blender/intern/cycles/kernel/kernel_light.h
Brecht Van Lommel 57cf48e7c6 Cycles Hair: refactoring to support generic attributes for hair curves. There
should be no functional changes yet. UV, tangent and intercept are now stored
as attributes, with the intention to add more like multiple uv's, vertex
colors, generated coordinates and motion vectors later.

Things got a bit messy due to having both triangle and curve data in the same
mesh data structure, which also gives us two sets of attributes. This will get
cleaned up when we split the mesh class.
2013-01-03 12:08:54 +00:00

479 lines
13 KiB
C++

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
CCL_NAMESPACE_BEGIN
typedef struct LightSample {
float3 P;
float3 D;
float3 Ng;
float t;
float eval_fac;
int object;
int prim;
int shader;
LightType type;
} LightSample;
/* Regular Light */
__device float3 disk_light_sample(float3 v, float randu, float randv)
{
float3 ru, rv;
make_orthonormals(v, &ru, &rv);
to_unit_disk(&randu, &randv);
return ru*randu + rv*randv;
}
__device float3 distant_light_sample(float3 D, float size, float randu, float randv)
{
return normalize(D + disk_light_sample(D, randu, randv)*size);
}
__device float3 sphere_light_sample(float3 P, float3 center, float size, float randu, float randv)
{
return disk_light_sample(normalize(P - center), randu, randv)*size;
}
__device float3 area_light_sample(float3 axisu, float3 axisv, float randu, float randv)
{
randu = randu - 0.5f;
randv = randv - 0.5f;
return axisu*randu + axisv*randv;
}
#ifdef __BACKGROUND_MIS__
__device float3 background_light_sample(KernelGlobals *kg, float randu, float randv, float *pdf)
{
/* for the following, the CDF values are actually a pair of floats, with the
* function value as X and the actual CDF as Y. The last entry's function
* value is the CDF total. */
int res = kernel_data.integrator.pdf_background_res;
int cdf_count = res + 1;
/* this is basically std::lower_bound as used by pbrt */
int first = 0;
int count = res;
while(count > 0) {
int step = count >> 1;
int middle = first + step;
if(kernel_tex_fetch(__light_background_marginal_cdf, middle).y < randv) {
first = middle + 1;
count -= step + 1;
}
else
count = step;
}
int index_v = max(0, first - 1);
kernel_assert(index_v >= 0 && index_v < res);
float2 cdf_v = kernel_tex_fetch(__light_background_marginal_cdf, index_v);
float2 cdf_next_v = kernel_tex_fetch(__light_background_marginal_cdf, index_v + 1);
float2 cdf_last_v = kernel_tex_fetch(__light_background_marginal_cdf, res);
/* importance-sampled V direction */
float dv = (randv - cdf_v.y) / (cdf_next_v.y - cdf_v.y);
float v = (index_v + dv) / res;
/* this is basically std::lower_bound as used by pbrt */
first = 0;
count = res;
while(count > 0) {
int step = count >> 1;
int middle = first + step;
if(kernel_tex_fetch(__light_background_conditional_cdf, index_v * cdf_count + middle).y < randu) {
first = middle + 1;
count -= step + 1;
}
else
count = step;
}
int index_u = max(0, first - 1);
kernel_assert(index_u >= 0 && index_u < res);
float2 cdf_u = kernel_tex_fetch(__light_background_conditional_cdf, index_v * cdf_count + index_u);
