blender/intern/cycles/kernel/kernel_subsurface.h
Brecht Van Lommel c18712e868 Cycles: change __device and similar qualifiers to ccl_device in kernel code.
This to avoids build conflicts with libc++ on FreeBSD, these __ prefixed values
are reserved for compilers. I apologize to anyone who has patches or branches
and has to go through the pain of merging this change, it may be easiest to do
these same replacements in your code and then apply/merge the patch.

Ref T37477.
2013-11-18 08:48:15 +01:00

408 lines
12 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License
*/
CCL_NAMESPACE_BEGIN
/* NEW BSSRDF: See "BSSRDF Importance Sampling", SIGGRAPH 2013 */
/* TODO:
* - test using power heuristic for combing bssrdfs
* - try to reduce one sample model variance
*/
#define BSSRDF_MULTI_EVAL
ccl_device ShaderClosure *subsurface_scatter_pick_closure(KernelGlobals *kg, ShaderData *sd, float *probability)
{
/* sum sample weights of bssrdf and bsdf */
float bsdf_sum = 0.0f;
float bssrdf_sum = 0.0f;
for(int i = 0; i < sd->num_closure; i++) {
ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_BSDF(sc->type))
bsdf_sum += sc->sample_weight;
else if(CLOSURE_IS_BSSRDF(sc->type))
bssrdf_sum += sc->sample_weight;
}
/* use bsdf or bssrdf? */
float r = sd->randb_closure*(bsdf_sum + bssrdf_sum);
if(r < bsdf_sum) {
/* use bsdf, and adjust randb so we can reuse it for picking a bsdf */
sd->randb_closure = r/bsdf_sum;
*probability = (bsdf_sum > 0.0f)? (bsdf_sum + bssrdf_sum)/bsdf_sum: 1.0f;
return NULL;
}
/* use bssrdf */
r -= bsdf_sum;
float sum = 0.0f;
for(int i = 0; i < sd->num_closure; i++) {
ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_BSSRDF(sc->type)) {
sum += sc->sample_weight;
if(r <= sum) {
sd->randb_closure = (r - (sum - sc->sample_weight))/sc->sample_weight;
#ifdef BSSRDF_MULTI_EVAL
*probability = (bssrdf_sum > 0.0f)? (bsdf_sum + bssrdf_sum)/bssrdf_sum: 1.0f;
#else
*probability = (bssrdf_sum > 0.0f)? (bsdf_sum + bssrdf_sum)/sc->sample_weight: 1.0f;
#endif
return sc;
}
}
}
/* should never happen */
sd->randb_closure = 0.0f;
*probability = 1.0f;
return NULL;
}
ccl_device float3 subsurface_scatter_eval(ShaderData *sd, ShaderClosure *sc, float disk_r, float r, bool all)
{
#ifdef BSSRDF_MULTI_EVAL
/* this is the veach one-sample model with balance heuristic, some pdf
* factors drop out when using balance heuristic weighting */
float3 eval_sum = make_float3(0.0f, 0.0f, 0.0f);
float pdf_sum = 0.0f;
float sample_weight_sum = 0.0f;
int num_bssrdf = 0;
for(int i = 0; i < sd->num_closure; i++) {
sc = &sd->closure[i];
if(CLOSURE_IS_BSSRDF(sc->type)) {
float sample_weight = (all)? 1.0f: sc->sample_weight;
sample_weight_sum += sample_weight;
}
}
float sample_weight_inv = 1.0f/sample_weight_sum;
//printf("num closures %d\n", sd->num_closure);
for(int i = 0; i < sd->num_closure; i++) {
sc = &sd->closure[i];
if(CLOSURE_IS_BSSRDF(sc->type)) {
/* in case of branched path integrate we sample all bssrdf's once,
* for path trace we pick one, so adjust pdf for that */
float sample_weight = (all)? 1.0f: sc->sample_weight * sample_weight_inv;
/* compute pdf */
float pdf = bssrdf_pdf(sc, r);
float disk_pdf = bssrdf_pdf(sc, disk_r);
/* TODO power heuristic is not working correct here */
eval_sum += sc->weight*pdf; //*sample_weight*disk_pdf;
pdf_sum += sample_weight*disk_pdf; //*sample_weight*disk_pdf;
num_bssrdf++;
}
}
return (pdf_sum > 0.0f)? eval_sum / pdf_sum : make_float3(0.0f, 0.0f, 0.0f);
#else
float pdf = bssrdf_pdf(pick_sc, r);
float disk_pdf = bssrdf_pdf(pick_sc, disk_r);
return pick_sc->weight * pdf / disk_pdf;
#endif
}
/* replace closures with a single diffuse bsdf closure after scatter step */
ccl_device void subsurface_scatter_setup_diffuse_bsdf(ShaderData *sd, float3 weight, bool hit, float3 N)
