blender/intern/cycles/kernel/svm/svm_image.h

500 lines
18 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
CCL_NAMESPACE_BEGIN
/* Float4 textures on various devices. */
#if defined(__KERNEL_CPU__)
# define TEX_NUM_FLOAT4_IMAGES TEX_NUM_FLOAT4_CPU
#elif defined(__KERNEL_CUDA__)
# if __CUDA_ARCH__ < 300
# define TEX_NUM_FLOAT4_IMAGES TEX_NUM_FLOAT4_CUDA
# else
# define TEX_NUM_FLOAT4_IMAGES TEX_NUM_FLOAT4_CUDA_KEPLER
# endif
#else
# define TEX_NUM_FLOAT4_IMAGES TEX_NUM_FLOAT4_OPENCL
#endif
#ifdef __KERNEL_OPENCL__
/* For OpenCL all images are packed in a single array, and we do manual lookup
* and interpolation. */
ccl_device_inline float4 svm_image_texture_read(KernelGlobals *kg, int id, int offset)
{
/* Float4 */
if(id < TEX_START_BYTE4_OPENCL) {
return kernel_tex_fetch(__tex_image_float4_packed, offset);
}
/* Byte4 */
else if(id < TEX_START_FLOAT_OPENCL) {
uchar4 r = kernel_tex_fetch(__tex_image_byte4_packed, offset);
float f = 1.0f/255.0f;
return make_float4(r.x*f, r.y*f, r.z*f, r.w*f);
}
/* Float */
else if(id < TEX_START_BYTE_OPENCL) {
float f = kernel_tex_fetch(__tex_image_float_packed, offset);
return make_float4(f, f, f, 1.0f);
}
/* Byte */
else {
uchar r = kernel_tex_fetch(__tex_image_byte_packed, offset);
float f = r * (1.0f/255.0f);
return make_float4(f, f, f, 1.0f);
}
}
ccl_device_inline int svm_image_texture_wrap_periodic(int x, int width)
{
x %= width;
if(x < 0)
x += width;
return x;
}
ccl_device_inline int svm_image_texture_wrap_clamp(int x, int width)
{
return clamp(x, 0, width-1);
}
ccl_device_inline float svm_image_texture_frac(float x, int *ix)
{
int i = float_to_int(x) - ((x < 0.0f)? 1: 0);
*ix = i;
return x - (float)i;
}
ccl_device float4 svm_image_texture(KernelGlobals *kg, int id, float x, float y, uint srgb, uint use_alpha)
{
uint4 info = kernel_tex_fetch(__tex_image_packed_info, id);
uint width = info.x;
uint height = info.y;
uint offset = info.z;
/* Image Options */
uint interpolation = (info.w & (1 << 0)) ? INTERPOLATION_CLOSEST : INTERPOLATION_LINEAR;
uint extension;
if(info.w & (1 << 1))
extension = EXTENSION_REPEAT;
else if(info.w & (1 << 2))
extension = EXTENSION_EXTEND;
else
extension = EXTENSION_CLIP;
float4 r;
int ix, iy, nix, niy;
if(interpolation == INTERPOLATION_CLOSEST) {
svm_image_texture_frac(x*width, &ix);
svm_image_texture_frac(y*height, &iy);
if(extension == EXTENSION_REPEAT) {
ix = svm_image_texture_wrap_periodic(ix, width);
iy = svm_image_texture_wrap_periodic(iy, height);
}
else if(extension == EXTENSION_CLIP) {
if(x < 0.0f || y < 0.0f || x > 1.0f || y > 1.0f)
return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
}
else { /* EXTENSION_EXTEND */
ix = svm_image_texture_wrap_clamp(ix, width);
iy = svm_image_texture_wrap_clamp(iy, height);
}
r = svm_image_texture_read(kg, id, offset + ix + iy*width);
}
else { /* INTERPOLATION_LINEAR */
float tx = svm_image_texture_frac(x*width - 0.5f, &ix);
float ty = svm_image_texture_frac(y*height - 0.5f, &iy);
if(extension == EXTENSION_REPEAT) {
ix = svm_image_texture_wrap_periodic(ix, width);
iy = svm_image_texture_wrap_periodic(iy, height);
nix = svm_image_texture_wrap_periodic(ix+1, width);
niy = svm_image_texture_wrap_periodic(iy+1, height);
}
else {
if(extension == EXTENSION_CLIP) {
if(x < 0.0f || y < 0.0f || x > 1.0f || y > 1.0f) {
return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
}
}
nix = svm_image_texture_wrap_clamp(ix+1, width);
niy = svm_image_texture_wrap_clamp(iy+1, height);
ix = svm_image_texture_wrap_clamp(ix, width);
iy = svm_image_texture_wrap_clamp(iy, height);
}
r = (1.0f - ty)*(1.0f - tx)*svm_image_texture_read(kg, id, offset + ix + iy*width);
