blender/source/gameengine/Converter/BL_BlenderDataConversion.cpp

2528 lines
72 KiB
C++

/**
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
* Convert blender data to ketsji
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#ifdef WIN32
#pragma warning (disable : 4786)
#endif
#include <math.h>
#include "BL_BlenderDataConversion.h"
#include "KX_BlenderGL.h"
#include "KX_BlenderScalarInterpolator.h"
#include "RAS_IPolygonMaterial.h"
#include "KX_PolygonMaterial.h"
// Expressions
#include "ListValue.h"
#include "IntValue.h"
// Collision & Fuzzics LTD
#include "PHY_Pro.h"
#include "KX_Scene.h"
#include "KX_GameObject.h"
#include "RAS_FramingManager.h"
#include "RAS_MeshObject.h"
#include "KX_ConvertActuators.h"
#include "KX_ConvertControllers.h"
#include "KX_ConvertSensors.h"
#include "SCA_LogicManager.h"
#include "SCA_EventManager.h"
#include "SCA_TimeEventManager.h"
#include "KX_Light.h"
#include "KX_Camera.h"
#include "KX_EmptyObject.h"
#include "MT_Point3.h"
#include "MT_Transform.h"
#include "MT_MinMax.h"
#include "SCA_IInputDevice.h"
#include "RAS_TexMatrix.h"
#include "RAS_ICanvas.h"
#include "RAS_MaterialBucket.h"
//#include "KX_BlenderPolyMaterial.h"
#include "RAS_Polygon.h"
#include "RAS_TexVert.h"
#include "RAS_BucketManager.h"
#include "RAS_IRenderTools.h"
#include "BL_Material.h"
#include "KX_BlenderMaterial.h"
#include "BL_Texture.h"
#include "DNA_action_types.h"
#include "BKE_main.h"
#include "BKE_global.h"
#include "BKE_object.h"
#include "BKE_scene.h"
#include "BL_SkinMeshObject.h"
#include "BL_ShapeDeformer.h"
#include "BL_SkinDeformer.h"
#include "BL_MeshDeformer.h"
//#include "BL_ArmatureController.h"
#include "BlenderWorldInfo.h"
#include "KX_KetsjiEngine.h"
#include "KX_BlenderSceneConverter.h"
#include"SND_Scene.h"
#include "SND_SoundListener.h"
/* This little block needed for linking to Blender... */
#ifdef WIN32
#include "BLI_winstuff.h"
#endif
/* This list includes only data type definitions */
#include "DNA_object_types.h"
#include "DNA_material_types.h"
#include "DNA_texture_types.h"
#include "DNA_image_types.h"
#include "DNA_lamp_types.h"
#include "DNA_group_types.h"
#include "DNA_scene_types.h"
#include "DNA_camera_types.h"
#include "DNA_property_types.h"
#include "DNA_text_types.h"
#include "DNA_sensor_types.h"
#include "DNA_controller_types.h"
#include "DNA_actuator_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_view3d_types.h"
#include "DNA_world_types.h"
#include "DNA_sound_types.h"
#include "DNA_key_types.h"
#include "DNA_armature_types.h"
#include "DNA_object_force.h"
#include "MEM_guardedalloc.h"
#include "BKE_utildefines.h"
#include "BKE_key.h"
#include "BKE_mesh.h"
#include "MT_Point3.h"
#include "BLI_arithb.h"
extern "C" {
#include "BKE_customdata.h"
#include "BKE_cdderivedmesh.h"
#include "BKE_DerivedMesh.h"
}
#include "BKE_material.h" /* give_current_material */
/* end of blender include block */
#include "KX_BlenderInputDevice.h"
#include "KX_ConvertProperties.h"
#include "KX_HashedPtr.h"
#include "KX_ScalarInterpolator.h"
#include "KX_IpoConvert.h"
#include "SYS_System.h"
#include "SG_Node.h"
#include "SG_BBox.h"
#include "SG_Tree.h"
// defines USE_ODE to choose physics engine
#include "KX_ConvertPhysicsObject.h"
// This file defines relationships between parents and children
// in the game engine.
#include "KX_SG_NodeRelationships.h"
#include "KX_SG_BoneParentNodeRelationship.h"
#include "BL_ArmatureObject.h"
#include "BL_DeformableGameObject.h"
#ifdef __cplusplus
extern "C" {
#endif
#include "BSE_headerbuttons.h"
void update_for_newframe();
//void scene_update_for_newframe(struct Scene *sce, unsigned int lay);
//#include "BKE_ipo.h"
//void do_all_data_ipos(void);
#ifdef __cplusplus
}
#endif
static int default_face_mode = TF_DYNAMIC;
static unsigned int KX_rgbaint2uint_new(unsigned int icol)
{
union
{
unsigned int integer;
unsigned char cp[4];
} out_color, in_color;
in_color.integer = icol;
out_color.cp[0] = in_color.cp[3]; // red
out_color.cp[1] = in_color.cp[2]; // green
out_color.cp[2] = in_color.cp[1]; // blue
out_color.cp[3] = in_color.cp[0]; // alpha
return out_color.integer;
}
/* Now the real converting starts... */
static unsigned int KX_Mcol2uint_new(MCol col)
{
/* color has to be converted without endian sensitivity. So no shifting! */
union
{
MCol col;
unsigned int integer;
unsigned char cp[4];
} out_color, in_color;
in_color.col = col;
out_color.cp[0] = in_color.cp[3]; // red
out_color.cp[1] = in_color.cp[2]; // green
out_color.cp[2] = in_color.cp[1]; // blue
out_color.cp[3] = in_color.cp[0]; // alpha
return out_color.integer;
}
static void SetDefaultFaceType(Scene* scene)
{
default_face_mode = TF_DYNAMIC;
Scene *sce;
Base *base;
for(SETLOOPER(scene,base))
{
if (base->object->type == OB_LAMP)
{
default_face_mode = TF_DYNAMIC|TF_LIGHT;
return;
}
}
}
// --
static void GetRGB(short type,
MFace* mface,
MCol* mmcol,
Material *mat,
unsigned int &c0,
unsigned int &c1,
unsigned int &c2,
unsigned int &c3)
{
unsigned int color = 0xFFFFFFFFL;
switch(type)
{
case 0: // vertex colors
{
if(mmcol) {
c0 = KX_Mcol2uint_new(mmcol[0]);
c1 = KX_Mcol2uint_new(mmcol[1]);
c2 = KX_Mcol2uint_new(mmcol[2]);
if (mface->v4)
c3 = KX_Mcol2uint_new(mmcol[3]);
}else // backup white
{
c0 = KX_rgbaint2uint_new(color);
c1 = KX_rgbaint2uint_new(color);
c2 = KX_rgbaint2uint_new(color);
if (mface->v4)
c3 = KX_rgbaint2uint_new( color );
}
} break;
case 1: // material rgba
{
if (mat) {
union {
unsigned char cp[4];
unsigned int integer;
} col_converter;
col_converter.cp[3] = (unsigned char) (mat->r*255.0);
col_converter.cp[2] = (unsigned char) (mat->g*255.0);
col_converter.cp[1] = (unsigned char) (mat->b*255.0);
col_converter.cp[0] = (unsigned char) (mat->alpha*255.0);
color = col_converter.integer;
}
c0 = KX_rgbaint2uint_new(color);
c1 = KX_rgbaint2uint_new(color);
c2 = KX_rgbaint2uint_new(color);
if (mface->v4)
c3 = KX_rgbaint2uint_new(color);
} break;
default: // white
{
c0 = KX_rgbaint2uint_new(color);
c1 = KX_rgbaint2uint_new(color);
c2 = KX_rgbaint2uint_new(color);
if (mface->v4)
c3 = KX_rgbaint2uint_new(color);
} break;
}
}
typedef struct MTF_localLayer
{
MTFace *face;
const char *name;
}MTF_localLayer;
// ------------------------------------
BL_Material* ConvertMaterial(
Material *mat,
MTFace* tface,
const char *tfaceName,
MFace* mface,
MCol* mmcol,
int lightlayer,
Object* blenderobj,
MTF_localLayer *layers,
bool glslmat)
{
//this needs some type of manager
BL_Material *material = new BL_Material();
int numchan = -1, texalpha = 0;
bool validmat = (mat!=0);
bool validface = (tface!=0);
short type = 0;
if( validmat )
type = 1; // material color
material->IdMode = DEFAULT_BLENDER;
material->glslmat = (validmat)? glslmat: false;
// --------------------------------
if(validmat) {
// use vertex colors by explicitly setting
if(mat->mode &MA_VERTEXCOLP || glslmat)
type = 0;
// use lighting?
