blender/intern/cycles/kernel/svm/svm_tex_coord.h
Sergey Sharybin 1f273cec00 Cycles: Tweak inline policy for some functions
The goal is to make Experimental kernel closer in performance to the
official kernel, avoiding spills and such.

There should not be big impact on official kernel, own tests showed
few percent performance drop on laptop's GPU. CPU was always the
same speed on AVX, AVX2 and SSE4.1 CPUs i've been testing here.

This seems to be the last essential step before we can get rid of
Experimental kernel and enable SSS officially on GPU without causing
some major performance issues.

Surely some more tweaks are possibly required, but that we can do
for until cows go home anyway.
2016-01-14 14:53:05 +05:00

389 lines
12 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
CCL_NAMESPACE_BEGIN
/* Texture Coordinate Node */
ccl_device void svm_node_tex_coord(KernelGlobals *kg,
ShaderData *sd,
int path_flag,
float *stack,
uint4 node,
int *offset)
{
float3 data;
uint type = node.y;
uint out_offset = node.z;
switch(type) {
case NODE_TEXCO_OBJECT: {
data = ccl_fetch(sd, P);
if(node.w == 0) {
if(ccl_fetch(sd, object) != OBJECT_NONE) {
object_inverse_position_transform(kg, sd, &data);
}
}
else {
Transform tfm;
tfm.x = read_node_float(kg, offset);
tfm.y = read_node_float(kg, offset);
tfm.z = read_node_float(kg, offset);
tfm.w = read_node_float(kg, offset);
data = transform_point(&tfm, data);
}
break;
}
case NODE_TEXCO_NORMAL: {
data = ccl_fetch(sd, N);
if(ccl_fetch(sd, object) != OBJECT_NONE)
object_inverse_normal_transform(kg, sd, &data);
break;
}
case NODE_TEXCO_CAMERA: {
Transform tfm = kernel_data.cam.worldtocamera;
if(ccl_fetch(sd, object) != OBJECT_NONE)
data = transform_point(&tfm, ccl_fetch(sd, P));
else
data = transform_point(&tfm, ccl_fetch(sd, P) + camera_position(kg));
break;
}
case NODE_TEXCO_WINDOW: {
if((path_flag & PATH_RAY_CAMERA) && ccl_fetch(sd, object) == OBJECT_NONE && kernel_data.cam.type == CAMERA_ORTHOGRAPHIC)
data = camera_world_to_ndc(kg, sd, ccl_fetch(sd, ray_P));
else
data = camera_world_to_ndc(kg, sd, ccl_fetch(sd, P));
data.z = 0.0f;
break;
}
case NODE_TEXCO_REFLECTION: {
if(ccl_fetch(sd, object) != OBJECT_NONE)
data = 2.0f*dot(ccl_fetch(sd, N), ccl_fetch(sd, I))*ccl_fetch(sd, N) - ccl_fetch(sd, I);
else
data = ccl_fetch(sd, I);
break;
}
case NODE_TEXCO_DUPLI_GENERATED: {
data = object_dupli_generated(kg, ccl_fetch(sd, object));
break;
}
case NODE_TEXCO_DUPLI_UV: {
data = object_dupli_uv(kg, ccl_fetch(sd, object));
break;
}
case NODE_TEXCO_VOLUME_GENERATED: {
data = ccl_fetch(sd, P);
#ifdef __VOLUME__
if(ccl_fetch(sd, object) != OBJECT_NONE)
data = volume_normalized_position(kg, sd, data);
#endif
break;
}
}
stack_store_float3(stack, out_offset, data);
}
ccl_device_inline void svm_node_tex_coord_bump_dx(KernelGlobals *kg,
ShaderData *sd,
int path_flag,
float *stack,
uint4 node,
int *offset)
{
#ifdef __RAY_DIFFERENTIALS__
float3 data;
uint type = node.y;
uint out_offset = node.z;
switch(type) {
case NODE_TEXCO_OBJECT: {
data = ccl_fetch(sd, P) + ccl_fetch(sd, dP).dx;
if(node.w == 0) {
if(ccl_fetch(sd, object) != OBJECT_NONE) {
object_inverse_position_transform(kg, sd, &data);
}
}
else {
Transform tfm;
tfm.x = read_node_float(kg, offset);
tfm.y = read_node_float(kg, offset);
tfm.z = read_node_float(kg, offset);
tfm.w = read_node_float(kg, offset);
data = transform_point(&tfm, data);
}
break;
}
case NODE_TEXCO_NORMAL: {
data = ccl_fetch(sd, N);
if(ccl_fetch(sd, object) != OBJECT_NONE)
object_inverse_normal_transform(kg, sd, &data);
break;
}
case NODE_TEXCO_CAMERA: {
