blender/intern/moto/include/MT_Matrix4x4.h
Benoit Bolsee 40f1c4f343 BGE: Various render improvements.
bge.logic.setRender(flag) to enable/disable render.
    The render pass is enabled by default but it can be disabled with
    bge.logic.setRender(False).
    Once disabled, the render pass is skipped and a new logic frame starts
    immediately. Note that VSync no longer limits the fps when render is off
    but the 'Use Frame Rate' option in the Render Properties still does.
    To run as many frames as possible, untick the option
    This function is useful when you don't need the default render, e.g.
    when doing offscreen render to an alternate device than the monitor.
    Note that without VSync, you must limit the frame rate by other means.

fbo = bge.render.offScreenCreate(width,height,[,samples=0][,target=bge.render.RAS_OFS_RENDER_BUFFER])
    Use this method to create an offscreen buffer of given size, with given MSAA
    samples and targetting either a render buffer (bge.render.RAS_OFS_RENDER_BUFFER)
    or a texture (bge.render.RAS_OFS_RENDER_TEXTURE). Use the former if you want to
    retrieve the frame buffer on the host and the latter if you want to pass the render
    to another context (texture are proper OGL object, render buffers aren't)
    The object created by this function can only be used as a parameter of the
    bge.texture.ImageRender() constructor to send the the render to the FBO rather
    than to the frame buffer. This is best suited when you want to create a render
    of specific size, or if you need an image with an alpha channel.

bge.texture.<imagetype>.refresh(buffer=None, format="RGBA", ts=-1.0)
    Without arg, the refresh method of the image objects is pretty much a no-op, it
    simply invalidates the image so that on next texture refresh, the image will
    be recalculated.
    It is now possible to pass an optional buffer object to transfer the image (and
    recalculate it if it was invalid) to an external object. The object must implement
    the 'buffer protocol'. The image will be transfered as "RGBA" or "BGRA" pixels
    depending on format argument (only those 2 formats are supported) and ts is an
    optional timestamp in the image depends on it (e.g. VideoFFmpeg playing a video file).
    With this function you don't need anymore to link the image object to a Texture
    object to use: the image object is self-sufficient.

bge.texture.ImageRender(scene, camera, fbo=None)
    Render to buffer is possible by passing a FBO object (see offScreenCreate).

bge.texture.ImageRender.render()
    Allows asynchronous render: call this method to render the scene but without
    extracting the pixels yet. The function returns as soon as the render commands
    have been send to the GPU. The render will proceed asynchronously in the GPU
    while the host can perform other tasks.
    To complete the render, you can either call refresh() directly of refresh the texture
    to which this object is the source. Asynchronous render is useful to achieve optimal
    performance: call render() on frame N and refresh() on frame N+1 to give as much as
    time as possible to the GPU to render the frame while the game engine can perform other tasks.

Support negative scale on camera.
    Camera scale was previously ignored in the BGE.
    It is now injected in the modelview matrix as a vertical or horizontal flip
    of the scene (respectively if scaleY<0 and scaleX<0).
    Note that the actual value of the scale is not used, only the sign.
    This allows to flip the image produced by ImageRender() without any performance
    degradation: the flip is integrated in the render itself.

Optimized image transfer from ImageRender to buffer.
    Previously, images that were transferred to the host were always going through
    buffers in VideoTexture. It is now possible to transfer ImageRender
    images to external buffer without intermediate copy (i.e. directly from OGL to buffer)
    if the attributes of the ImageRender objects are set as follow:
       flip=False, alpha=True, scale=False, depth=False, zbuff=False.
       (if you need to flip the image, use camera negative scale)
2016-06-11 22:05:20 +02:00