material->ras_mode |= ( mat->mode & MA_SHLESS )?0:USE_LIGHT;
MTex *mttmp = 0;
numchan = getNumTexChannels(mat);
int valid_index = 0;
// use the face texture if
// 1) it is set in the buttons
// 2) we have a face texture and a material but no valid texture in slot 1
bool facetex = false;
if(validface && mat->mode &MA_FACETEXTURE)
facetex = true;
if(validface && !mat->mtex[0])
facetex = true;
if(validface && mat->mtex[0]) {
MTex *tmp = mat->mtex[0];
if(!tmp->tex || tmp->tex && !tmp->tex->ima )
facetex = true;
}
numchan = numchan>MAXTEX?MAXTEX:numchan;
// foreach MTex
for(int i=0; i<numchan; i++) {
// use face tex
if(i==0 && facetex ) {
Image*tmp = (Image*)(tface->tpage);
if(tmp) {
material->img[i] = tmp;
material->texname[i] = material->img[i]->id.name;
material->flag[i] |= ( tface->transp &TF_ALPHA )?USEALPHA:0;
material->flag[i] |= ( tface->transp &TF_ADD )?CALCALPHA:0;
material->flag[i] |= MIPMAP;
if(material->img[i]->flag & IMA_REFLECT)
material->mapping[i].mapping |= USEREFL;
else
{
mttmp = getImageFromMaterial( mat, i );
if(mttmp && mttmp->texco &TEXCO_UV)
{
STR_String uvName = mttmp->uvname;
if (!uvName.IsEmpty())
material->mapping[i].uvCoName = mttmp->uvname;
else
material->mapping[i].uvCoName = "";
}
material->mapping[i].mapping |= USEUV;
}
if(material->ras_mode & USE_LIGHT)
material->ras_mode &= ~USE_LIGHT;
if(tface->mode & TF_LIGHT)
material->ras_mode |= USE_LIGHT;
valid_index++;
}
else {
material->img[i] = 0;
material->texname[i] = "";
}
continue;
}
mttmp = getImageFromMaterial( mat, i );
if( mttmp ) {
if( mttmp->tex ) {
if( mttmp->tex->type == TEX_IMAGE ) {
material->mtexname[i] = mttmp->tex->id.name;
material->img[i] = mttmp->tex->ima;
if( material->img[i] ) {
material->texname[i] = material->img[i]->id.name;
material->flag[i] |= ( mttmp->tex->imaflag &TEX_MIPMAP )?MIPMAP:0;
// -----------------------
if( mttmp->tex->imaflag &TEX_USEALPHA ) {
material->flag[i] |= USEALPHA;
}
// -----------------------
else if( mttmp->tex->imaflag &TEX_CALCALPHA ) {
material->flag[i] |= CALCALPHA;
}
else if(mttmp->tex->flag &TEX_NEGALPHA) {
material->flag[i] |= USENEGALPHA;
}
material->color_blend[i] = mttmp->colfac;
material->flag[i] |= ( mttmp->mapto & MAP_ALPHA )?TEXALPHA:0;
material->flag[i] |= ( mttmp->texflag& MTEX_NEGATIVE )?TEXNEG:0;
if(!glslmat && (material->flag[i] & TEXALPHA))
texalpha = 1;
}
}
else if(mttmp->tex->type == TEX_ENVMAP) {
if( mttmp->tex->env->stype == ENV_LOAD ) {
material->mtexname[i] = mttmp->tex->id.name;
EnvMap *env = mttmp->tex->env;
env->ima = mttmp->tex->ima;
material->cubemap[i] = env;
if (material->cubemap[i])
{
if (!material->cubemap[i]->cube[0])
BL_Texture::SplitEnvMap(material->cubemap[i]);
material->texname[i]= material->cubemap[i]->ima->id.name;
material->mapping[i].mapping |= USEENV;
}
}
}
material->flag[i] |= (mat->ipo!=0)?HASIPO:0;
/// --------------------------------
// mapping methods
material->mapping[i].mapping |= ( mttmp->texco & TEXCO_REFL )?USEREFL:0;
if(mttmp->texco & TEXCO_OBJECT) {
material->mapping[i].mapping |= USEOBJ;
if(mttmp->object)
material->mapping[i].objconame = mttmp->object->id.name;
}
else if(mttmp->texco &TEXCO_REFL)
material->mapping[i].mapping |= USEREFL;
else if(mttmp->texco &(TEXCO_ORCO|TEXCO_GLOB))
material->mapping[i].mapping |= USEORCO;
else if(mttmp->texco &TEXCO_UV)
{
STR_String uvName = mttmp->uvname;
if (!uvName.IsEmpty())
material->mapping[i].uvCoName = mttmp->uvname;
else
material->mapping[i].uvCoName = "";
material->mapping[i].mapping |= USEUV;
}
else if(mttmp->texco &TEXCO_NORM)
material->mapping[i].mapping |= USENORM;
else if(mttmp->texco &TEXCO_TANGENT)
material->mapping[i].mapping |= USETANG;
else
material->mapping[i].mapping |= DISABLE;
material->mapping[i].scale[0] = mttmp->size[0];
material->mapping[i].scale[1] = mttmp->size[1];
material->mapping[i].scale[2] = mttmp->size[2];
material->mapping[i].offsets[0] = mttmp->ofs[0];
material->mapping[i].offsets[1] = mttmp->ofs[1];
material->mapping[i].offsets[2] = mttmp->ofs[2];
material->mapping[i].projplane[0] = mttmp->projx;
material->mapping[i].projplane[1] = mttmp->projy;
material->mapping[i].projplane[2] = mttmp->projz;
/// --------------------------------
switch( mttmp->blendtype ) {
case MTEX_BLEND:
material->blend_mode[i] = BLEND_MIX;
break;
case MTEX_MUL:
material->blend_mode[i] = BLEND_MUL;
break;
case MTEX_ADD:
material->blend_mode[i] = BLEND_ADD;
break;
case MTEX_SUB:
material->blend_mode[i] = BLEND_SUB;
break;
case MTEX_SCREEN:
material->blend_mode[i] = BLEND_SCR;
break;
}
valid_index++;
}
}
}
// above one tex the switches here
// are not used
switch(valid_index) {
case 0:
material->IdMode = DEFAULT_BLENDER;
break;
case 1:
material->IdMode = ONETEX;
break;
default:
material->IdMode = GREATERTHAN2;
break;
}
material->SetUsers(mat->id.us);
material->num_enabled = valid_index;
material->speccolor[0] = mat->specr;
material->speccolor[1] = mat->specg;
material->speccolor[2] = mat->specb;
material->hard = (float)mat->har/4.0f;
material->matcolor[0] = mat->r;
material->matcolor[1] = mat->g;
material->matcolor[2] = mat->b;
material->matcolor[3] = mat->alpha;
material->alpha = mat->alpha;
material->emit = mat->emit;
material->spec_f = mat->spec;
material->ref = mat->ref;
material->amb = mat->amb;
material->ras_mode |= (mat->mode & MA_WIRE)? WIRE: 0;
}
else {
int valid = 0;
// check for tface tex to fallback on
if( validface ){
// no light bugfix
if(tface->mode) material->ras_mode |= USE_LIGHT;
material->img[0] = (Image*)(tface->tpage);
// ------------------------
if(material->img[0]) {
material->texname[0] = material->img[0]->id.name;
material->mapping[0].mapping |= ( (material->img[0]->flag & IMA_REFLECT)!=0 )?USEREFL:0;
material->flag[0] |= ( tface->transp &TF_ALPHA )?USEALPHA:0;
material->flag[0] |= ( tface->transp &TF_ADD )?CALCALPHA:0;
valid++;
}
}
material->SetUsers(-1);
material->num_enabled = valid;
material->IdMode = TEXFACE;
material->speccolor[0] = 1.f;
material->speccolor[1] = 1.f;
material->speccolor[2] = 1.f;
material->hard = 35.f;
material->matcolor[0] = 0.5f;
material->matcolor[1] = 0.5f;
material->matcolor[2] = 0.5f;
material->spec_f = 0.5f;
material->ref = 0.8f;
}
MT_Point2 uv[4];
MT_Point2 uv2[4];
const char *uvName = "", *uv2Name = "";
uv[0]= uv[1]= uv[2]= uv[3]= MT_Point2(0.0f, 0.0f);
uv2[0]= uv2[1]= uv2[2]= uv2[3]= MT_Point2(0.0f, 0.0f);
if( validface ) {
material->ras_mode |= !(
(mface->flag & ME_HIDE) ||
(tface->mode & TF_INVISIBLE)
)?POLY_VIS:0;
material->transp = tface->transp;
material->tile = tface->tile;
material->mode = tface->mode;
uv[0] = MT_Point2(tface->uv[0]);
uv[1] = MT_Point2(tface->uv[1]);
uv[2] = MT_Point2(tface->uv[2]);
if (mface->v4)
uv[3] = MT_Point2(tface->uv[3]);
uvName = tfaceName;
}
else {
// nothing at all
material->ras_mode |= (POLY_VIS| (validmat?0:USE_LIGHT));
material->mode = default_face_mode;
material->transp = TF_SOLID;
material->tile = 0;
}
// with ztransp enabled, enforce alpha blending mode
if(validmat && (mat->mode & MA_ZTRA) && (material->transp == TF_SOLID))
material->transp = TF_ALPHA;
// always zsort alpha + add
if((material->transp == TF_ALPHA || material->transp == TF_ADD || texalpha) && (material->transp != TF_CLIP)) {
material->ras_mode |= ALPHA;
material->ras_mode |= (material->mode & TF_ALPHASORT)? ZSORT: 0;
}
// collider or not?