float2 cdf_next_u = kernel_tex_fetch(__light_background_conditional_cdf, index_v * cdf_count + index_u + 1);
float2 cdf_last_u = kernel_tex_fetch(__light_background_conditional_cdf, index_v * cdf_count + res);
/* importance-sampled U direction */
float du = (randu - cdf_u.y) / (cdf_next_u.y - cdf_u.y);
float u = (index_u + du) / res;
/* compute pdf */
float denom = cdf_last_u.x * cdf_last_v.x;
float sin_theta = sinf(M_PI_F * v);
if(sin_theta == 0.0f || denom == 0.0f)
*pdf = 0.0f;
else
*pdf = (cdf_u.x * cdf_v.x)/(2.0f * M_PI_F * M_PI_F * sin_theta * denom);
*pdf *= kernel_data.integrator.pdf_lights;
/* compute direction */
return -equirectangular_to_direction(u, v);
}
__device float background_light_pdf(KernelGlobals *kg, float3 direction)
{
float2 uv = direction_to_equirectangular(direction);
int res = kernel_data.integrator.pdf_background_res;
float sin_theta = sinf(uv.y * M_PI_F);
if(sin_theta == 0.0f)
return 0.0f;
int index_u = clamp((int)(uv.x * res), 0, res - 1);
int index_v = clamp((int)(uv.y * res), 0, res - 1);
/* pdfs in V direction */
float2 cdf_last_u = kernel_tex_fetch(__light_background_conditional_cdf, index_v * (res + 1) + res);
float2 cdf_last_v = kernel_tex_fetch(__light_background_marginal_cdf, res);
float denom = cdf_last_u.x * cdf_last_v.x;
if(denom == 0.0f)
return 0.0f;
/* pdfs in U direction */
float2 cdf_u = kernel_tex_fetch(__light_background_conditional_cdf, index_v * (res + 1) + index_u);
float2 cdf_v = kernel_tex_fetch(__light_background_marginal_cdf, index_v);
float pdf = (cdf_u.x * cdf_v.x)/(2.0f * M_PI_F * M_PI_F * sin_theta * denom);
return pdf * kernel_data.integrator.pdf_lights;
}
#endif
__device void regular_light_sample(KernelGlobals *kg, int point,
float randu, float randv, float3 P, LightSample *ls, float *pdf)
{
float4 data0 = kernel_tex_fetch(__light_data, point*LIGHT_SIZE + 0);
float4 data1 = kernel_tex_fetch(__light_data, point*LIGHT_SIZE + 1);
LightType type = (LightType)__float_as_int(data0.x);
ls->type = type;
if(type == LIGHT_DISTANT) {
/* distant light */
float3 D = make_float3(data0.y, data0.z, data0.w);
float size = data1.y;
if(size > 0.0f)
D = distant_light_sample(D, size, randu, randv);
ls->P = D;
ls->Ng = D;
ls->D = -D;
ls->t = FLT_MAX;
ls->eval_fac = 1.0f;
}
#ifdef __BACKGROUND_MIS__
else if(type == LIGHT_BACKGROUND) {
/* infinite area light (e.g. light dome or env light) */
float3 D = background_light_sample(kg, randu, randv, pdf);
ls->P = D;
ls->Ng = D;
ls->D = -D;
ls->t = FLT_MAX;
ls->eval_fac = 1.0f;
}
#endif
else {
ls->P = make_float3(data0.y, data0.z, data0.w);
if(type == LIGHT_POINT) {
float size = data1.y;
/* sphere light */
if(size > 0.0f)
ls->P += sphere_light_sample(P, ls->P, size, randu, randv);
ls->Ng = normalize(P - ls->P);
ls->eval_fac = 0.25f*M_1_PI_F;
}
else if(type == LIGHT_SPOT) {
float4 data2 = kernel_tex_fetch(__light_data, point*LIGHT_SIZE + 2);
float size = data1.y;
/* spot light */
if(size > 0.0f)
ls->P += sphere_light_sample(P, ls->P, size, randu, randv);
float3 dir = make_float3(data1.z, data1.w, data2.x);
float3 I = normalize(P - ls->P);
float spot_angle = data2.y;
