blender/intern/cycles/kernel/geom/geom_motion_triangle.h
Brecht Van Lommel 26f39e6359 Cycles: add bevel shader, for raytrace based rounded edges.
The algorithm averages normals from nearby surfaces. It uses the same
sampling strategy as BSSRDFs, casting rays along the normal and two
orthogonal axes, and combining the samples with MIS.

The main concern here is that we are introducing raytracing inside
shader evaluation, which could be quite bad for GPU performance and
stack memory usage. In practice it doesn't seem so bad though.

Note that using this feature can easily slow down renders 20%, and
that if you care about performance then it's better to use a bevel
modifier. Mainly this is useful for baking, and for cases where the
mesh topology makes it difficult for the bevel modifier to work well.

Differential Revision: https://developer.blender.org/D2803
2017-11-07 22:35:12 +01:00

156 lines
5.8 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Motion Triangle Primitive
*
* These are stored as regular triangles, plus extra positions and normals at
* times other than the frame center. Computing the triangle vertex positions
* or normals at a given ray time is a matter of interpolation of the two steps
* between which the ray time lies.
*
* The extra positions and normals are stored as ATTR_STD_MOTION_VERTEX_POSITION
* and ATTR_STD_MOTION_VERTEX_NORMAL mesh attributes.
*/
CCL_NAMESPACE_BEGIN
/* Time interpolation of vertex positions and normals */
ccl_device_inline int find_attribute_motion(KernelGlobals *kg, int object, uint id, AttributeElement *elem)
{
/* todo: find a better (faster) solution for this, maybe store offset per object */
uint attr_offset = object_attribute_map_offset(kg, object);
uint4 attr_map = kernel_tex_fetch(__attributes_map, attr_offset);
while(attr_map.x != id) {
attr_offset += ATTR_PRIM_TYPES;
attr_map = kernel_tex_fetch(__attributes_map, attr_offset);
}
*elem = (AttributeElement)attr_map.y;
/* return result */
return (attr_map.y == ATTR_ELEMENT_NONE) ? (int)ATTR_STD_NOT_FOUND : (int)attr_map.z;
}
ccl_device_inline void motion_triangle_verts_for_step(KernelGlobals *kg, uint4 tri_vindex, int offset, int numverts, int numsteps, int step, float3 verts[3])
{
if(step == numsteps) {
/* center step: regular vertex location */
verts[0] = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex.w+0));
verts[1] = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex.w+1));
verts[2] = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex.w+2));
}
else {
/* center step not store in this array */
if(step > numsteps)
step--;
offset += step*numverts;
verts[0] = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + tri_vindex.x));
verts[1] = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + tri_vindex.y));
verts[2] = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + tri_vindex.z));
}
}
ccl_device_inline void motion_triangle_normals_for_step(KernelGlobals *kg, uint4 tri_vindex, int offset, int numverts, int numsteps, int step, float3 normals[3])
{
if(step == numsteps) {
/* center step: regular vertex location */
normals[0] = float4_to_float3(kernel_tex_fetch(__tri_vnormal, tri_vindex.x));
normals[1] = float4_to_float3(kernel_tex_fetch(__tri_vnormal, tri_vindex.y));
normals[2] = float4_to_float3(kernel_tex_fetch(__tri_vnormal, tri_vindex.z));
}
else {
/* center step is not stored in this array */
if(step > numsteps)
step--;
offset += step*numverts;
normals[0] = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + tri_vindex.x));
normals[1] = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + tri_vindex.y));
normals[2] = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + tri_vindex.z));
}
}
ccl_device_inline void motion_triangle_vertices(KernelGlobals *kg, int object, int prim, float time, float3 verts[3])
{
/* get motion info */
int numsteps, numverts;
object_motion_info(kg, object, &numsteps, &numverts, NULL);
/* figure out which steps we need to fetch and their interpolation factor */
int maxstep = numsteps*2;
int step = min((int)(time*maxstep), maxstep-1);
float t = time*maxstep - step;
/* find attribute */
AttributeElement elem;
int offset = find_attribute_motion(kg, object, ATTR_STD_MOTION_VERTEX_POSITION, &elem);
kernel_assert(offset != ATTR_STD_NOT_FOUND);
/* fetch vertex coordinates */
float3 next_verts[3];
uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, prim);
motion_triangle_verts_for_step(kg, tri_vindex, offset, numverts, numsteps, step, verts);
motion_triangle_verts_for_step(kg, tri_vindex, offset, numverts, numsteps, step+1, next_verts);
/* interpolate between steps */
verts[0] = (1.0f - t)*verts[0] + t*next_verts[0];
verts[1] = (1.0f - t)*verts[1] + t*next_verts[1];
verts[2] = (1.0f - t)*verts[2] + t*next_verts[2];
}
ccl_device_inline float3 motion_triangle_smooth_normal(KernelGlobals *kg, float3 Ng, int object, int prim, float u, float v, float time)
{
/* get motion info */
int numsteps, numverts;
object_motion_info(kg, object, &numsteps, &numverts, NULL);
/* figure out which steps we need to fetch and their interpolation factor */
int maxstep = numsteps*2;
int step = min((int)(time*maxstep), maxstep-1);
float t = time*maxstep - step;
/* find attribute */
AttributeElement elem;
int offset = find_attribute_motion(kg, object, ATTR_STD_MOTION_VERTEX_NORMAL, &elem);
kernel_assert(offset != ATTR_STD_NOT_FOUND);
/* fetch normals */
float3 normals[3], next_normals[3];
uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, prim);
motion_triangle_normals_for_step(kg, tri_vindex, offset, numverts, numsteps, step, normals);
motion_triangle_normals_for_step(kg, tri_vindex, offset, numverts, numsteps, step+1, next_normals);
/* interpolate between steps */
normals[0] = (1.0f - t)*normals[0] + t*next_normals[0];
normals[1] = (1.0f - t)*normals[1] + t*next_normals[1];
normals[2] = (1.0f - t)*normals[2] + t*next_normals[2];
/* interpolate between vertices */
float w = 1.0f - u - v;
float3 N = safe_normalize(u*normals[0] + v*normals[1] + w*normals[2]);
return is_zero(N)? Ng: N;
}
CCL_NAMESPACE_END