material->ras_mode |= (material->mode & TF_DYNAMIC)? COLLIDER: 0;
// these flags are irrelevant at this point, remove so they
// don't hurt material bucketing
material->mode &= ~(TF_DYNAMIC|TF_ALPHASORT|TF_TEX);
// get uv sets
if(validmat)
{
bool isFirstSet = true;
// only two sets implemented, but any of the eight
// sets can make up the two layers
for (int vind = 0; vind<material->num_enabled; vind++)
{
BL_Mapping &map = material->mapping[vind];
if (map.uvCoName.IsEmpty())
isFirstSet = false;
else
{
for (int lay=0; lay<MAX_MTFACE; lay++)
{
MTF_localLayer& layer = layers[lay];
if (layer.face == 0) break;
if (strcmp(map.uvCoName.ReadPtr(), layer.name)==0)
{
MT_Point2 uvSet[4];
uvSet[0] = MT_Point2(layer.face->uv[0]);
uvSet[1] = MT_Point2(layer.face->uv[1]);
uvSet[2] = MT_Point2(layer.face->uv[2]);
if (mface->v4)
uvSet[3] = MT_Point2(layer.face->uv[3]);
else
uvSet[3] = MT_Point2(0.0f, 0.0f);
if (isFirstSet)
{
uv[0] = uvSet[0]; uv[1] = uvSet[1];
uv[2] = uvSet[2]; uv[3] = uvSet[3];
isFirstSet = false;
uvName = layer.name;
}
else if(strcmp(layer.name, uvName) != 0)
{
uv2[0] = uvSet[0]; uv2[1] = uvSet[1];
uv2[2] = uvSet[2]; uv2[3] = uvSet[3];
map.mapping |= USECUSTOMUV;
uv2Name = layer.name;
}
}
}
}
}
}
unsigned int rgb[4];
GetRGB(type,mface,mmcol,mat,rgb[0],rgb[1],rgb[2], rgb[3]);
// swap the material color, so MCol on TF_BMFONT works
if (validmat && type==1 && (tface && tface->mode & TF_BMFONT))
{
rgb[0] = KX_rgbaint2uint_new(rgb[0]);
rgb[1] = KX_rgbaint2uint_new(rgb[1]);
rgb[2] = KX_rgbaint2uint_new(rgb[2]);
rgb[3] = KX_rgbaint2uint_new(rgb[3]);
}
material->SetConversionRGB(rgb);
material->SetConversionUV(uvName, uv);
material->SetConversionUV2(uv2Name, uv2);
if(validmat)
material->matname =(mat->id.name);
material->tface = tface;
material->material = mat;
return material;
}
RAS_MeshObject* BL_ConvertMesh(Mesh* mesh, Object* blenderobj, RAS_IRenderTools* rendertools, KX_Scene* scene, KX_BlenderSceneConverter *converter)
{
RAS_MeshObject *meshobj;
bool skinMesh = false;
int lightlayer = blenderobj->lay;
// Get DerivedMesh data
DerivedMesh *dm = CDDM_from_mesh(mesh, blenderobj);
MVert *mvert = dm->getVertArray(dm);
int totvert = dm->getNumVerts(dm);
MFace *mface = dm->getFaceArray(dm);
MTFace *tface = static_cast<MTFace*>(dm->getFaceDataArray(dm, CD_MTFACE));
MCol *mcol = static_cast<MCol*>(dm->getFaceDataArray(dm, CD_MCOL));
float (*tangent)[3] = NULL;
int totface = dm->getNumFaces(dm);
const char *tfaceName = "";
if(tface) {
DM_add_tangent_layer(dm);
tangent = (float(*)[3])dm->getFaceDataArray(dm, CD_TANGENT);
}
// Determine if we need to make a skinned mesh
if (mesh->dvert || mesh->key || ((blenderobj->gameflag & OB_SOFT_BODY) != 0))
{
meshobj = new BL_SkinMeshObject(mesh, lightlayer);
skinMesh = true;
}
else
meshobj = new RAS_MeshObject(mesh, lightlayer);
// Extract avaiable layers
MTF_localLayer *layers = new MTF_localLayer[MAX_MTFACE];
for (int lay=0; lay<MAX_MTFACE; lay++) {
layers[lay].face = 0;
layers[lay].name = "";
}
int validLayers = 0;
for (int i=0; i<dm->faceData.totlayer; i++)
{
if (dm->faceData.layers[i].type == CD_MTFACE)
{
assert(validLayers <= 8);
layers[validLayers].face = (MTFace*)(dm->faceData.layers[i].data);
layers[validLayers].name = dm->faceData.layers[i].name;
if(tface == layers[validLayers].face)
tfaceName = layers[validLayers].name;
validLayers++;
}
}
meshobj->SetName(mesh->id.name);
meshobj->m_sharedvertex_map.resize(totvert);
for (int f=0;f<totface;f++,mface++)
{
Material* ma = 0;
bool collider = true;
MT_Point2 uv0(0.0,0.0),uv1(0.0,0.0),uv2(0.0,0.0),uv3(0.0,0.0);
MT_Point2 uv20(0.0,0.0),uv21(0.0,0.0),uv22(0.0,0.0),uv23(0.0,0.0);
unsigned int rgb0,rgb1,rgb2,rgb3 = 0;
MT_Point3 pt0, pt1, pt2, pt3;
MT_Vector3 no0(0,0,0), no1(0,0,0), no2(0,0,0), no3(0,0,0);
MT_Vector4 tan0(0,0,0,0), tan1(0,0,0,0), tan2(0,0,0,0), tan3(0,0,0,0);
/* get coordinates, normals and tangents */
pt0 = MT_Point3(mvert[mface->v1].co);
pt1 = MT_Point3(mvert[mface->v2].co);
pt2 = MT_Point3(mvert[mface->v3].co);
pt3 = (mface->v4)? MT_Point3(mvert[mface->v4].co): MT_Point3(0.0, 0.0, 0.0);
if(mface->flag & ME_SMOOTH) {
float n0[3], n1[3], n2[3], n3[3];
NormalShortToFloat(n0, mvert[mface->v1].no);
NormalShortToFloat(n1, mvert[mface->v2].no);
NormalShortToFloat(n2, mvert[mface->v3].no);
no0 = n0;
no1 = n1;
no2 = n2;
if(mface->v4) {
NormalShortToFloat(n3, mvert[mface->v4].no);
no3 = n3;
}
}
else {
float fno[3];
if(mface->v4)
CalcNormFloat4(mvert[mface->v1].co, mvert[mface->v2].co,
mvert[mface->v3].co, mvert[mface->v4].co, fno);
else
CalcNormFloat(mvert[mface->v1].co, mvert[mface->v2].co,
mvert[mface->v3].co, fno);
no0 = no1 = no2 = no3 = MT_Vector3(fno);
}
if(tangent) {
tan0 = tangent[f*4 + 0];
tan1 = tangent[f*4 + 1];
tan2 = tangent[f*4 + 2];
if (mface->v4)
tan3 = tangent[f*4 + 3];
}
/* get material */
ma = give_current_material(blenderobj, mface->mat_nr+1);
{
bool visible = true;
RAS_IPolyMaterial* polymat = NULL;
BL_Material *bl_mat = NULL;
if(converter->GetMaterials()) {
/* do Blender Multitexture and Blender GLSL materials */
unsigned int rgb[4];
MT_Point2 uv[4];
/* first is the BL_Material */
bl_mat = ConvertMaterial(ma, tface, tfaceName, mface, mcol,
lightlayer, blenderobj, layers, converter->GetGLSLMaterials());
bl_mat->material_index = (int)mface->mat_nr;
visible = ((bl_mat->ras_mode & POLY_VIS)!=0);
collider = ((bl_mat->ras_mode & COLLIDER)!=0);
/* vertex colors and uv's were stored in bl_mat temporarily */
bl_mat->GetConversionRGB(rgb);
rgb0 = rgb[0]; rgb1 = rgb[1];
rgb2 = rgb[2]; rgb3 = rgb[3];
bl_mat->GetConversionUV(uv);
uv0 = uv[0]; uv1 = uv[1];
uv2 = uv[2]; uv3 = uv[3];
bl_mat->GetConversionUV2(uv);
uv20 = uv[0]; uv21 = uv[1];
uv22 = uv[2]; uv23 = uv[3];
/* then the KX_BlenderMaterial */
polymat = new KX_BlenderMaterial(scene, bl_mat, skinMesh, lightlayer);
}
else {
/* do Texture Face materials */
Image* bima = (tface)? (Image*)tface->tpage: NULL;
STR_String imastr = (tface)? (bima? (bima)->id.name : "" ) : "";
char transp=0;
short mode=0, tile=0;
int tilexrep=4,tileyrep = 4;
if (bima) {
tilexrep = bima->xrep;
tileyrep = bima->yrep;
}
/* get tface properties if available */
if(tface) {
/* TF_DYNAMIC means the polygon is a collision face */
collider = ((tface->mode & TF_DYNAMIC) != 0);
transp = tface->transp;
tile = tface->tile;
mode = tface->mode;
visible = !((mface->flag & ME_HIDE)||(tface->mode & TF_INVISIBLE));
uv0 = MT_Point2(tface->uv[0]);
uv1 = MT_Point2(tface->uv[1]);
uv2 = MT_Point2(tface->uv[2]);
if (mface->v4)
uv3 = MT_Point2(tface->uv[3]);
}
else {
/* no texfaces, set COLLSION true and everything else FALSE */
mode = default_face_mode;
transp = TF_SOLID;
tile = 0;
}
/* get vertex colors */
if (mcol) {
/* we have vertex colors */
rgb0 = KX_Mcol2uint_new(mcol[0]);
rgb1 = KX_Mcol2uint_new(mcol[1]);
rgb2 = KX_Mcol2uint_new(mcol[2]);
if (mface->v4)
rgb3 = KX_Mcol2uint_new(mcol[3]);
}
else {
/* no vertex colors, take from material, otherwise white */
unsigned int color = 0xFFFFFFFFL;
if (ma)
{
union
{
unsigned char cp[4];
unsigned int integer;
} col_converter;
col_converter.cp[3] = (unsigned char) (ma->r*255.0);
col_converter.cp[2] = (unsigned char) (ma->g*255.0);
col_converter.cp[1] = (unsigned char) (ma->b*255.0);
col_converter.cp[0] = (unsigned char) (ma->alpha*255.0);
color = col_converter.integer;
}
rgb0 = KX_rgbaint2uint_new(color);
rgb1 = KX_rgbaint2uint_new(color);
rgb2 = KX_rgbaint2uint_new(color);
if (mface->v4)
rgb3 = KX_rgbaint2uint_new(color);
}
// only zsort alpha + add
bool alpha = (transp == TF_ALPHA || transp == TF_ADD);
bool zsort = (mode & TF_ALPHASORT)? alpha: 0;
polymat = new KX_PolygonMaterial(imastr, ma,
tile, tilexrep, tileyrep,
mode, transp, alpha, zsort, lightlayer, tface, (unsigned int*)mcol);
if (ma) {
polymat->m_specular = MT_Vector3(ma->specr, ma->specg, ma->specb)*ma->spec;
polymat->m_shininess = (float)ma->har/4.0; // 0 < ma->har <= 512
polymat->m_diffuse = MT_Vector3(ma->r, ma->g, ma->b)*(ma->emit + ma->ref);