float spot_smooth = data2.z;
float eval_fac = dot(dir, I);
if(eval_fac <= spot_angle) {
eval_fac = 0.0f;
}
else {
float t = eval_fac - spot_angle;
if(t < spot_smooth && spot_smooth != 0.0f)
eval_fac *= smoothstepf(t/spot_smooth);
}
ls->Ng = I;
ls->eval_fac = eval_fac*0.25f*M_1_PI_F;
}
else {
/* area light */
float4 data2 = kernel_tex_fetch(__light_data, point*LIGHT_SIZE + 2);
float4 data3 = kernel_tex_fetch(__light_data, point*LIGHT_SIZE + 3);
float3 axisu = make_float3(data1.y, data1.z, data2.w);
float3 axisv = make_float3(data2.y, data2.z, data2.w);
float3 D = make_float3(data3.y, data3.z, data3.w);
ls->P += area_light_sample(axisu, axisv, randu, randv);
ls->Ng = D;
ls->eval_fac = 0.25f;
}
ls->t = 0.0f;
}
ls->shader = __float_as_int(data1.x);
ls->object = ~0;
ls->prim = ~0;
}
__device float regular_light_pdf(KernelGlobals *kg,
const float3 Ng, const float3 I, float t)
{
float pdf = kernel_data.integrator.pdf_lights;
if(t == FLT_MAX)
return pdf;
float cos_pi = dot(Ng, I);
if(cos_pi <= 0.0f)
return 0.0f;
return t*t*pdf/cos_pi;
}
/* Triangle Light */
__device void triangle_light_sample(KernelGlobals *kg, int prim, int object,
float randu, float randv, float time, LightSample *ls)
{
/* triangle, so get position, normal, shader */
ls->P = triangle_sample_MT(kg, prim, randu, randv);
ls->Ng = triangle_normal_MT(kg, prim, &ls->shader);
ls->object = object;
ls->prim = prim;
ls->t = 0.0f;
ls->type = LIGHT_AREA;
ls->eval_fac = 1.0f;
#ifdef __INSTANCING__
/* instance transform */
if(ls->object >= 0) {
#ifdef __OBJECT_MOTION__
Transform itfm;
Transform tfm = object_fetch_transform_motion_test(kg, object, time, &itfm);
#else
Transform tfm = object_fetch_transform(kg, ls->object, OBJECT_TRANSFORM);
Transform itfm = object_fetch_transform(kg, ls->object, OBJECT_INVERSE_TRANSFORM);
#endif
ls->P = transform_point(&tfm, ls->P);
ls->Ng = normalize(transform_direction_transposed(&itfm, ls->Ng));
}
#endif
}
__device float triangle_light_pdf(KernelGlobals *kg,
const float3 Ng, const float3 I, float t)
{
float cos_pi = fabsf(dot(Ng, I));
if(cos_pi == 0.0f)
return 0.0f;
return (t*t*kernel_data.integrator.pdf_triangles)/cos_pi;
}
#ifdef __HAIR__
/* Strand Light */
__device void curve_seg_light_sample(KernelGlobals *kg, int prim, int object,
float randu, float randv, float time, LightSample *ls)
{
/* this strand code needs completion */
float4 v00 = kernel_tex_fetch(__curve_segments, prim);
int v1 = __float_as_int(v00.x);
int v2 = __float_as_int(v00.y);
float l = v00.w;
float4 P1 = kernel_tex_fetch(__curve_keys, v1);
float4 P2 = kernel_tex_fetch(__curve_keys, v2);
float r1 = P1.w;
float r2 = P2.w;
float3 tg = float4_to_float3(P2 - P1) / l;
float3 xc = make_float3(tg.x * tg.z, tg.y * tg.z, -(tg.x * tg.x + tg.y * tg.y));
if (dot(xc, xc) == 0.0f)
xc = make_float3(tg.x * tg.y, -(tg.x * tg.x + tg.z * tg.z), tg.z * tg.y);
xc = normalize(xc);
float3 yc = cross(tg, xc);
float gd = ((r2 - r1)/l);
/* normal currently ignores gradient */
ls->Ng = sinf(2 * M_PI_F * randv) * xc + cosf(2 * M_PI_F * randv) * yc;
ls->P = randu * l * tg + (gd * l + r1) * ls->Ng;
ls->object = object;
ls->prim = prim;