263 lines
8.7 KiB
C++

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file moto/include/MT_Matrix4x4.h
* \ingroup moto
*/
/**
* Copyright (C) 2001 NaN Technologies B.V.
* A 4x4 matrix compatible with other stuff.
*/
#ifndef MT_MATRIX4X4_H
#define MT_MATRIX4X4_H
#include <MT_assert.h>
#include "MT_Vector4.h"
#include "MT_Transform.h"
// Row-major 4x4 matrix
class MT_Matrix4x4 {
public:
/**
* Empty contructor.
*/
MT_Matrix4x4() {}
/**
* Initialize all fields with the values pointed at by m. A
* contigous block of 16 values is read. */
MT_Matrix4x4(const float *m) { setValue(m); }
/**
* Initialize all fields with the values pointed at by m. A
* contigous block of 16 values is read. */
MT_Matrix4x4(const double *m) { setValue(m); }
/**
* Initialise with these 16 explicit values.
*/
MT_Matrix4x4(MT_Scalar xx, MT_Scalar xy, MT_Scalar xz, MT_Scalar xw,
MT_Scalar yx, MT_Scalar yy, MT_Scalar yz, MT_Scalar yw,
MT_Scalar zx, MT_Scalar zy, MT_Scalar zz, MT_Scalar zw,
MT_Scalar wx, MT_Scalar wy, MT_Scalar wz, MT_Scalar ww) {
setValue(xx, xy, xz, xw,
yx, yy, yz, yw,
zx, zy, zz, zw,
wx, wy, wz, ww);
}
/**
* Initialize from an MT_Transform.
*/
MT_Matrix4x4(const MT_Transform &t) {
const MT_Matrix3x3 &basis = t.getBasis();
const MT_Vector3 &origin = t.getOrigin();
setValue(
basis[0][0],basis[0][1],basis[0][2],origin[0],
basis[1][0],basis[1][1],basis[1][2],origin[1],
basis[2][0],basis[2][1],basis[2][2],origin[2],
MT_Scalar(0.0f),MT_Scalar(0.0f),MT_Scalar(0.0f),MT_Scalar(1.0f)
);
}
/**
* Get the i-th row.
*/
MT_Vector4& operator[](int i) { return m_el[i]; }
/**
* Get the i-th row.
*/
const MT_Vector4& operator[](int i) const { return m_el[i]; }
/**
* Set the matrix to the values pointer at by m. A contiguous
* block of 16 values is copied. */
void setValue(const float *m) {
m_el[0][0] = *m++; m_el[1][0] = *m++; m_el[2][0] = *m++; m_el[3][0] = *m++;
m_el[0][1] = *m++; m_el[1][1] = *m++; m_el[2][1] = *m++; m_el[3][1] = *m++;
m_el[0][2] = *m++; m_el[1][2] = *m++; m_el[2][2] = *m++; m_el[3][2] = *m++;
m_el[0][3] = *m++; m_el[1][3] = *m++; m_el[2][3] = *m++; m_el[3][3] = *m;
}
/**
* Set the matrix to the values pointer at by m. A contiguous
* block of 16 values is copied.
*/
void setValue(const double *m) {
m_el[0][0] = *m++; m_el[1][0] = *m++; m_el[2][0] = *m++; m_el[3][0] = *m++;
m_el[0][1] = *m++; m_el[1][1] = *m++; m_el[2][1] = *m++; m_el[3][1] = *m++;
m_el[0][2] = *m++; m_el[1][2] = *m++; m_el[2][2] = *m++; m_el[3][2] = *m++;
m_el[0][3] = *m++; m_el[1][3] = *m++; m_el[2][3] = *m++; m_el[3][3] = *m;
}
/**
* Set the matrix to these 16 explicit values.
*/
void setValue(MT_Scalar xx, MT_Scalar xy, MT_Scalar xz, MT_Scalar xw,
MT_Scalar yx, MT_Scalar yy, MT_Scalar yz, MT_Scalar yw,
MT_Scalar zx, MT_Scalar zy, MT_Scalar zz, MT_Scalar zw,
MT_Scalar wx, MT_Scalar wy, MT_Scalar wz, MT_Scalar ww) {
m_el[0][0] = xx; m_el[0][1] = xy; m_el[0][2] = xz; m_el[0][3] = xw;
m_el[1][0] = yx; m_el[1][1] = yy; m_el[1][2] = yz; m_el[1][3] = yw;
m_el[2][0] = zx; m_el[2][1] = zy; m_el[2][2] = zz; m_el[2][3] = zw;
m_el[3][0] = wx; m_el[3][1] = wy; m_el[3][2] = wz; m_el[3][3] = ww;
}
/**
* Scale the columns of this matrix with x, y, z, w respectively.
*/
void scale(MT_Scalar x, MT_Scalar y, MT_Scalar z, MT_Scalar w) {
m_el[0][0] *= x; m_el[0][1] *= y; m_el[0][2] *= z; m_el[0][3] *= w;
m_el[1][0] *= x; m_el[1][1] *= y; m_el[1][2] *= z; m_el[1][3] *= w;
m_el[2][0] *= x; m_el[2][1] *= y; m_el[2][2] *= z; m_el[2][3] *= w;
m_el[3][0] *= x; m_el[3][1] *= y; m_el[3][2] *= z; m_el[3][3] *= w;
}
/**