}
else {
polymat->m_specular = MT_Vector3(0.0f,0.0f,0.0f);
polymat->m_shininess = 35.0;
}
}
/* mark face as flat, so vertices are split */
bool flat = (mface->flag & ME_SMOOTH) == 0;
// see if a bucket was reused or a new one was created
// this way only one KX_BlenderMaterial object has to exist per bucket
bool bucketCreated;
RAS_MaterialBucket* bucket = scene->FindBucket(polymat, bucketCreated);
if (bucketCreated) {
// this is needed to free up memory afterwards
converter->RegisterPolyMaterial(polymat);
if(converter->GetMaterials()) {
converter->RegisterBlenderMaterial(bl_mat);
}
} else {
// delete the material objects since they are no longer needed
// from now on, use the polygon material from the material bucket
delete polymat;
if(converter->GetMaterials()) {
delete bl_mat;
}
polymat = bucket->GetPolyMaterial();
}
int nverts = (mface->v4)? 4: 3;
RAS_Polygon *poly = meshobj->AddPolygon(bucket, nverts);
poly->SetVisible(visible);
poly->SetCollider(collider);
//poly->SetEdgeCode(mface->edcode);
meshobj->AddVertex(poly,0,pt0,uv0,uv20,tan0,rgb0,no0,flat,mface->v1);
meshobj->AddVertex(poly,1,pt1,uv1,uv21,tan1,rgb1,no1,flat,mface->v2);
meshobj->AddVertex(poly,2,pt2,uv2,uv22,tan2,rgb2,no2,flat,mface->v3);
if (nverts==4)
meshobj->AddVertex(poly,3,pt3,uv3,uv23,tan3,rgb3,no3,flat,mface->v4);
}
if (tface)
tface++;
if (mcol)
mcol+=4;
for (int lay=0; lay<MAX_MTFACE; lay++)
{
MTF_localLayer &layer = layers[lay];
if (layer.face == 0) break;
layer.face++;
}
}
meshobj->m_sharedvertex_map.clear();
// pre calculate texture generation
for(list<RAS_MeshMaterial>::iterator mit = meshobj->GetFirstMaterial();
mit != meshobj->GetLastMaterial(); ++ mit) {
mit->m_bucket->GetPolyMaterial()->OnConstruction();
}
if (layers)
delete []layers;
dm->release(dm);
return meshobj;
}
static PHY_MaterialProps *CreateMaterialFromBlenderObject(struct Object* blenderobject,
KX_Scene *kxscene)
{
PHY_MaterialProps *materialProps = new PHY_MaterialProps;
MT_assert(materialProps && "Create physics material properties failed");
Material* blendermat = give_current_material(blenderobject, 0);
if (blendermat)
{
MT_assert(0.0f <= blendermat->reflect && blendermat->reflect <= 1.0f);
materialProps->m_restitution = blendermat->reflect;
materialProps->m_friction = blendermat->friction;
materialProps->m_fh_spring = blendermat->fh;
materialProps->m_fh_damping = blendermat->xyfrict;
materialProps->m_fh_distance = blendermat->fhdist;
materialProps->m_fh_normal = (blendermat->dynamode & MA_FH_NOR) != 0;
}
else {
//give some defaults
materialProps->m_restitution = 0.f;
materialProps->m_friction = 0.5;
materialProps->m_fh_spring = 0.f;
materialProps->m_fh_damping = 0.f;
materialProps->m_fh_distance = 0.f;
materialProps->m_fh_normal = false;
}
return materialProps;
}
static PHY_ShapeProps *CreateShapePropsFromBlenderObject(struct Object* blenderobject,
KX_Scene *kxscene)
{
PHY_ShapeProps *shapeProps = new PHY_ShapeProps;
MT_assert(shapeProps);
shapeProps->m_mass = blenderobject->mass;
// This needs to be fixed in blender. For now, we use:
// in Blender, inertia stands for the size value which is equivalent to
// the sphere radius
shapeProps->m_inertia = blenderobject->formfactor;
MT_assert(0.0f <= blenderobject->damping && blenderobject->damping <= 1.0f);
MT_assert(0.0f <= blenderobject->rdamping && blenderobject->rdamping <= 1.0f);
shapeProps->m_lin_drag = 1.0 - blenderobject->damping;
shapeProps->m_ang_drag = 1.0 - blenderobject->rdamping;
shapeProps->m_friction_scaling[0] = blenderobject->anisotropicFriction[0];
shapeProps->m_friction_scaling[1] = blenderobject->anisotropicFriction[1];
shapeProps->m_friction_scaling[2] = blenderobject->anisotropicFriction[2];
shapeProps->m_do_anisotropic = ((blenderobject->gameflag & OB_ANISOTROPIC_FRICTION) != 0);
shapeProps->m_do_fh = (blenderobject->gameflag & OB_DO_FH) != 0;
shapeProps->m_do_rot_fh = (blenderobject->gameflag & OB_ROT_FH) != 0;
return shapeProps;
}
//////////////////////////////////////////////////////////
static float my_boundbox_mesh(Mesh *me, float *loc, float *size)
{
MVert *mvert;
BoundBox *bb;
MT_Point3 min, max;
float mloc[3], msize[3];
int a;
if(me->bb==0) me->bb= (struct BoundBox *)MEM_callocN(sizeof(BoundBox), "boundbox");
bb= me->bb;
INIT_MINMAX(min, max);
if (!loc) loc= mloc;
if (!size) size= msize;
mvert= me->mvert;
for(a=0; a<me->totvert; a++, mvert++) {
DO_MINMAX(mvert->co, min, max);
}
if(me->totvert) {
loc[0]= (min[0]+max[0])/2.0;
loc[1]= (min[1]+max[1])/2.0;
loc[2]= (min[2]+max[2])/2.0;
size[0]= (max[0]-min[0])/2.0;
size[1]= (max[1]-min[1])/2.0;
size[2]= (max[2]-min[2])/2.0;
}
else {
loc[0]= loc[1]= loc[2]= 0.0;
size[0]= size[1]= size[2]= 0.0;
}
bb->vec[0][0]=bb->vec[1][0]=bb->vec[2][0]=bb->vec[3][0]= loc[0]-size[0];
bb->vec[4][0]=bb->vec[5][0]=bb->vec[6][0]=bb->vec[7][0]= loc[0]+size[0];
bb->vec[0][1]=bb->vec[1][1]=bb->vec[4][1]=bb->vec[5][1]= loc[1]-size[1];
bb->vec[2][1]=bb->vec[3][1]=bb->vec[6][1]=bb->vec[7][1]= loc[1]+size[1];
bb->vec[0][2]=bb->vec[3][2]=bb->vec[4][2]=bb->vec[7][2]= loc[2]-size[2];
bb->vec[1][2]=bb->vec[2][2]=bb->vec[5][2]=bb->vec[6][2]= loc[2]+size[2];
float radius = 0;
for (a=0, mvert = me->mvert; a < me->totvert; a++, mvert++)
{
float vert_radius = MT_Vector3(mvert->co).length2();
if (vert_radius > radius)
radius = vert_radius;
}
return sqrt(radius);
}
static void my_tex_space_mesh(Mesh *me)
{
KeyBlock *kb;
float *fp, loc[3], size[3], min[3], max[3];
int a;
my_boundbox_mesh(me, loc, size);
if(me->texflag & AUTOSPACE) {
if(me->key) {
kb= me->key->refkey;
if (kb) {
INIT_MINMAX(min, max);
fp= (float *)kb->data;
for(a=0; a<kb->totelem; a++, fp+=3) {
DO_MINMAX(fp, min, max);
}
if(kb->totelem) {
loc[0]= (min[0]+max[0])/2.0; loc[1]= (min[1]+max[1])/2.0; loc[2]= (min[2]+max[2])/2.0;
size[0]= (max[0]-min[0])/2.0; size[1]= (max[1]-min[1])/2.0; size[2]= (max[2]-min[2])/2.0;
}
else {
loc[0]= loc[1]= loc[2]= 0.0;
size[0]= size[1]= size[2]= 0.0;
}
}
}
VECCOPY(me->loc, loc);
VECCOPY(me->size, size);
me->rot[0]= me->rot[1]= me->rot[2]= 0.0;
if(me->size[0]==0.0) me->size[0]= 1.0;
else if(me->size[0]>0.0 && me->size[0]<0.00001) me->size[0]= 0.00001;
else if(me->size[0]<0.0 && me->size[0]> -0.00001) me->size[0]= -0.00001;
if(me->size[1]==0.0) me->size[1]= 1.0;
else if(me->size[1]>0.0 && me->size[1]<0.00001) me->size[1]= 0.00001;
else if(me->size[1]<0.0 && me->size[1]> -0.00001) me->size[1]= -0.00001;
if(me->size[2]==0.0) me->size[2]= 1.0;
else if(me->size[2]>0.0 && me->size[2]<0.00001) me->size[2]= 0.00001;
else if(me->size[2]<0.0 && me->size[2]> -0.00001) me->size[2]= -0.00001;
}
}
static void my_get_local_bounds(Object *ob, float *center, float *size)
{
BoundBox *bb= NULL;
/* uses boundbox, function used by Ketsji */
switch (ob->type)
{
case OB_MESH:
bb= ( (Mesh *)ob->data )->bb;
if(bb==0)
{
my_tex_space_mesh((struct Mesh *)ob->data);
bb= ( (Mesh *)ob->data )->bb;
}
break;
case OB_CURVE:
case OB_SURF:
case OB_FONT:
center[0]= center[1]= center[2]= 0.0;
size[0] = size[1]=size[2]=0.0;
break;
case OB_MBALL:
bb= ob->bb;
break;
}
if(bb==NULL)
{
center[0]= center[1]= center[2]= 0.0;
size[0] = size[1]=size[2]=1.0;
}
else
{
size[0]= 0.5*fabs(bb->vec[0][0] - bb->vec[4][0]);
size[1]= 0.5*fabs(bb->vec[0][1] - bb->vec[2][1]);
size[2]= 0.5*fabs(bb->vec[0][2] - bb->vec[1][2]);
center[0]= 0.5*(bb->vec[0][0] + bb->vec[4][0]);
center[1]= 0.5*(bb->vec[0][1] + bb->vec[2][1]);
center[2]= 0.5*(bb->vec[0][2] + bb->vec[1][2]);
}
}
//////////////////////////////////////////////////////
void BL_CreatePhysicsObjectNew(KX_GameObject* gameobj,
struct Object* blenderobject,
RAS_MeshObject* meshobj,
KX_Scene* kxscene,
int activeLayerBitInfo,
e_PhysicsEngine physics_engine,
KX_BlenderSceneConverter *converter,
bool processCompoundChildren
)
{
//SYS_SystemHandle syshandle = SYS_GetSystem(); /*unused*/
//int userigidbody = SYS_GetCommandLineInt(syshandle,"norigidbody",0);
//bool bRigidBody = (userigidbody == 0);
// object has physics representation?