Transform tfm = kernel_data.cam.worldtocamera;
if(ccl_fetch(sd, object) != OBJECT_NONE)
data = transform_point(&tfm, ccl_fetch(sd, P) + ccl_fetch(sd, dP).dx);
else
data = transform_point(&tfm, ccl_fetch(sd, P) + ccl_fetch(sd, dP).dx + camera_position(kg));
break;
}
case NODE_TEXCO_WINDOW: {
if((path_flag & PATH_RAY_CAMERA) && ccl_fetch(sd, object) == OBJECT_NONE && kernel_data.cam.type == CAMERA_ORTHOGRAPHIC)
data = camera_world_to_ndc(kg, sd, ccl_fetch(sd, ray_P) + ccl_fetch(sd, ray_dP).dx);
else
data = camera_world_to_ndc(kg, sd, ccl_fetch(sd, P) + ccl_fetch(sd, dP).dx);
data.z = 0.0f;
break;
}
case NODE_TEXCO_REFLECTION: {
if(ccl_fetch(sd, object) != OBJECT_NONE)
data = 2.0f*dot(ccl_fetch(sd, N), ccl_fetch(sd, I))*ccl_fetch(sd, N) - ccl_fetch(sd, I);
else
data = ccl_fetch(sd, I);
break;
}
case NODE_TEXCO_DUPLI_GENERATED: {
data = object_dupli_generated(kg, ccl_fetch(sd, object));
break;
}
case NODE_TEXCO_DUPLI_UV: {
data = object_dupli_uv(kg, ccl_fetch(sd, object));
break;
}
case NODE_TEXCO_VOLUME_GENERATED: {
data = ccl_fetch(sd, P) + ccl_fetch(sd, dP).dx;
#ifdef __VOLUME__
if(ccl_fetch(sd, object) != OBJECT_NONE)
data = volume_normalized_position(kg, sd, data);
#endif
break;
}
}
stack_store_float3(stack, out_offset, data);
#else
svm_node_tex_coord(kg, sd, path_flag, stack, node, offset);
#endif
}
ccl_device_inline void svm_node_tex_coord_bump_dy(KernelGlobals *kg,
ShaderData *sd,
int path_flag,
float *stack,
uint4 node,
int *offset)
{
#ifdef __RAY_DIFFERENTIALS__
float3 data;
uint type = node.y;
uint out_offset = node.z;
switch(type) {
case NODE_TEXCO_OBJECT: {
data = ccl_fetch(sd, P) + ccl_fetch(sd, dP).dy;
if(node.w == 0) {
if(ccl_fetch(sd, object) != OBJECT_NONE) {
object_inverse_position_transform(kg, sd, &data);
}
}
else {
Transform tfm;
tfm.x = read_node_float(kg, offset);
tfm.y = read_node_float(kg, offset);
tfm.z = read_node_float(kg, offset);
tfm.w = read_node_float(kg, offset);
data = transform_point(&tfm, data);
}
break;
}
case NODE_TEXCO_NORMAL: {
data = ccl_fetch(sd, N);
if(ccl_fetch(sd, object) != OBJECT_NONE)
object_inverse_normal_transform(kg, sd, &data);
break;
}
case NODE_TEXCO_CAMERA: {
Transform tfm = kernel_data.cam.worldtocamera;
if(ccl_fetch(sd, object) != OBJECT_NONE)
data = transform_point(&tfm, ccl_fetch(sd, P) + ccl_fetch(sd, dP).dy);
else
data = transform_point(&tfm, ccl_fetch(sd, P) + ccl_fetch(sd, dP).dy + camera_position(kg));
break;
}
case NODE_TEXCO_WINDOW: {
if((path_flag & PATH_RAY_CAMERA) && ccl_fetch(sd, object) == OBJECT_NONE && kernel_data.cam.type == CAMERA_ORTHOGRAPHIC)
data = camera_world_to_ndc(kg, sd, ccl_fetch(sd, ray_P) + ccl_fetch(sd, ray_dP).dy);
else
data = camera_world_to_ndc(kg, sd, ccl_fetch(sd, P) + ccl_fetch(sd, dP).dy);
data.z = 0.0f;
break;
}
case NODE_TEXCO_REFLECTION: {
if(ccl_fetch(sd, object) != OBJECT_NONE)
data = 2.0f*dot(ccl_fetch(sd, N), ccl_fetch(sd, I))*ccl_fetch(sd, N) - ccl_fetch(sd, I);
else
data = ccl_fetch(sd, I);
break;
}
case NODE_TEXCO_DUPLI_GENERATED: {
data = object_dupli_generated(kg, ccl_fetch(sd, object));
break;
}
case NODE_TEXCO_DUPLI_UV: {
data = object_dupli_uv(kg, ccl_fetch(sd, object));
break;
}
case NODE_TEXCO_VOLUME_GENERATED: {
data = ccl_fetch(sd, P) + ccl_fetch(sd, dP).dy;
#ifdef __VOLUME__
if(ccl_fetch(sd, object) != OBJECT_NONE)
data = volume_normalized_position(kg, sd, data);
#endif
break;
}
}
stack_store_float3(stack, out_offset, data);
#else
svm_node_tex_coord(kg, sd, path_flag, stack, node, offset);
#endif
}
ccl_device void svm_node_normal_map(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node)
{
