bodyId, posX, posY, posZ);
}
}
}
void ODEPhysicsController::setScaling(float scaleX,float scaleY,float scaleZ)
{
}
// physics methods
void ODEPhysicsController::ApplyTorque(float torqueX,float torqueY,float torqueZ,bool local)
{
if (m_OdeDyna) {
if(local) {
dBodyAddRelTorque(m_bodyId, torqueX, torqueY, torqueZ);
} else {
dBodyAddTorque (m_bodyId, torqueX, torqueY, torqueZ);
}
}
}
void ODEPhysicsController::ApplyForce(float forceX,float forceY,float forceZ,bool local)
{
if (m_OdeDyna) {
if(local) {
dBodyAddRelForce(m_bodyId, forceX, forceY, forceZ);
} else {
dBodyAddForce (m_bodyId, forceX, forceY, forceZ);
}
}
}
void ODEPhysicsController::SetAngularVelocity(float ang_velX,float ang_velY,float ang_velZ,bool local)
{
if (m_OdeDyna) {
if(local) {
// TODO: translate angular vel into local frame, then apply
} else {
dBodySetAngularVel (m_bodyId, ang_velX,ang_velY,ang_velZ);
}
}
}
void ODEPhysicsController::SetLinearVelocity(float lin_velX,float lin_velY,float lin_velZ,bool local)
{
if (m_OdeDyna)
{
dVector3 vel = {lin_velX,lin_velY,lin_velZ, 1.0};
if (local)
{
dMatrix3 worldmat;
dVector3 localvel;
dQuaternion worldquat;
#ifdef dDOUBLE
m_MotionState->getWorldOrientation((float)worldquat[1],
(float)worldquat[2], (float)worldquat[3],(float)worldquat[0]);
#else
m_MotionState->getWorldOrientation(worldquat[1],worldquat[2],
worldquat[3],worldquat[0]);
#endif
dQtoR (worldquat, worldmat);
dMULTIPLY0_331 (localvel,worldmat,vel);
dBodySetLinearVel (m_bodyId, localvel[0],localvel[1],localvel[2]);
} else
{
dBodySetLinearVel (m_bodyId, lin_velX,lin_velY,lin_velZ);
}
}
}
void ODEPhysicsController::applyImpulse(float attachX,float attachY,float attachZ, float impulseX,float impulseY,float impulseZ)
{
if (m_OdeDyna)
{
//apply linear and angular effect
const dReal* linvel = dBodyGetLinearVel(m_bodyId);
float mass = getMass();
if (mass >= 0.00001f)
{
float massinv = 1.f/mass;
float newvel[3];
newvel[0]=linvel[0]+impulseX*massinv;
newvel[1]=linvel[1]+impulseY*massinv;
newvel[2]=linvel[2]+impulseZ*massinv;
dBodySetLinearVel(m_bodyId,newvel[0],newvel[1],newvel[2]);
const float* worldPos = (float *)dBodyGetPosition(m_bodyId);
const float* angvelc = (float *)dBodyGetAngularVel(m_bodyId);
float angvel[3];
angvel[0]=angvelc[0];
angvel[1]=angvelc[1];
angvel[2]=angvelc[2];
dVector3 impulse;
impulse[0]=impulseX;
impulse[1]=impulseY;
impulse[2]=impulseZ;
dVector3 ap;
ap[0]=attachX-worldPos[0];
ap[1]=attachY-worldPos[1];
ap[2]=attachZ-worldPos[2];
dCROSS(angvel,+=,ap,impulse);
dBodySetAngularVel(m_bodyId,angvel[0],angvel[1],angvel[2]);
}
}
}
void ODEPhysicsController::SuspendDynamics()
{
}
void ODEPhysicsController::RestoreDynamics()
{
}
/**
reading out information from physics
*/
void ODEPhysicsController::GetLinearVelocity(float& linvX,float& linvY,float& linvZ)
{
if (m_OdeDyna)
{
const float* vel = (float *)dBodyGetLinearVel(m_bodyId);
linvX = vel[0];
linvY = vel[1];
linvZ = vel[2];
} else
{
linvX = 0.f;
linvY = 0.f;
linvZ = 0.f;
}
}
/**
GetVelocity parameters are in geometric coordinates (Origin is not center of mass!).
*/
void ODEPhysicsController::GetVelocity(const float posX,const float posY,const float posZ,float& linvX,float& linvY,float& linvZ)
{
}
void ODEPhysicsController::getReactionForce(float& forceX,float& forceY,float& forceZ)
{
}
void ODEPhysicsController::setRigidBody(bool rigid)
{
}
void ODEPhysicsController::PostProcessReplica(class PHY_IMotionState* motionstate,class PHY_IPhysicsController* parentctrl)
{
m_MotionState = motionstate;
m_bKinematic = false;
m_bPrevKinematic = false;
m_firstTime = true;
}
void ODEPhysicsController::SetSimulatedTime(float time)
{
}
void ODEPhysicsController::WriteMotionStateToDynamics(bool nondynaonly)
{
}
#endif