r += (1.0f - ty)*tx*svm_image_texture_read(kg, id, offset + nix + iy*width);
r += ty*(1.0f - tx)*svm_image_texture_read(kg, id, offset + ix + niy*width);
r += ty*tx*svm_image_texture_read(kg, id, offset + nix + niy*width);
}
if(use_alpha && r.w != 1.0f && r.w != 0.0f) {
float invw = 1.0f/r.w;
r.x *= invw;
r.y *= invw;
r.z *= invw;
if(id >= TEX_NUM_FLOAT4_IMAGES) {
r.x = min(r.x, 1.0f);
r.y = min(r.y, 1.0f);
r.z = min(r.z, 1.0f);
}
}
if(srgb) {
r.x = color_srgb_to_scene_linear(r.x);
r.y = color_srgb_to_scene_linear(r.y);
r.z = color_srgb_to_scene_linear(r.z);
}
return r;
}
#else
ccl_device float4 svm_image_texture(KernelGlobals *kg, int id, float x, float y, uint srgb, uint use_alpha)
{
#ifdef __KERNEL_CPU__
# ifdef __KERNEL_SSE2__
ssef r_ssef;
float4 &r = (float4 &)r_ssef;
r = kernel_tex_image_interp(id, x, y);
# else
float4 r = kernel_tex_image_interp(id, x, y);
# endif
#else
float4 r;
# if __CUDA_ARCH__ < 300
/* not particularly proud of this massive switch, what are the
* alternatives?
* - use a single big 1D texture, and do our own lookup/filtering
* - group by size and use a 3d texture, performance impact
* - group into larger texture with some padding for correct lerp
*
* also note that cuda has a textures limit (128 for Fermi, 256 for Kepler),
* and we cannot use all since we still need some for other storage */
switch(id) {
case 0: r = kernel_tex_image_interp(__tex_image_float4_000, x, y); break;
case 1: r = kernel_tex_image_interp(__tex_image_float4_001, x, y); break;
case 2: r = kernel_tex_image_interp(__tex_image_float4_002, x, y); break;
case 3: r = kernel_tex_image_interp(__tex_image_float4_003, x, y); break;
case 4: r = kernel_tex_image_interp(__tex_image_float4_004, x, y); break;
case 5: r = kernel_tex_image_interp(__tex_image_byte4_005, x, y); break;
case 6: r = kernel_tex_image_interp(__tex_image_byte4_006, x, y); break;
case 7: r = kernel_tex_image_interp(__tex_image_byte4_007, x, y); break;
case 8: r = kernel_tex_image_interp(__tex_image_byte4_008, x, y); break;
case 9: r = kernel_tex_image_interp(__tex_image_byte4_009, x, y); break;
case 10: r = kernel_tex_image_interp(__tex_image_byte4_010, x, y); break;
case 11: r = kernel_tex_image_interp(__tex_image_byte4_011, x, y); break;
case 12: r = kernel_tex_image_interp(__tex_image_byte4_012, x, y); break;
case 13: r = kernel_tex_image_interp(__tex_image_byte4_013, x, y); break;
case 14: r = kernel_tex_image_interp(__tex_image_byte4_014, x, y); break;
case 15: r = kernel_tex_image_interp(__tex_image_byte4_015, x, y); break;
case 16: r = kernel_tex_image_interp(__tex_image_byte4_016, x, y); break;
case 17: r = kernel_tex_image_interp(__tex_image_byte4_017, x, y); break;
case 18: r = kernel_tex_image_interp(__tex_image_byte4_018, x, y); break;
case 19: r = kernel_tex_image_interp(__tex_image_byte4_019, x, y); break;
case 20: r = kernel_tex_image_interp(__tex_image_byte4_020, x, y); break;
case 21: r = kernel_tex_image_interp(__tex_image_byte4_021, x, y); break;
case 22: r = kernel_tex_image_interp(__tex_image_byte4_022, x, y); break;
case 23: r = kernel_tex_image_interp(__tex_image_byte4_023, x, y); break;
case 24: r = kernel_tex_image_interp(__tex_image_byte4_024, x, y); break;
case 25: r = kernel_tex_image_interp(__tex_image_byte4_025, x, y); break;
case 26: r = kernel_tex_image_interp(__tex_image_byte4_026, x, y); break;
case 27: r = kernel_tex_image_interp(__tex_image_byte4_027, x, y); break;
case 28: r = kernel_tex_image_interp(__tex_image_byte4_028, x, y); break;
case 29: r = kernel_tex_image_interp(__tex_image_byte4_029, x, y); break;