{
sd->flag &= ~SD_CLOSURE_FLAGS;
sd->randb_closure = 0.0f;
if(hit) {
ShaderClosure *sc = &sd->closure[0];
sd->num_closure = 1;
sc->weight = weight;
sc->sample_weight = 1.0f;
sc->data0 = 0.0f;
sc->data1 = 0.0f;
sc->N = N;
sd->flag |= bsdf_diffuse_setup(sc);
/* replace CLOSURE_BSDF_DIFFUSE_ID with this special ID so render passes
* can recognize it as not being a regular diffuse closure */
sc->type = CLOSURE_BSDF_BSSRDF_ID;
}
else
sd->num_closure = 0;
}
/* optionally do blurring of color and/or bump mapping, at the cost of a shader evaluation */
ccl_device float3 subsurface_color_pow(float3 color, float exponent)
{
color = max(color, make_float3(0.0f, 0.0f, 0.0f));
if(exponent == 1.0f) {
/* nothing to do */
}
else if(exponent == 0.5f) {
color.x = sqrtf(color.x);
color.y = sqrtf(color.y);
color.z = sqrtf(color.z);
}
else {
color.x = powf(color.x, exponent);
color.y = powf(color.y, exponent);
color.z = powf(color.z, exponent);
}
return color;
}
ccl_device void subsurface_color_bump_blur(KernelGlobals *kg, ShaderData *out_sd, ShaderData *in_sd, int state_flag, float3 *eval, float3 *N)
{
/* average color and texture blur at outgoing point */
float texture_blur;
float3 out_color = shader_bssrdf_sum(out_sd, NULL, &texture_blur);
/* do we have bump mapping? */
bool bump = (out_sd->flag & SD_HAS_BSSRDF_BUMP) != 0;
if(bump || texture_blur > 0.0f) {
/* average color and normal at incoming point */
shader_eval_surface(kg, in_sd, 0.0f, state_flag, SHADER_CONTEXT_SSS);
float3 in_color = shader_bssrdf_sum(in_sd, (bump)? N: NULL, NULL);
/* we simply divide out the average color and multiply with the average
* of the other one. we could try to do this per closure but it's quite
* tricky to match closures between shader evaluations, their number and
* order may change, this is simpler */
if(texture_blur > 0.0f) {
out_color = subsurface_color_pow(out_color, texture_blur);
in_color = subsurface_color_pow(in_color, texture_blur);
*eval *= safe_divide_color(in_color, out_color);
}
}
}
/* subsurface scattering step, from a point on the surface to other nearby points on the same object */
ccl_device int subsurface_scatter_multi_step(KernelGlobals *kg, ShaderData *sd, ShaderData bssrdf_sd[BSSRDF_MAX_HITS],
int state_flag, ShaderClosure *sc, uint *lcg_state, float disk_u, float disk_v, bool all)
{
/* pick random axis in local frame and point on disk */
float3 disk_N, disk_T, disk_B;
float pick_pdf_N, pick_pdf_T, pick_pdf_B;
disk_N = sd->Ng;
make_orthonormals(disk_N, &disk_T, &disk_B);
/* reusing variable for picking the closure gives a bit nicer stratification
* for path tracer, for branched we do all closures so it doesn't help */
float axisu = (all)? disk_u: sd->randb_closure;
if(axisu < 0.5f) {
pick_pdf_N = 0.5f;
pick_pdf_T = 0.25f;
pick_pdf_B = 0.25f;
if(all)
disk_u *= 2.0f;
}
else if(axisu < 0.75f) {
float3 tmp = disk_N;
disk_N = disk_T;
disk_T = tmp;
pick_pdf_N = 0.25f;
pick_pdf_T = 0.5f;
pick_pdf_B = 0.25f;
if(all)
disk_u = (disk_u - 0.5f)*4.0f;
}
else {
float3 tmp = disk_N;
disk_N = disk_B;
disk_B = tmp;
pick_pdf_N = 0.25f;
pick_pdf_T = 0.25f;
pick_pdf_B = 0.5f;
if(all)
disk_u = (disk_u - 0.75f)*4.0f;
}
/* sample point on disk */
float phi = M_2PI_F * disk_u;
float disk_r = disk_v;
float disk_height;
bssrdf_sample(sc, disk_r, &disk_r, &disk_height);
float3 disk_P = (disk_r*cosf(phi)) * disk_T + (disk_r*sinf(phi)) * disk_B;
/* create ray */
Ray ray;
ray.P = sd->P + disk_N*disk_height + disk_P;
ray.D = -disk_N;
ray.t = 2.0f*disk_height;
ray.dP = sd->dP;
ray.dD = differential3_zero();
ray.time = sd->time;
/* intersect with the same object. if multiple intersections are found it
* will use at most BSSRDF_MAX_HITS hits, a random subset of all hits */
Intersection isect[BSSRDF_MAX_HITS];