uint color_offset, strength_offset, normal_offset, space;
decode_node_uchar4(node.y, &color_offset, &strength_offset, &normal_offset, &space);
float3 color = stack_load_float3(stack, color_offset);
color = 2.0f*make_float3(color.x - 0.5f, color.y - 0.5f, color.z - 0.5f);
float3 N;
if(space == NODE_NORMAL_MAP_TANGENT) {
/* tangent space */
if(ccl_fetch(sd, object) == OBJECT_NONE) {
stack_store_float3(stack, normal_offset, make_float3(0.0f, 0.0f, 0.0f));
return;
}
/* first try to get tangent attribute */
AttributeElement attr_elem, attr_sign_elem, attr_normal_elem;
int attr_offset = find_attribute(kg, sd, node.z, &attr_elem);
int attr_sign_offset = find_attribute(kg, sd, node.w, &attr_sign_elem);
int attr_normal_offset = find_attribute(kg, sd, ATTR_STD_VERTEX_NORMAL, &attr_normal_elem);
if(attr_offset == ATTR_STD_NOT_FOUND || attr_sign_offset == ATTR_STD_NOT_FOUND || attr_normal_offset == ATTR_STD_NOT_FOUND) {
stack_store_float3(stack, normal_offset, make_float3(0.0f, 0.0f, 0.0f));
return;
}
/* get _unnormalized_ interpolated normal and tangent */
float3 tangent = primitive_attribute_float3(kg, sd, attr_elem, attr_offset, NULL, NULL);
float sign = primitive_attribute_float(kg, sd, attr_sign_elem, attr_sign_offset, NULL, NULL);
float3 normal;
if(ccl_fetch(sd, shader) & SHADER_SMOOTH_NORMAL) {
normal = primitive_attribute_float3(kg, sd, attr_normal_elem, attr_normal_offset, NULL, NULL);
}
else {
normal = ccl_fetch(sd, Ng);
object_inverse_normal_transform(kg, sd, &normal);
}
/* apply normal map */
float3 B = sign * cross(normal, tangent);
N = normalize(color.x * tangent + color.y * B + color.z * normal);
/* transform to world space */
object_normal_transform(kg, sd, &N);
}
else {
/* strange blender convention */
if(space == NODE_NORMAL_MAP_BLENDER_OBJECT || space == NODE_NORMAL_MAP_BLENDER_WORLD) {
color.y = -color.y;
color.z = -color.z;
}
/* object, world space */
N = color;
if(space == NODE_NORMAL_MAP_OBJECT || space == NODE_NORMAL_MAP_BLENDER_OBJECT)
object_normal_transform(kg, sd, &N);
else
N = normalize(N);
}
float strength = stack_load_float(stack, strength_offset);
if(strength != 1.0f) {
strength = max(strength, 0.0f);
N = normalize(ccl_fetch(sd, N) + (N - ccl_fetch(sd, N))*strength);
}
stack_store_float3(stack, normal_offset, N);
}
ccl_device void svm_node_tangent(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node)
{
uint tangent_offset, direction_type, axis;
decode_node_uchar4(node.y, &tangent_offset, &direction_type, &axis, NULL);
float3 tangent;
if(direction_type == NODE_TANGENT_UVMAP) {
/* UV map */
AttributeElement attr_elem;
int attr_offset = find_attribute(kg, sd, node.z, &attr_elem);
if(attr_offset == ATTR_STD_NOT_FOUND)
tangent = make_float3(0.0f, 0.0f, 0.0f);
else
tangent = primitive_attribute_float3(kg, sd, attr_elem, attr_offset, NULL, NULL);
}
else {
/* radial */
AttributeElement attr_elem;
int attr_offset = find_attribute(kg, sd, node.z, &attr_elem);
float3 generated;
if(attr_offset == ATTR_STD_NOT_FOUND)
generated = ccl_fetch(sd, P);
else
generated = primitive_attribute_float3(kg, sd, attr_elem, attr_offset, NULL, NULL);
if(axis == NODE_TANGENT_AXIS_X)
tangent = make_float3(0.0f, -(generated.z - 0.5f), (generated.y - 0.5f));
else if(axis == NODE_TANGENT_AXIS_Y)
tangent = make_float3(-(generated.z - 0.5f), 0.0f, (generated.x - 0.5f));
else
tangent = make_float3(-(generated.y - 0.5f), (generated.x - 0.5f), 0.0f);
}
object_normal_transform(kg, sd, &tangent);
tangent = cross(ccl_fetch(sd, N), normalize(cross(tangent, ccl_fetch(sd, N))));
stack_store_float3(stack, tangent_offset, tangent);
}
CCL_NAMESPACE_END