case 30: r = kernel_tex_image_interp(__tex_image_byte4_030, x, y); break;
case 31: r = kernel_tex_image_interp(__tex_image_byte4_031, x, y); break;
case 32: r = kernel_tex_image_interp(__tex_image_byte4_032, x, y); break;
case 33: r = kernel_tex_image_interp(__tex_image_byte4_033, x, y); break;
case 34: r = kernel_tex_image_interp(__tex_image_byte4_034, x, y); break;
case 35: r = kernel_tex_image_interp(__tex_image_byte4_035, x, y); break;
case 36: r = kernel_tex_image_interp(__tex_image_byte4_036, x, y); break;
case 37: r = kernel_tex_image_interp(__tex_image_byte4_037, x, y); break;
case 38: r = kernel_tex_image_interp(__tex_image_byte4_038, x, y); break;
case 39: r = kernel_tex_image_interp(__tex_image_byte4_039, x, y); break;
case 40: r = kernel_tex_image_interp(__tex_image_byte4_040, x, y); break;
case 41: r = kernel_tex_image_interp(__tex_image_byte4_041, x, y); break;
case 42: r = kernel_tex_image_interp(__tex_image_byte4_042, x, y); break;
case 43: r = kernel_tex_image_interp(__tex_image_byte4_043, x, y); break;
case 44: r = kernel_tex_image_interp(__tex_image_byte4_044, x, y); break;
case 45: r = kernel_tex_image_interp(__tex_image_byte4_045, x, y); break;
case 46: r = kernel_tex_image_interp(__tex_image_byte4_046, x, y); break;
case 47: r = kernel_tex_image_interp(__tex_image_byte4_047, x, y); break;
case 48: r = kernel_tex_image_interp(__tex_image_byte4_048, x, y); break;
case 49: r = kernel_tex_image_interp(__tex_image_byte4_049, x, y); break;
case 50: r = kernel_tex_image_interp(__tex_image_byte4_050, x, y); break;
case 51: r = kernel_tex_image_interp(__tex_image_byte4_051, x, y); break;
case 52: r = kernel_tex_image_interp(__tex_image_byte4_052, x, y); break;
case 53: r = kernel_tex_image_interp(__tex_image_byte4_053, x, y); break;
case 54: r = kernel_tex_image_interp(__tex_image_byte4_054, x, y); break;
case 55: r = kernel_tex_image_interp(__tex_image_byte4_055, x, y); break;
case 56: r = kernel_tex_image_interp(__tex_image_byte4_056, x, y); break;
case 57: r = kernel_tex_image_interp(__tex_image_byte4_057, x, y); break;
case 58: r = kernel_tex_image_interp(__tex_image_byte4_058, x, y); break;
case 59: r = kernel_tex_image_interp(__tex_image_byte4_059, x, y); break;
case 60: r = kernel_tex_image_interp(__tex_image_byte4_060, x, y); break;
case 61: r = kernel_tex_image_interp(__tex_image_byte4_061, x, y); break;
case 62: r = kernel_tex_image_interp(__tex_image_byte4_062, x, y); break;
case 63: r = kernel_tex_image_interp(__tex_image_byte4_063, x, y); break;
case 64: r = kernel_tex_image_interp(__tex_image_byte4_064, x, y); break;
case 65: r = kernel_tex_image_interp(__tex_image_byte4_065, x, y); break;
case 66: r = kernel_tex_image_interp(__tex_image_byte4_066, x, y); break;
case 67: r = kernel_tex_image_interp(__tex_image_byte4_067, x, y); break;
case 68: r = kernel_tex_image_interp(__tex_image_byte4_068, x, y); break;
case 69: r = kernel_tex_image_interp(__tex_image_byte4_069, x, y); break;
case 70: r = kernel_tex_image_interp(__tex_image_byte4_070, x, y); break;
case 71: r = kernel_tex_image_interp(__tex_image_byte4_071, x, y); break;
case 72: r = kernel_tex_image_interp(__tex_image_byte4_072, x, y); break;
case 73: r = kernel_tex_image_interp(__tex_image_byte4_073, x, y); break;
case 74: r = kernel_tex_image_interp(__tex_image_byte4_074, x, y); break;
case 75: r = kernel_tex_image_interp(__tex_image_byte4_075, x, y); break;
case 76: r = kernel_tex_image_interp(__tex_image_byte4_076, x, y); break;
case 77: r = kernel_tex_image_interp(__tex_image_byte4_077, x, y); break;