* Scale the rows of this matrix with x, y, z, w respectively.
*/
void tscale(MT_Scalar x, MT_Scalar y, MT_Scalar z, MT_Scalar w) {
m_el[0][0] *= x; m_el[1][0] *= y; m_el[2][0] *= z; m_el[3][0] *= w;
m_el[0][1] *= x; m_el[1][1] *= y; m_el[2][1] *= z; m_el[3][1] *= w;
m_el[0][2] *= x; m_el[1][2] *= y; m_el[2][2] *= z; m_el[3][2] *= w;
m_el[0][3] *= x; m_el[1][3] *= y; m_el[2][3] *= z; m_el[3][3] *= w;
}
/**
* Return a column-scaled version of this matrix.
*/
MT_Matrix4x4 scaled(MT_Scalar x, MT_Scalar y, MT_Scalar z, MT_Scalar w) const {
return MT_Matrix4x4(m_el[0][0] * x, m_el[0][1] * y, m_el[0][2] * z, m_el[0][3] * w,
m_el[1][0] * x, m_el[1][1] * y, m_el[1][2] * z, m_el[1][3] * w,
m_el[2][0] * x, m_el[2][1] * y, m_el[2][2] * z, m_el[2][3] * w,
m_el[3][0] * x, m_el[3][1] * y, m_el[3][2] * z, m_el[3][3] * w);
}
/**
* Set this matrix to I.
*/
void setIdentity() {
setValue(MT_Scalar(1.0f), MT_Scalar(0.0f), MT_Scalar(0.0f), MT_Scalar(0.0f),
MT_Scalar(0.0f), MT_Scalar(1.0f), MT_Scalar(0.0f), MT_Scalar(0.0f),
MT_Scalar(0.0f), MT_Scalar(0.0f), MT_Scalar(1.0f), MT_Scalar(0.0f),
MT_Scalar(0.0f), MT_Scalar(0.0f), MT_Scalar(0.0f), MT_Scalar(1.0f));
}
/**
* Read the element from row i, column j.
*/
float getElement(int i, int j) {
return (float) m_el[i][j];
}
/**
* Copy the contents to a contiguous block of 16 floats.
*/
void getValue(float *m) const {
*m++ = (float) m_el[0][0]; *m++ = (float) m_el[1][0]; *m++ = (float) m_el[2][0]; *m++ = (float) m_el[3][0];
*m++ = (float) m_el[0][1]; *m++ = (float) m_el[1][1]; *m++ = (float) m_el[2][1]; *m++ = (float) m_el[3][1];
*m++ = (float) m_el[0][2]; *m++ = (float) m_el[1][2]; *m++ = (float) m_el[2][2]; *m++ = (float) m_el[3][2];
*m++ = (float) m_el[0][3]; *m++ = (float) m_el[1][3]; *m++ = (float) m_el[2][3]; *m = (float) m_el[3][3];
}
/**
* Copy the contents to a contiguous block of 16 doubles.
*/
void getValue(double *m) const {
*m++ = m_el[0][0]; *m++ = m_el[1][0]; *m++ = m_el[2][0]; *m++ = m_el[3][0];
*m++ = m_el[0][1]; *m++ = m_el[1][1]; *m++ = m_el[2][1]; *m++ = m_el[3][1];
*m++ = m_el[0][2]; *m++ = m_el[1][2]; *m++ = m_el[2][2]; *m++ = m_el[3][2];
*m++ = m_el[0][3]; *m++ = m_el[1][3]; *m++ = m_el[2][3]; *m = m_el[3][3];
}
/**
* Left-multiply this matrix with the argument.
*/
MT_Matrix4x4& operator*=(const MT_Matrix4x4& m);
/**
* Left-multiply column c with row vector c.
*/
MT_Scalar tdot(int c, const MT_Vector4& v) const {
return m_el[0][c] * v[0]
+ m_el[1][c] * v[1]
+ m_el[2][c] * v[2]
+ m_el[3][c] * v[3];
}
/* I'll postpone this for now... - nzc*/
/* MT_Scalar determinant() const; */
/* MT_Matrix4x4 adjoint() const; */
/* MT_Matrix4x4 inverse() const; */
MT_Matrix4x4 absolute() const;
MT_Matrix4x4 transposed() const;
void transpose();
MT_Matrix4x4 inverse() const;
void invert();
protected:
/**
* Access with [row index][column index]
*/
MT_Vector4 m_el[4];
};
/* These multiplicators do exactly what you ask from them: they
* multiply in the indicated order. */
MT_Vector4 operator*(const MT_Matrix4x4& m, const MT_Vector4& v);
MT_Vector4 operator*(const MT_Vector4& v, const MT_Matrix4x4& m);
MT_Matrix4x4 operator*(const MT_Matrix4x4& m1, const MT_Matrix4x4& m2);
/* MT_Matrix4x4 MT_multTransposeLeft(const MT_Matrix4x4& m1, const MT_Matrix4x4& m2); */
/* MT_Matrix4x4 MT_multTransposeRight(const MT_Matrix4x4& m1, const MT_Matrix4x4& m2); */
inline MT_OStream& operator<<(MT_OStream& os, const MT_Matrix4x4& m) {
return os << m[0] << GEN_endl
<< m[1] << GEN_endl
<< m[2] << GEN_endl
<< m[3] << GEN_endl;
}
#ifdef GEN_INLINED
#include "MT_Matrix4x4.inl"
#endif
#endif