if (!(blenderobject->gameflag & OB_COLLISION))
return;
// get Root Parent of blenderobject
struct Object* parent= blenderobject->parent;
while(parent && parent->parent) {
parent= parent->parent;
}
bool isCompoundChild = false;
if (parent && (parent->gameflag & OB_DYNAMIC)) {
if ((parent->gameflag & OB_CHILD) != 0)
{
isCompoundChild = true;
}
}
if (processCompoundChildren != isCompoundChild)
return;
PHY_ShapeProps* shapeprops =
CreateShapePropsFromBlenderObject(blenderobject,
kxscene);
PHY_MaterialProps* smmaterial =
CreateMaterialFromBlenderObject(blenderobject, kxscene);
KX_ObjectProperties objprop;
objprop.m_isCompoundChild = isCompoundChild;
objprop.m_hasCompoundChildren = (blenderobject->gameflag & OB_CHILD) != 0;
objprop.m_margin = blenderobject->margin;
// ACTOR is now a separate feature
objprop.m_isactor = (blenderobject->gameflag & OB_ACTOR)!=0;
objprop.m_dyna = (blenderobject->gameflag & OB_DYNAMIC) != 0;
objprop.m_softbody = (blenderobject->gameflag & OB_SOFT_BODY) != 0;
objprop.m_angular_rigidbody = (blenderobject->gameflag & OB_RIGID_BODY) != 0;
///for game soft bodies
if (blenderobject->soft)
{
objprop.m_linearStiffness = blenderobject->soft->inspring;
objprop.m_angularStiffness = 1.f;//blenderobject->angularStiffness;
objprop.m_volumePreservation = 1.f;//blenderobject->volumePreservation;
objprop.m_gamesoftFlag = blenderobject->softflag;//blenderobject->gamesoftFlag;
} else
{
objprop.m_linearStiffness = 0.5;//blenderobject->linearStiffness;
objprop.m_angularStiffness = 1.f;//blenderobject->angularStiffness;
objprop.m_volumePreservation = 1.f;//blenderobject->volumePreservation;
objprop.m_gamesoftFlag = 1;//blenderobject->gamesoftFlag;
}
objprop.m_ghost = (blenderobject->gameflag & OB_GHOST) != 0;
objprop.m_disableSleeping = (blenderobject->gameflag & OB_COLLISION_RESPONSE) != 0;//abuse the OB_COLLISION_RESPONSE flag
//mmm, for now, taks this for the size of the dynamicobject
// Blender uses inertia for radius of dynamic object
objprop.m_radius = blenderobject->inertia;
objprop.m_in_active_layer = (blenderobject->lay & activeLayerBitInfo) != 0;
objprop.m_dynamic_parent=NULL;
objprop.m_isdeformable = ((blenderobject->gameflag2 & 2)) != 0;
objprop.m_boundclass = objprop.m_dyna?KX_BOUNDSPHERE:KX_BOUNDMESH;
KX_BoxBounds bb;
my_get_local_bounds(blenderobject,objprop.m_boundobject.box.m_center,bb.m_extends);
if (blenderobject->gameflag & OB_BOUNDS)
{
switch (blenderobject->boundtype)
{
case OB_BOUND_BOX:
objprop.m_boundclass = KX_BOUNDBOX;
//mmm, has to be divided by 2 to be proper extends
objprop.m_boundobject.box.m_extends[0]=2.f*bb.m_extends[0];
objprop.m_boundobject.box.m_extends[1]=2.f*bb.m_extends[1];
objprop.m_boundobject.box.m_extends[2]=2.f*bb.m_extends[2];
break;
case OB_BOUND_POLYT:
if (blenderobject->type == OB_MESH)
{
objprop.m_boundclass = KX_BOUNDPOLYTOPE;
break;
}
// Object is not a mesh... fall through OB_BOUND_POLYH to
// OB_BOUND_SPHERE
case OB_BOUND_POLYH:
if (blenderobject->type == OB_MESH)
{
objprop.m_boundclass = KX_BOUNDMESH;
break;
}
// Object is not a mesh... can't use polyheder.
// Fall through and become a sphere.
case OB_BOUND_SPHERE:
{
objprop.m_boundclass = KX_BOUNDSPHERE;
objprop.m_boundobject.c.m_radius = MT_max(bb.m_extends[0], MT_max(bb.m_extends[1], bb.m_extends[2]));
break;
}
case OB_BOUND_CYLINDER:
{
objprop.m_boundclass = KX_BOUNDCYLINDER;
objprop.m_boundobject.c.m_radius = MT_max(bb.m_extends[0], bb.m_extends[1]);
objprop.m_boundobject.c.m_height = 2.f*bb.m_extends[2];
break;
}
case OB_BOUND_CONE:
{
objprop.m_boundclass = KX_BOUNDCONE;
objprop.m_boundobject.c.m_radius = MT_max(bb.m_extends[0], bb.m_extends[1]);
objprop.m_boundobject.c.m_height = 2.f*bb.m_extends[2];
break;
}
}
}
if (parent && (parent->gameflag & OB_DYNAMIC)) {
KX_GameObject *parentgameobject = converter->FindGameObject(parent);
objprop.m_dynamic_parent = parentgameobject;
//cannot be dynamic:
objprop.m_dyna = false;
shapeprops->m_mass = 0.f;
}
objprop.m_concave = (blenderobject->boundtype & 4) != 0;
switch (physics_engine)
{
#ifdef USE_BULLET
case UseBullet:
KX_ConvertBulletObject(gameobj, meshobj, kxscene, shapeprops, smmaterial, &objprop);
break;
#endif
#ifdef USE_SUMO_SOLID
case UseSumo:
KX_ConvertSumoObject(gameobj, meshobj, kxscene, shapeprops, smmaterial, &objprop);
break;
#endif
#ifdef USE_ODE
case UseODE:
KX_ConvertODEEngineObject(gameobj, meshobj, kxscene, shapeprops, smmaterial, &objprop);
break;
#endif //USE_ODE
case UseDynamo:
//KX_ConvertDynamoObject(gameobj,meshobj,kxscene,shapeprops, smmaterial, &objprop);
break;
case UseNone:
default:
break;
}
delete shapeprops;
delete smmaterial;
}
static KX_LightObject *gamelight_from_blamp(Object *ob, Lamp *la, unsigned int layerflag, KX_Scene *kxscene, RAS_IRenderTools *rendertools, KX_BlenderSceneConverter *converter) {
RAS_LightObject lightobj;
KX_LightObject *gamelight;
lightobj.m_att1 = la->att1;
lightobj.m_att2 = (la->mode & LA_QUAD)?la->att2:0.0;
lightobj.m_red = la->r;
lightobj.m_green = la->g;
lightobj.m_blue = la->b;
lightobj.m_distance = la->dist;
lightobj.m_energy = la->energy;
lightobj.m_layer = layerflag;
lightobj.m_spotblend = la->spotblend;
lightobj.m_spotsize = la->spotsize;
lightobj.m_nodiffuse = (la->mode & LA_NO_DIFF) != 0;
lightobj.m_nospecular = (la->mode & LA_NO_SPEC) != 0;
if (la->mode & LA_NEG)
{
lightobj.m_red = -lightobj.m_red;
lightobj.m_green = -lightobj.m_green;
lightobj.m_blue = -lightobj.m_blue;
}
if (la->type==LA_SUN) {
lightobj.m_type = RAS_LightObject::LIGHT_SUN;
} else if (la->type==LA_SPOT) {
lightobj.m_type = RAS_LightObject::LIGHT_SPOT;
} else {
lightobj.m_type = RAS_LightObject::LIGHT_NORMAL;
}
gamelight = new KX_LightObject(kxscene, KX_Scene::m_callbacks, rendertools,
lightobj, converter->GetGLSLMaterials());
BL_ConvertLampIpos(la, gamelight, converter);
return gamelight;
}
static KX_Camera *gamecamera_from_bcamera(Object *ob, KX_Scene *kxscene, KX_BlenderSceneConverter *converter) {
Camera* ca = static_cast<Camera*>(ob->data);
RAS_CameraData camdata(ca->lens, ca->clipsta, ca->clipend, ca->type == CAM_PERSP, dof_camera(ob));
KX_Camera *gamecamera;
gamecamera= new KX_Camera(kxscene, KX_Scene::m_callbacks, camdata);
gamecamera->SetName(ca->id.name + 2);
BL_ConvertCameraIpos(ca, gamecamera, converter);
return gamecamera;
}
static KX_GameObject *gameobject_from_blenderobject(
Object *ob,
KX_Scene *kxscene,
RAS_IRenderTools *rendertools,
KX_BlenderSceneConverter *converter,
Scene *blenderscene)
{
KX_GameObject *gameobj = NULL;
switch(ob->type)
{
case OB_LAMP:
{
KX_LightObject* gamelight= gamelight_from_blamp(ob, static_cast<Lamp*>(ob->data), ob->lay, kxscene, rendertools, converter);
gameobj = gamelight;
gamelight->AddRef();
kxscene->GetLightList()->Add(gamelight);
break;
}
case OB_CAMERA:
{
KX_Camera* gamecamera = gamecamera_from_bcamera(ob, kxscene, converter);
gameobj = gamecamera;
//don't add a reference: the camera list in kxscene->m_cameras is not released at the end
//gamecamera->AddRef();
kxscene->AddCamera(gamecamera);
break;
}
case OB_MESH:
{
Mesh* mesh = static_cast<Mesh*>(ob->data);
RAS_MeshObject* meshobj = converter->FindGameMesh(mesh, ob->lay);
float center[3], extents[3];
float radius = my_boundbox_mesh((Mesh*) ob->data, center, extents);
if (!meshobj) {
meshobj = BL_ConvertMesh(mesh,ob,rendertools,kxscene,converter);
converter->RegisterGameMesh(meshobj, mesh);
}
// needed for python scripting
kxscene->GetLogicManager()->RegisterMeshName(meshobj->GetName(),meshobj);
gameobj = new BL_DeformableGameObject(ob,kxscene,KX_Scene::m_callbacks);
// set transformation
gameobj->AddMesh(meshobj);
// for all objects: check whether they want to
// respond to updates
bool ignoreActivityCulling =
((ob->gameflag2 & OB_NEVER_DO_ACTIVITY_CULLING)!=0);
gameobj->SetIgnoreActivityCulling(ignoreActivityCulling);
// two options exists for deform: shape keys and armature
// only support relative shape key
bool bHasShapeKey = mesh->key != NULL && mesh->key->type==KEY_RELATIVE;
bool bHasDvert = mesh->dvert != NULL && ob->defbase.first;
bool bHasArmature = (ob->parent && ob->parent->type == OB_ARMATURE && ob->partype==PARSKEL && bHasDvert);
if (bHasShapeKey) {
// not that we can have shape keys without dvert!