ls->t = 0.0f;
ls->type = LIGHT_STRAND;
ls->eval_fac = 1.0f;
ls->shader = __float_as_int(v00.z);
#ifdef __INSTANCING__
/* instance transform */
if(ls->object >= 0) {
#ifdef __OBJECT_MOTION__
Transform itfm;
Transform tfm = object_fetch_transform_motion_test(kg, object, time, &itfm);
#else
Transform tfm = object_fetch_transform(kg, ls->object, OBJECT_TRANSFORM);
Transform itfm = object_fetch_transform(kg, ls->object, OBJECT_INVERSE_TRANSFORM);
#endif
ls->P = transform_point(&tfm, ls->P);
ls->Ng = normalize(transform_direction(&tfm, ls->Ng));
}
#endif
}
#endif
/* Light Distribution */
__device int light_distribution_sample(KernelGlobals *kg, float randt)
{
/* this is basically std::upper_bound as used by pbrt, to find a point light or
* triangle to emit from, proportional to area. a good improvement would be to
* also sample proportional to power, though it's not so well defined with
* OSL shaders. */
int first = 0;
int len = kernel_data.integrator.num_distribution + 1;
while(len > 0) {
int half_len = len >> 1;
int middle = first + half_len;
if(randt < kernel_tex_fetch(__light_distribution, middle).x) {
len = half_len;
}
else {
first = middle + 1;
len = len - half_len - 1;
}
}
/* clamping should not be needed but float rounding errors seem to
* make this fail on rare occasions */
return clamp(first-1, 0, kernel_data.integrator.num_distribution-1);
}
/* Generic Light */
__device void light_sample(KernelGlobals *kg, float randt, float randu, float randv, float time, float3 P, LightSample *ls, float *pdf)
{
/* sample index */
int index = light_distribution_sample(kg, randt);
/* fetch light data */
float4 l = kernel_tex_fetch(__light_distribution, index);
int prim = __float_as_int(l.y);
#ifdef __HAIR__
/* currently use l.z to indicate is strand sample which isn't ideal */
bool is_curve = __float_as_int(l.z) == 0.0f;
#endif
if(prim >= 0) {
int object = __float_as_int(l.w);
#ifdef __HAIR__
if (is_curve)
curve_seg_light_sample(kg, prim, object, randu, randv, time, ls);
else
#endif
triangle_light_sample(kg, prim, object, randu, randv, time, ls);
}
else {
int point = -prim-1;
regular_light_sample(kg, point, randu, randv, P, ls, pdf);
}
/* compute incoming direction and distance */
if(ls->t != FLT_MAX)
ls->D = normalize_len(ls->P - P, &ls->t);
}
__device float light_sample_pdf(KernelGlobals *kg, LightSample *ls, float3 I, float t)
{
float pdf;
if(ls->prim != ~0)
pdf = triangle_light_pdf(kg, ls->Ng, I, t);
else
pdf = regular_light_pdf(kg, ls->Ng, I, t);
return pdf;
}
__device int light_select_num_samples(KernelGlobals *kg, int index)
{
float4 data3 = kernel_tex_fetch(__light_data, index*LIGHT_SIZE + 3);
return __float_as_int(data3.x);
}
__device void light_select(KernelGlobals *kg, int index, float randu, float randv, float3 P, LightSample *ls, float *pdf)
{
regular_light_sample(kg, index, randu, randv, P, ls, pdf);
/* compute incoming direction and distance */
if(ls->t != FLT_MAX)
ls->D = normalize_len(ls->P - P, &ls->t);
}
__device float light_select_pdf(KernelGlobals *kg, LightSample *ls, float3 I, float t)
{
return regular_light_pdf(kg, ls->Ng, I, t);
}
CCL_NAMESPACE_END