uint num_hits = scene_intersect_subsurface(kg, &ray, isect, sd->object, lcg_state, BSSRDF_MAX_HITS);
/* evaluate bssrdf */
float3 eval = make_float3(0.0f, 0.0f, 0.0f);
int num_eval_hits = min(num_hits, BSSRDF_MAX_HITS);
for(int hit = 0; hit < num_eval_hits; hit++) {
ShaderData *bsd = &bssrdf_sd[hit];
/* setup new shading point */
*bsd = *sd;
shader_setup_from_subsurface(kg, bsd, &isect[hit], &ray);
/* probability densities for local frame axes */
float pdf_N = pick_pdf_N * fabsf(dot(disk_N, bsd->Ng));
float pdf_T = pick_pdf_T * fabsf(dot(disk_T, bsd->Ng));
float pdf_B = pick_pdf_B * fabsf(dot(disk_B, bsd->Ng));
/* multiple importance sample between 3 axes, power heuristic
* found to be slightly better than balance heuristic */
float mis_weight = power_heuristic_3(pdf_N, pdf_T, pdf_B);
/* real distance to sampled point */
float r = len(bsd->P - sd->P);
/* evaluate */
float w = mis_weight / pdf_N;
if(num_hits > BSSRDF_MAX_HITS)
w *= num_hits/(float)BSSRDF_MAX_HITS;
eval = subsurface_scatter_eval(bsd, sc, disk_r, r, all) * w;
/* optionally blur colors and bump mapping */
float3 N = bsd->N;
subsurface_color_bump_blur(kg, sd, bsd, state_flag, &eval, &N);
/* setup diffuse bsdf */
subsurface_scatter_setup_diffuse_bsdf(bsd, eval, true, N);
}
return num_eval_hits;
}
/* subsurface scattering step, from a point on the surface to another nearby point on the same object */
ccl_device void subsurface_scatter_step(KernelGlobals *kg, ShaderData *sd,
int state_flag, ShaderClosure *sc, uint *lcg_state, float disk_u, float disk_v, bool all)
{
float3 eval = make_float3(0.0f, 0.0f, 0.0f);
uint num_hits = 0;
/* pick random axis in local frame and point on disk */
float3 disk_N, disk_T, disk_B;
float pick_pdf_N, pick_pdf_T, pick_pdf_B;
disk_N = sd->Ng;
make_orthonormals(disk_N, &disk_T, &disk_B);
if(sd->randb_closure < 0.5f) {
pick_pdf_N = 0.5f;
pick_pdf_T = 0.25f;
pick_pdf_B = 0.25f;
}
else if(sd->randb_closure < 0.75f) {
float3 tmp = disk_N;
disk_N = disk_T;
disk_T = tmp;
pick_pdf_N = 0.25f;
pick_pdf_T = 0.5f;
pick_pdf_B = 0.25f;
}
else {
float3 tmp = disk_N;
disk_N = disk_B;
disk_B = tmp;
pick_pdf_N = 0.25f;
pick_pdf_T = 0.25f;
pick_pdf_B = 0.5f;
}
/* sample point on disk */
float phi = M_2PI_F * disk_u;
float disk_r = disk_v;
float disk_height;
bssrdf_sample(sc, disk_r, &disk_r, &disk_height);
float3 disk_P = (disk_r*cosf(phi)) * disk_T + (disk_r*sinf(phi)) * disk_B;
/* create ray */
Ray ray;
ray.P = sd->P + disk_N*disk_height + disk_P;
ray.D = -disk_N;
ray.t = 2.0f*disk_height;
ray.dP = sd->dP;
ray.dD = differential3_zero();
ray.time = sd->time;
/* intersect with the same object. if multiple intersections are
* found it will randomly pick one of them */
Intersection isect;
num_hits = scene_intersect_subsurface(kg, &ray, &isect, sd->object, lcg_state, 1);
/* evaluate bssrdf */
if(num_hits > 0) {
float3 origP = sd->P;
/* setup new shading point */
shader_setup_from_subsurface(kg, sd, &isect, &ray);
/* probability densities for local frame axes */
float pdf_N = pick_pdf_N * fabsf(dot(disk_N, sd->Ng));
float pdf_T = pick_pdf_T * fabsf(dot(disk_T, sd->Ng));
float pdf_B = pick_pdf_B * fabsf(dot(disk_B, sd->Ng));
/* multiple importance sample between 3 axes, power heuristic
* found to be slightly better than balance heuristic */
float mis_weight = power_heuristic_3(pdf_N, pdf_T, pdf_B);
/* real distance to sampled point */
float r = len(sd->P - origP);
/* evaluate */
float w = (mis_weight * num_hits) / pdf_N;
eval = subsurface_scatter_eval(sd, sc, disk_r, r, all) * w;
}
/* optionally blur colors and bump mapping */
float3 N = sd->N;
subsurface_color_bump_blur(kg, sd, sd, state_flag, &eval, &N);
/* setup diffuse bsdf */
subsurface_scatter_setup_diffuse_bsdf(sd, eval, (num_hits > 0), N);
}
CCL_NAMESPACE_END