BL_ShapeDeformer *dcont = new BL_ShapeDeformer((BL_DeformableGameObject*)gameobj,
ob, (BL_SkinMeshObject*)meshobj);
((BL_DeformableGameObject*)gameobj)->SetDeformer(dcont);
if (bHasArmature)
dcont->LoadShapeDrivers(ob->parent);
} else if (bHasArmature) {
BL_SkinDeformer *dcont = new BL_SkinDeformer((BL_DeformableGameObject*)gameobj,
ob, (BL_SkinMeshObject*)meshobj);
((BL_DeformableGameObject*)gameobj)->SetDeformer(dcont);
} else if (bHasDvert) {
// this case correspond to a mesh that can potentially deform but not with the
// object to which it is attached for the moment. A skin mesh was created in
// BL_ConvertMesh() so must create a deformer too!
BL_MeshDeformer *dcont = new BL_MeshDeformer((BL_DeformableGameObject*)gameobj,
ob, (BL_SkinMeshObject*)meshobj);
((BL_DeformableGameObject*)gameobj)->SetDeformer(dcont);
}
MT_Point3 min = MT_Point3(center) - MT_Vector3(extents);
MT_Point3 max = MT_Point3(center) + MT_Vector3(extents);
SG_BBox bbox = SG_BBox(min, max);
gameobj->GetSGNode()->SetBBox(bbox);
gameobj->GetSGNode()->SetRadius(radius);
break;
}
case OB_ARMATURE:
{
gameobj = new BL_ArmatureObject(
kxscene,
KX_Scene::m_callbacks,
ob // handle
);
/* Get the current pose from the armature object and apply it as the rest pose */
break;
}
case OB_EMPTY:
{
gameobj = new KX_EmptyObject(kxscene,KX_Scene::m_callbacks);
// set transformation
break;
}
}
if (gameobj)
{
gameobj->SetPhysicsEnvironment(kxscene->GetPhysicsEnvironment());
gameobj->SetLayer(ob->lay);
gameobj->SetBlenderObject(ob);
/* set the visibility state based on the objects render option in the outliner */
if(ob->restrictflag & OB_RESTRICT_RENDER) gameobj->SetVisible(0, 0);
}
return gameobj;
}
struct parentChildLink {
struct Object* m_blenderchild;
SG_Node* m_gamechildnode;
};
#include "DNA_constraint_types.h"
#include "BIF_editconstraint.h"
bPoseChannel *get_active_posechannel2 (Object *ob)
{
bArmature *arm= (bArmature*)ob->data;
bPoseChannel *pchan;
/* find active */
for(pchan= (bPoseChannel *)ob->pose->chanbase.first; pchan; pchan= pchan->next) {
if(pchan->bone && (pchan->bone->flag & BONE_ACTIVE) && (pchan->bone->layer & arm->layer))
return pchan;
}
return NULL;
}
ListBase *get_active_constraints2(Object *ob)
{
if (!ob)
return NULL;
if (ob->flag & OB_POSEMODE) {
bPoseChannel *pchan;
pchan = get_active_posechannel2(ob);
if (pchan)
return &pchan->constraints;
}
else
return &ob->constraints;
return NULL;
}
void RBJconstraints(Object *ob)//not used
{
ListBase *conlist;
bConstraint *curcon;
conlist = get_active_constraints2(ob);
if (conlist) {
for (curcon = (bConstraint *)conlist->first; curcon; curcon=(bConstraint *)curcon->next) {
printf("%i\n",curcon->type);
}
}
}
#include "PHY_IPhysicsEnvironment.h"
#include "KX_IPhysicsController.h"
#include "PHY_DynamicTypes.h"
KX_IPhysicsController* getPhId(CListValue* sumolist,STR_String busc){//not used
for (int j=0;j<sumolist->GetCount();j++)
{
KX_GameObject* gameobje = (KX_GameObject*) sumolist->GetValue(j);
if (gameobje->GetName()==busc)
return gameobje->GetPhysicsController();
}
return 0;
}
KX_GameObject* getGameOb(STR_String busc,CListValue* sumolist){
for (int j=0;j<sumolist->GetCount();j++)
{
KX_GameObject* gameobje = (KX_GameObject*) sumolist->GetValue(j);
if (gameobje->GetName()==busc)
return gameobje;
}
return 0;
}
// convert blender objects into ketsji gameobjects
void BL_ConvertBlenderObjects(struct Main* maggie,
const STR_String& scenename,
KX_Scene* kxscene,
KX_KetsjiEngine* ketsjiEngine,
e_PhysicsEngine physics_engine,
PyObject* pythondictionary,
SCA_IInputDevice* keydev,
RAS_IRenderTools* rendertools,
RAS_ICanvas* canvas,
KX_BlenderSceneConverter* converter,
bool alwaysUseExpandFraming
)
{
Scene *blenderscene = converter->GetBlenderSceneForName(scenename);
// for SETLOOPER
Scene *sce;
Base *base;
// Get the frame settings of the canvas.
// Get the aspect ratio of the canvas as designed by the user.
RAS_FrameSettings::RAS_FrameType frame_type;
int aspect_width;
int aspect_height;
vector<MT_Vector3> inivel,iniang;
set<Group*> grouplist; // list of groups to be converted
set<Object*> allblobj; // all objects converted
set<Object*> groupobj; // objects from groups (never in active layer)
if (alwaysUseExpandFraming) {
frame_type = RAS_FrameSettings::e_frame_extend;
aspect_width = canvas->GetWidth();
aspect_height = canvas->GetHeight();
} else {
if (blenderscene->framing.type == SCE_GAMEFRAMING_BARS) {
frame_type = RAS_FrameSettings::e_frame_bars;
} else if (blenderscene->framing.type == SCE_GAMEFRAMING_EXTEND) {
frame_type = RAS_FrameSettings::e_frame_extend;
} else {
frame_type = RAS_FrameSettings::e_frame_scale;
}
aspect_width = blenderscene->r.xsch;
aspect_height = blenderscene->r.ysch;
}
RAS_FrameSettings frame_settings(
frame_type,
blenderscene->framing.col[0],
blenderscene->framing.col[1],
blenderscene->framing.col[2],
aspect_width,
aspect_height
);
kxscene->SetFramingType(frame_settings);
kxscene->SetGravity(MT_Vector3(0,0,(blenderscene->world != NULL) ? -blenderscene->world->gravity : -9.8));
/* set activity culling parameters */
if (blenderscene->world) {
kxscene->SetActivityCulling( (blenderscene->world->mode & WO_ACTIVITY_CULLING) != 0);
kxscene->SetActivityCullingRadius(blenderscene->world->activityBoxRadius);
} else {
kxscene->SetActivityCulling(false);
}
int activeLayerBitInfo = blenderscene->lay;
// templist to find Root Parents (object with no parents)
CListValue* templist = new CListValue();
CListValue* sumolist = new CListValue();
vector<parentChildLink> vec_parent_child;
CListValue* objectlist = kxscene->GetObjectList();
CListValue* inactivelist = kxscene->GetInactiveList();
CListValue* parentlist = kxscene->GetRootParentList();
SCA_LogicManager* logicmgr = kxscene->GetLogicManager();
SCA_TimeEventManager* timemgr = kxscene->GetTimeEventManager();
CListValue* logicbrick_conversionlist = new CListValue();
//SG_TreeFactory tf;
// Convert actions to actionmap
bAction *curAct;
for (curAct = (bAction*)maggie->action.first; curAct; curAct=(bAction*)curAct->id.next)
{
logicmgr->RegisterActionName(curAct->id.name, curAct);
}
SetDefaultFaceType(blenderscene);
// Let's support scene set.
// Beware of name conflict in linked data, it will not crash but will create confusion
// in Python scripting and in certain actuators (replace mesh). Linked scene *should* have
// no conflicting name for Object, Object data and Action.
for (SETLOOPER(blenderscene, base))
{
Object* blenderobject = base->object;
allblobj.insert(blenderobject);
KX_GameObject* gameobj = gameobject_from_blenderobject(
base->object,
kxscene,
rendertools,
converter,
blenderscene);
bool isInActiveLayer = (blenderobject->lay & activeLayerBitInfo) !=0;
bool addobj=true;
if (converter->addInitFromFrame)
if (!isInActiveLayer)
addobj=false;
if (gameobj&&addobj)
{
MT_Point3 posPrev;
MT_Matrix3x3 angor;
if (converter->addInitFromFrame) blenderscene->r.cfra=blenderscene->r.sfra;
MT_Point3 pos = MT_Point3(
blenderobject->loc[0]+blenderobject->dloc[0],
blenderobject->loc[1]+blenderobject->dloc[1],
blenderobject->loc[2]+blenderobject->dloc[2]
);
MT_Vector3 eulxyz = MT_Vector3(
blenderobject->rot[0],
blenderobject->rot[1],
blenderobject->rot[2]
);
MT_Vector3 scale = MT_Vector3(
blenderobject->size[0],
blenderobject->size[1],
blenderobject->size[2]
);
if (converter->addInitFromFrame){//rcruiz
float eulxyzPrev[3];
blenderscene->r.cfra=blenderscene->r.sfra-1;
update_for_newframe();
MT_Vector3 tmp=pos-MT_Point3(blenderobject->loc[0]+blenderobject->dloc[0],
blenderobject->loc[1]+blenderobject->dloc[1],
blenderobject->loc[2]+blenderobject->dloc[2]
);
eulxyzPrev[0]=blenderobject->rot[0];
eulxyzPrev[1]=blenderobject->rot[1];
eulxyzPrev[2]=blenderobject->rot[2];
double fps = (double) blenderscene->r.frs_sec/
(double) blenderscene->r.frs_sec_base;
tmp.scale(fps, fps, fps);
inivel.push_back(tmp);
tmp=eulxyz-eulxyzPrev;
tmp.scale(fps, fps, fps);
iniang.push_back(tmp);
blenderscene->r.cfra=blenderscene->r.sfra;
update_for_newframe();
}
gameobj->NodeSetLocalPosition(pos);
gameobj->NodeSetLocalOrientation(MT_Matrix3x3(eulxyz));
gameobj->NodeSetLocalScale(scale);
gameobj->NodeUpdateGS(0,true);
BL_ConvertIpos(blenderobject,gameobj,converter);
BL_ConvertMaterialIpos(blenderobject, gameobj, converter);
sumolist->Add(gameobj->AddRef());
BL_ConvertProperties(blenderobject,gameobj,timemgr,kxscene,isInActiveLayer);
gameobj->SetName(blenderobject->id.name);
// templist to find Root Parents (object with no parents)
templist->Add(gameobj->AddRef());
// update children/parent hierarchy
if ((blenderobject->parent != 0)&&(!converter->addInitFromFrame))
{
// blender has an additional 'parentinverse' offset in each object
SG_Node* parentinversenode = new SG_Node(NULL,NULL,SG_Callbacks());
// define a normal parent relationship for this node.
