blender/intern/cycles/kernel/svm/svm_displace.h
Ton Roosendaal da376e0237 Cycles render engine, initial commit. This is the engine itself, blender modifications and build instructions will follow later.
Cycles uses code from some great open source projects, many thanks them:

* BVH building and traversal code from NVidia's "Understanding the Efficiency of Ray Traversal on GPUs":
http://code.google.com/p/understanding-the-efficiency-of-ray-traversal-on-gpus/
* Open Shading Language for a large part of the shading system:
http://code.google.com/p/openshadinglanguage/
* Blender for procedural textures and a few other nodes.
* Approximate Catmull Clark subdivision from NVidia Mesh tools:
http://code.google.com/p/nvidia-mesh-tools/
* Sobol direction vectors from:
http://web.maths.unsw.edu.au/~fkuo/sobol/
* Film response functions from:
http://www.cs.columbia.edu/CAVE/software/softlib/dorf.php
2011-04-27 11:58:34 +00:00

52 lines
1.6 KiB
C

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
CCL_NAMESPACE_BEGIN
/* Bump Node */
__device void svm_node_set_bump(ShaderData *sd, float *stack, uint c_offset, uint x_offset, uint y_offset)
{
#ifdef __RAY_DIFFERENTIALS__
float h_c = stack_load_float(stack, c_offset);
float h_x = stack_load_float(stack, x_offset);
float h_y = stack_load_float(stack, y_offset);
float3 Rx = cross(sd->dP.dy, sd->N);
float3 Ry = cross(sd->N, sd->dP.dx);
float det = dot(sd->dP.dx, Rx);
float3 surfgrad = (h_x - h_c)*Rx + (h_y - h_c)*Ry;
surfgrad *= 0.1f; /* todo: remove this factor */
sd->N = normalize(fabsf(det)*sd->N - signf(det)*surfgrad);
#endif
}
/* Displacement Node */
__device void svm_node_set_displacement(ShaderData *sd, float *stack, uint fac_offset)
{
float d = stack_load_float(stack, fac_offset);
sd->P += sd->N*d*0.1f; /* todo: get rid of this factor */
}
CCL_NAMESPACE_END