case 78: r = kernel_tex_image_interp(__tex_image_byte4_078, x, y); break;
case 79: r = kernel_tex_image_interp(__tex_image_byte4_079, x, y); break;
case 80: r = kernel_tex_image_interp(__tex_image_byte4_080, x, y); break;
case 81: r = kernel_tex_image_interp(__tex_image_byte4_081, x, y); break;
case 82: r = kernel_tex_image_interp(__tex_image_byte4_082, x, y); break;
case 83: r = kernel_tex_image_interp(__tex_image_byte4_083, x, y); break;
case 84: r = kernel_tex_image_interp(__tex_image_byte4_084, x, y); break;
case 85: r = kernel_tex_image_interp(__tex_image_byte4_085, x, y); break;
case 86: r = kernel_tex_image_interp(__tex_image_byte4_086, x, y); break;
case 87: r = kernel_tex_image_interp(__tex_image_byte4_087, x, y); break;
case 88: r = kernel_tex_image_interp(__tex_image_byte4_088, x, y); break;
case 89: r = kernel_tex_image_interp(__tex_image_byte4_089, x, y); break;
default:
kernel_assert(0);
return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
}
# else
CUtexObject tex = kernel_tex_fetch(__bindless_mapping, id);
/* float4, byte4 and half4 */
if(id < TEX_START_FLOAT_CUDA_KEPLER)
r = kernel_tex_image_interp_float4(tex, x, y);
/* float, byte and half */
else {
float f = kernel_tex_image_interp_float(tex, x, y);
r = make_float4(f, f, f, 1.0f);
}
# endif
#endif
#ifdef __KERNEL_SSE2__
float alpha = r.w;
if(use_alpha && alpha != 1.0f && alpha != 0.0f) {
r_ssef = r_ssef / ssef(alpha);
if(id >= TEX_NUM_FLOAT4_IMAGES)
r_ssef = min(r_ssef, ssef(1.0f));
r.w = alpha;
}
if(srgb) {
r_ssef = color_srgb_to_scene_linear(r_ssef);
r.w = alpha;
}
#else
if(use_alpha && r.w != 1.0f && r.w != 0.0f) {
float invw = 1.0f/r.w;
r.x *= invw;
r.y *= invw;
r.z *= invw;
if(id >= TEX_NUM_FLOAT4_IMAGES) {
r.x = min(r.x, 1.0f);
r.y = min(r.y, 1.0f);
r.z = min(r.z, 1.0f);
}
}
if(srgb) {
r.x = color_srgb_to_scene_linear(r.x);
r.y = color_srgb_to_scene_linear(r.y);
r.z = color_srgb_to_scene_linear(r.z);
}
#endif
return r;
}
#endif
/* Remap coordnate from 0..1 box to -1..-1 */
ccl_device_inline float3 texco_remap_square(float3 co)
{
return (co - make_float3(0.5f, 0.5f, 0.5f)) * 2.0f;
}
ccl_device void svm_node_tex_image(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node)
{
uint id = node.y;
uint co_offset, out_offset, alpha_offset, srgb;
decode_node_uchar4(node.z, &co_offset, &out_offset, &alpha_offset, &srgb);
float3 co = stack_load_float3(stack, co_offset);
float2 tex_co;
uint use_alpha = stack_valid(alpha_offset);
if(node.w == NODE_IMAGE_PROJ_SPHERE) {
co = texco_remap_square(co);
tex_co = map_to_sphere(co);
}
else if(node.w == NODE_IMAGE_PROJ_TUBE) {
co = texco_remap_square(co);
tex_co = map_to_tube(co);
}
else {
tex_co = make_float2(co.x, co.y);
}
float4 f = svm_image_texture(kg, id, tex_co.x, tex_co.y, srgb, use_alpha);
if(stack_valid(out_offset))
stack_store_float3(stack, out_offset, make_float3(f.x, f.y, f.z));
if(stack_valid(alpha_offset))
stack_store_float(stack, alpha_offset, f.w);
}
ccl_device void svm_node_tex_image_box(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node)
{
/* get object space normal */
float3 N = ccl_fetch(sd, N);
N = ccl_fetch(sd, N);
if(ccl_fetch(sd, object) != OBJECT_NONE)
object_inverse_normal_transform(kg, sd, &N);
/* project from direction vector to barycentric coordinates in triangles */
N.x = fabsf(N.x);
N.y = fabsf(N.y);
N.z = fabsf(N.z);
N /= (N.x + N.y + N.z);
/* basic idea is to think of this as a triangle, each corner representing
* one of the 3 faces of the cube. in the corners we have single textures,
* in between we blend between two textures, and in the middle we a blend
* between three textures.