KX_NormalParentRelation * parent_relation = KX_NormalParentRelation::New();
parentinversenode->SetParentRelation(parent_relation);
parentChildLink pclink;
pclink.m_blenderchild = blenderobject;
pclink.m_gamechildnode = parentinversenode;
vec_parent_child.push_back(pclink);
float* fl = (float*) blenderobject->parentinv;
MT_Transform parinvtrans(fl);
parentinversenode->SetLocalPosition(parinvtrans.getOrigin());
// problem here: the parent inverse transform combines scaling and rotation
// in the basis but the scenegraph needs separate rotation and scaling.
// This is not important for OpenGL (it uses 4x4 matrix) but it is important
// for the physic engine that needs a separate scaling
//parentinversenode->SetLocalOrientation(parinvtrans.getBasis());
// Extract the rotation and the scaling from the basis
MT_Matrix3x3 ori(parinvtrans.getBasis());
MT_Vector3 x(ori.getColumn(0));
MT_Vector3 y(ori.getColumn(1));
MT_Vector3 z(ori.getColumn(2));
MT_Vector3 scale(x.length(), y.length(), z.length());
if (!MT_fuzzyZero(scale[0]))
x /= scale[0];
if (!MT_fuzzyZero(scale[1]))
y /= scale[1];
if (!MT_fuzzyZero(scale[2]))
z /= scale[2];
ori.setColumn(0, x);
ori.setColumn(1, y);
ori.setColumn(2, z);
parentinversenode->SetLocalOrientation(ori);
parentinversenode->SetLocalScale(scale);
parentinversenode->AddChild(gameobj->GetSGNode());
}
// needed for python scripting
logicmgr->RegisterGameObjectName(gameobj->GetName(),gameobj);
// needed for group duplication
logicmgr->RegisterGameObj(blenderobject, gameobj);
for (int i = 0; i < gameobj->GetMeshCount(); i++)
logicmgr->RegisterGameMeshName(gameobj->GetMesh(i)->GetName(), blenderobject);
converter->RegisterGameObject(gameobj, blenderobject);
// this was put in rapidly, needs to be looked at more closely
// only draw/use objects in active 'blender' layers
logicbrick_conversionlist->Add(gameobj->AddRef());
if (converter->addInitFromFrame){
posPrev=gameobj->NodeGetWorldPosition();
angor=gameobj->NodeGetWorldOrientation();
}
if (isInActiveLayer)
{
objectlist->Add(gameobj->AddRef());
//tf.Add(gameobj->GetSGNode());
gameobj->NodeUpdateGS(0,true);
gameobj->AddMeshUser();
}
else
{
//we must store this object otherwise it will be deleted
//at the end of this function if it is not a root object
inactivelist->Add(gameobj->AddRef());
}
if (gameobj->IsDupliGroup())
grouplist.insert(blenderobject->dup_group);
if (converter->addInitFromFrame){
gameobj->NodeSetLocalPosition(posPrev);
gameobj->NodeSetLocalOrientation(angor);
}
}
/* Note about memory leak issues:
When a CValue derived class is created, m_refcount is initialized to 1
so the class must be released after being used to make sure that it won't
hang in memory. If the object needs to be stored for a long time,
use AddRef() so that this Release() does not free the object.
Make sure that for any AddRef() there is a Release()!!!!
Do the same for any object derived from CValue, CExpression and NG_NetworkMessage
*/
if (gameobj)
gameobj->Release();
}
if (!grouplist.empty())
{
// now convert the group referenced by dupli group object
// keep track of all groups already converted
set<Group*> allgrouplist = grouplist;
set<Group*> tempglist;
// recurse
while (!grouplist.empty())
{
set<Group*>::iterator git;
tempglist.clear();
tempglist.swap(grouplist);
for (git=tempglist.begin(); git!=tempglist.end(); git++)
{
Group* group = *git;
GroupObject* go;
for(go=(GroupObject*)group->gobject.first; go; go=(GroupObject*)go->next)
{
Object* blenderobject = go->ob;
if (converter->FindGameObject(blenderobject) == NULL)
{
allblobj.insert(blenderobject);
groupobj.insert(blenderobject);
KX_GameObject* gameobj = gameobject_from_blenderobject(
blenderobject,
kxscene,
rendertools,
converter,
blenderscene);
// this code is copied from above except that
// object from groups are never in active layer
bool isInActiveLayer = false;
bool addobj=true;
if (converter->addInitFromFrame)
if (!isInActiveLayer)
addobj=false;
if (gameobj&&addobj)
{
MT_Point3 posPrev;
MT_Matrix3x3 angor;
if (converter->addInitFromFrame)
blenderscene->r.cfra=blenderscene->r.sfra;
MT_Point3 pos = MT_Point3(
blenderobject->loc[0]+blenderobject->dloc[0],
blenderobject->loc[1]+blenderobject->dloc[1],
blenderobject->loc[2]+blenderobject->dloc[2]
);
MT_Vector3 eulxyz = MT_Vector3(
blenderobject->rot[0],
blenderobject->rot[1],
blenderobject->rot[2]
);
MT_Vector3 scale = MT_Vector3(
blenderobject->size[0],
blenderobject->size[1],
blenderobject->size[2]
);
if (converter->addInitFromFrame){//rcruiz
float eulxyzPrev[3];
blenderscene->r.cfra=blenderscene->r.sfra-1;
update_for_newframe();
MT_Vector3 tmp=pos-MT_Point3(blenderobject->loc[0]+blenderobject->dloc[0],
blenderobject->loc[1]+blenderobject->dloc[1],
blenderobject->loc[2]+blenderobject->dloc[2]
);
eulxyzPrev[0]=blenderobject->rot[0];
eulxyzPrev[1]=blenderobject->rot[1];
eulxyzPrev[2]=blenderobject->rot[2];
double fps = (double) blenderscene->r.frs_sec/
(double) blenderscene->r.frs_sec_base;
tmp.scale(fps, fps, fps);
inivel.push_back(tmp);
tmp=eulxyz-eulxyzPrev;
tmp.scale(fps, fps, fps);
iniang.push_back(tmp);
blenderscene->r.cfra=blenderscene->r.sfra;
update_for_newframe();
}
gameobj->NodeSetLocalPosition(pos);
gameobj->NodeSetLocalOrientation(MT_Matrix3x3(eulxyz));
gameobj->NodeSetLocalScale(scale);
gameobj->NodeUpdateGS(0,true);
BL_ConvertIpos(blenderobject,gameobj,converter);
BL_ConvertMaterialIpos(blenderobject,gameobj, converter);
sumolist->Add(gameobj->AddRef());
BL_ConvertProperties(blenderobject,gameobj,timemgr,kxscene,isInActiveLayer);
gameobj->SetName(blenderobject->id.name);
// templist to find Root Parents (object with no parents)
templist->Add(gameobj->AddRef());
// update children/parent hierarchy
if ((blenderobject->parent != 0)&&(!converter->addInitFromFrame))
{
// blender has an additional 'parentinverse' offset in each object
SG_Node* parentinversenode = new SG_Node(NULL,NULL,SG_Callbacks());
// define a normal parent relationship for this node.
KX_NormalParentRelation * parent_relation = KX_NormalParentRelation::New();
parentinversenode->SetParentRelation(parent_relation);
parentChildLink pclink;
pclink.m_blenderchild = blenderobject;
pclink.m_gamechildnode = parentinversenode;
vec_parent_child.push_back(pclink);
float* fl = (float*) blenderobject->parentinv;
MT_Transform parinvtrans(fl);
parentinversenode->SetLocalPosition(parinvtrans.getOrigin());
// Extract the rotation and the scaling from the basis
MT_Matrix3x3 ori(parinvtrans.getBasis());
MT_Vector3 x(ori.getColumn(0));
MT_Vector3 y(ori.getColumn(1));
MT_Vector3 z(ori.getColumn(2));
MT_Vector3 scale(x.length(), y.length(), z.length());
if (!MT_fuzzyZero(scale[0]))
x /= scale[0];
if (!MT_fuzzyZero(scale[1]))
y /= scale[1];
if (!MT_fuzzyZero(scale[2]))
z /= scale[2];
ori.setColumn(0, x);
ori.setColumn(1, y);
ori.setColumn(2, z);
parentinversenode->SetLocalOrientation(ori);
parentinversenode->SetLocalScale(scale);
parentinversenode->AddChild(gameobj->GetSGNode());
}
// needed for python scripting
logicmgr->RegisterGameObjectName(gameobj->GetName(),gameobj);
// needed for group duplication
logicmgr->RegisterGameObj(blenderobject, gameobj);
for (int i = 0; i < gameobj->GetMeshCount(); i++)
logicmgr->RegisterGameMeshName(gameobj->GetMesh(i)->GetName(), blenderobject);
converter->RegisterGameObject(gameobj, blenderobject);
// this was put in rapidly, needs to be looked at more closely
// only draw/use objects in active 'blender' layers
logicbrick_conversionlist->Add(gameobj->AddRef());
if (converter->addInitFromFrame){
posPrev=gameobj->NodeGetWorldPosition();
angor=gameobj->NodeGetWorldOrientation();
}
if (isInActiveLayer)
{
objectlist->Add(gameobj->AddRef());
//tf.Add(gameobj->GetSGNode());
gameobj->NodeUpdateGS(0,true);
gameobj->AddMeshUser();
}
else
{
//we must store this object otherwise it will be deleted
//at the end of this function if it is not a root object
inactivelist->Add(gameobj->AddRef());
}
if (gameobj->IsDupliGroup())
{
// check that the group is not already converted
if (allgrouplist.insert(blenderobject->dup_group).second)
grouplist.insert(blenderobject->dup_group);
}
if (converter->addInitFromFrame){
gameobj->NodeSetLocalPosition(posPrev);
gameobj->NodeSetLocalOrientation(angor);
}
}
if (gameobj)
gameobj->Release();
}
}
}
}
}
// non-camera objects not supported as camera currently
if (blenderscene->camera && blenderscene->camera->type == OB_CAMERA) {
KX_Camera *gamecamera= (KX_Camera*) converter->FindGameObject(blenderscene->camera);
if(gamecamera)
kxscene->SetActiveCamera(gamecamera);
}
// Set up armatures
set<Object*>::iterator oit;
for(oit=allblobj.begin(); oit!=allblobj.end(); oit++)
{
Object* blenderobj = *oit;
if (blenderobj->type==OB_MESH) {
Mesh *me = (Mesh*)blenderobj->data;
if (me->dvert){
BL_DeformableGameObject *obj = (BL_DeformableGameObject*)converter->FindGameObject(blenderobj);
if (obj && blenderobj->parent && blenderobj->parent->type==OB_ARMATURE && blenderobj->partype==PARSKEL){
KX_GameObject *par = converter->FindGameObject(blenderobj->parent);
if (par && obj->GetDeformer())
((BL_SkinDeformer*)obj->GetDeformer())->SetArmature((BL_ArmatureObject*) par);
}
}
}
}
// create hierarchy information
int i;
vector<parentChildLink>::iterator pcit;
for (pcit = vec_parent_child.begin();!(pcit==vec_parent_child.end());++pcit)
{
struct Object* blenderchild = pcit->m_blenderchild;
struct Object* blenderparent = blenderchild->parent;
KX_GameObject* parentobj = converter->FindGameObject(blenderparent);
KX_GameObject* childobj = converter->FindGameObject(blenderchild);
assert(childobj);
if (!parentobj || objectlist->SearchValue(childobj) != objectlist->SearchValue(parentobj))
{
// special case: the parent and child object are not in the same layer.