*
* the Nxyz values are the barycentric coordinates in an equilateral
* triangle, which in case of blending, in the middle has a smaller
* equilateral triangle where 3 textures blend. this divides things into
* 7 zones, with an if() test for each zone */
float3 weight = make_float3(0.0f, 0.0f, 0.0f);
float blend = __int_as_float(node.w);
float limit = 0.5f*(1.0f + blend);
/* first test for corners with single texture */
if(N.x > limit*(N.x + N.y) && N.x > limit*(N.x + N.z)) {
weight.x = 1.0f;
}
else if(N.y > limit*(N.x + N.y) && N.y > limit*(N.y + N.z)) {
weight.y = 1.0f;
}
else if(N.z > limit*(N.x + N.z) && N.z > limit*(N.y + N.z)) {
weight.z = 1.0f;
}
else if(blend > 0.0f) {
/* in case of blending, test for mixes between two textures */
if(N.z < (1.0f - limit)*(N.y + N.x)) {
weight.x = N.x/(N.x + N.y);
weight.x = saturate((weight.x - 0.5f*(1.0f - blend))/blend);
weight.y = 1.0f - weight.x;
}
else if(N.x < (1.0f - limit)*(N.y + N.z)) {
weight.y = N.y/(N.y + N.z);
weight.y = saturate((weight.y - 0.5f*(1.0f - blend))/blend);
weight.z = 1.0f - weight.y;
}
else if(N.y < (1.0f - limit)*(N.x + N.z)) {
weight.x = N.x/(N.x + N.z);
weight.x = saturate((weight.x - 0.5f*(1.0f - blend))/blend);
weight.z = 1.0f - weight.x;
}
else {
/* last case, we have a mix between three */
weight.x = ((2.0f - limit)*N.x + (limit - 1.0f))/(2.0f*limit - 1.0f);
weight.y = ((2.0f - limit)*N.y + (limit - 1.0f))/(2.0f*limit - 1.0f);
weight.z = ((2.0f - limit)*N.z + (limit - 1.0f))/(2.0f*limit - 1.0f);
}
}
else {
/* Desperate mode, no valid choice anyway, fallback to one side.*/
weight.x = 1.0f;
}
/* now fetch textures */
uint co_offset, out_offset, alpha_offset, srgb;
decode_node_uchar4(node.z, &co_offset, &out_offset, &alpha_offset, &srgb);
float3 co = stack_load_float3(stack, co_offset);
uint id = node.y;
float4 f = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
uint use_alpha = stack_valid(alpha_offset);
if(weight.x > 0.0f)
f += weight.x*svm_image_texture(kg, id, co.y, co.z, srgb, use_alpha);
if(weight.y > 0.0f)
f += weight.y*svm_image_texture(kg, id, co.x, co.z, srgb, use_alpha);
if(weight.z > 0.0f)
f += weight.z*svm_image_texture(kg, id, co.y, co.x, srgb, use_alpha);
if(stack_valid(out_offset))
stack_store_float3(stack, out_offset, make_float3(f.x, f.y, f.z));
if(stack_valid(alpha_offset))
stack_store_float(stack, alpha_offset, f.w);
}
ccl_device void svm_node_tex_environment(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node)
{
uint id = node.y;
uint co_offset, out_offset, alpha_offset, srgb;
uint projection = node.w;
decode_node_uchar4(node.z, &co_offset, &out_offset, &alpha_offset, &srgb);
float3 co = stack_load_float3(stack, co_offset);
float2 uv;
co = normalize(co);
if(projection == 0)
uv = direction_to_equirectangular(co);
else
uv = direction_to_mirrorball(co);
uint use_alpha = stack_valid(alpha_offset);
float4 f = svm_image_texture(kg, id, uv.x, uv.y, srgb, use_alpha);
if(stack_valid(out_offset))
stack_store_float3(stack, out_offset, make_float3(f.x, f.y, f.z));
if(stack_valid(alpha_offset))
stack_store_float(stack, alpha_offset, f.w);
}
CCL_NAMESPACE_END