// This weird situation is used in Apricot for test purposes.
// Resolve it by not converting the child
childobj->GetSGNode()->DisconnectFromParent();
delete pcit->m_gamechildnode;
// Now destroy the child object but also all its descendent that may already be linked
// Remove the child reference in the local list!
// Note: there may be descendents already if the children of the child were processed
// by this loop before the child. In that case, we must remove the children also
CListValue* childrenlist = (CListValue*)childobj->PyGetChildrenRecursive(childobj);
childrenlist->Add(childobj->AddRef());
for ( i=0;i<childrenlist->GetCount();i++)
{
KX_GameObject* obj = static_cast<KX_GameObject*>(childrenlist->GetValue(i));
if (templist->RemoveValue(obj))
obj->Release();
if (sumolist->RemoveValue(obj))
obj->Release();
if (logicbrick_conversionlist->RemoveValue(obj))
obj->Release();
}
childrenlist->Release();
// now destroy recursively
kxscene->RemoveObject(childobj);
continue;
}
switch (blenderchild->partype)
{
case PARVERT1:
{
// creat a new vertex parent relationship for this node.
KX_VertexParentRelation * vertex_parent_relation = KX_VertexParentRelation::New();
pcit->m_gamechildnode->SetParentRelation(vertex_parent_relation);
break;
}
case PARSLOW:
{
// creat a new slow parent relationship for this node.
KX_SlowParentRelation * slow_parent_relation = KX_SlowParentRelation::New(blenderchild->sf);
pcit->m_gamechildnode->SetParentRelation(slow_parent_relation);
break;
}
case PARBONE:
{
// parent this to a bone
Bone *parent_bone = get_named_bone(get_armature(blenderchild->parent), blenderchild->parsubstr);
if(parent_bone) {
KX_BoneParentRelation *bone_parent_relation = KX_BoneParentRelation::New(parent_bone);
pcit->m_gamechildnode->SetParentRelation(bone_parent_relation);
}
break;
}
case PARSKEL: // skinned - ignore
break;
case PAROBJECT:
case PARCURVE:
case PARKEY:
case PARVERT3:
default:
// unhandled
break;
}
parentobj-> GetSGNode()->AddChild(pcit->m_gamechildnode);
}
vec_parent_child.clear();
// find 'root' parents (object that has not parents in SceneGraph)
for (i=0;i<templist->GetCount();++i)
{
KX_GameObject* gameobj = (KX_GameObject*) templist->GetValue(i);
if (gameobj->GetSGNode()->GetSGParent() == 0)
{
parentlist->Add(gameobj->AddRef());
gameobj->NodeUpdateGS(0,true);
}
}
bool processCompoundChildren = false;
// create physics information
for (i=0;i<sumolist->GetCount();i++)
{
KX_GameObject* gameobj = (KX_GameObject*) sumolist->GetValue(i);
struct Object* blenderobject = converter->FindBlenderObject(gameobj);
int nummeshes = gameobj->GetMeshCount();
RAS_MeshObject* meshobj = 0;
if (nummeshes > 0)
{
meshobj = gameobj->GetMesh(0);
}
int layerMask = (groupobj.find(blenderobject) == groupobj.end()) ? activeLayerBitInfo : 0;
BL_CreatePhysicsObjectNew(gameobj,blenderobject,meshobj,kxscene,layerMask,physics_engine,converter,processCompoundChildren);
}
processCompoundChildren = true;
// create physics information
for (i=0;i<sumolist->GetCount();i++)
{
KX_GameObject* gameobj = (KX_GameObject*) sumolist->GetValue(i);
struct Object* blenderobject = converter->FindBlenderObject(gameobj);
int nummeshes = gameobj->GetMeshCount();
RAS_MeshObject* meshobj = 0;
if (nummeshes > 0)
{
meshobj = gameobj->GetMesh(0);
}
int layerMask = (groupobj.find(blenderobject) == groupobj.end()) ? activeLayerBitInfo : 0;
BL_CreatePhysicsObjectNew(gameobj,blenderobject,meshobj,kxscene,layerMask,physics_engine,converter,processCompoundChildren);
}
//set ini linearVel and int angularVel //rcruiz
if (converter->addInitFromFrame)
for (i=0;i<sumolist->GetCount();i++)
{
KX_GameObject* gameobj = (KX_GameObject*) sumolist->GetValue(i);
if (gameobj->IsDynamic()){
gameobj->setLinearVelocity(inivel[i],false);
gameobj->setAngularVelocity(iniang[i],false);
}
}
// create physics joints
for (i=0;i<sumolist->GetCount();i++)
{
KX_GameObject* gameobj = (KX_GameObject*) sumolist->GetValue(i);
struct Object* blenderobject = converter->FindBlenderObject(gameobj);
ListBase *conlist;
bConstraint *curcon;
conlist = get_active_constraints2(blenderobject);
if (conlist) {
for (curcon = (bConstraint *)conlist->first; curcon; curcon=(bConstraint *)curcon->next) {
if (curcon->type==CONSTRAINT_TYPE_RIGIDBODYJOINT){
bRigidBodyJointConstraint *dat=(bRigidBodyJointConstraint *)curcon->data;
if (!dat->child){
PHY_IPhysicsController* physctr2 = 0;
if (dat->tar)
{
KX_GameObject *gotar=getGameOb(dat->tar->id.name,sumolist);
if (gotar && gotar->GetPhysicsController())
physctr2 = (PHY_IPhysicsController*) gotar->GetPhysicsController()->GetUserData();
}
if (gameobj->GetPhysicsController())
{
float radsPerDeg = 6.283185307179586232f / 360.f;
PHY_IPhysicsController* physctrl = (PHY_IPhysicsController*) gameobj->GetPhysicsController()->GetUserData();
//we need to pass a full constraint frame, not just axis
//localConstraintFrameBasis
MT_Matrix3x3 localCFrame(MT_Vector3(radsPerDeg*dat->axX,radsPerDeg*dat->axY,radsPerDeg*dat->axZ));
MT_Vector3 axis0 = localCFrame.getColumn(0);
MT_Vector3 axis1 = localCFrame.getColumn(1);
MT_Vector3 axis2 = localCFrame.getColumn(2);
int constraintId = kxscene->GetPhysicsEnvironment()->createConstraint(physctrl,physctr2,(PHY_ConstraintType)dat->type,(float)dat->pivX,
(float)dat->pivY,(float)dat->pivZ,
(float)axis0.x(),(float)axis0.y(),(float)axis0.z(),
(float)axis1.x(),(float)axis1.y(),(float)axis1.z(),
(float)axis2.x(),(float)axis2.y(),(float)axis2.z());
if (constraintId)
{
//if it is a generic 6DOF constraint, set all the limits accordingly
if (dat->type == PHY_GENERIC_6DOF_CONSTRAINT)
{
int dof;
int dofbit=1;
for (dof=0;dof<6;dof++)
{
if (dat->flag & dofbit)
{
kxscene->GetPhysicsEnvironment()->setConstraintParam(constraintId,dof,dat->minLimit[dof],dat->maxLimit[dof]);
} else
{
//minLimit > maxLimit means free(disabled limit) for this degree of freedom
kxscene->GetPhysicsEnvironment()->setConstraintParam(constraintId,dof,1,-1);
}
dofbit<<=1;
}
}
}
}
}
}
}
}
}
templist->Release();
sumolist->Release();
int executePriority=0; /* incremented by converter routines */
// convert global sound stuff
/* XXX, glob is the very very wrong place for this
* to be, re-enable once the listener has been moved into
* the scene. */
#if 1
SND_Scene* soundscene = kxscene->GetSoundScene();
SND_SoundListener* listener = soundscene->GetListener();
if (listener && G.listener)
{
listener->SetDopplerFactor(G.listener->dopplerfactor);
listener->SetDopplerVelocity(G.listener->dopplervelocity);
listener->SetGain(G.listener->gain);
}
#endif
// convert world
KX_WorldInfo* worldinfo = new BlenderWorldInfo(blenderscene->world);
converter->RegisterWorldInfo(worldinfo);
kxscene->SetWorldInfo(worldinfo);
#define CONVERT_LOGIC
#ifdef CONVERT_LOGIC
// convert logic bricks, sensors, controllers and actuators
for (i=0;i<logicbrick_conversionlist->GetCount();i++)
{
KX_GameObject* gameobj = static_cast<KX_GameObject*>(logicbrick_conversionlist->GetValue(i));
struct Object* blenderobj = converter->FindBlenderObject(gameobj);
int layerMask = (groupobj.find(blenderobj) == groupobj.end()) ? activeLayerBitInfo : 0;
bool isInActiveLayer = (blenderobj->lay & layerMask)!=0;
BL_ConvertActuators(maggie->name, blenderobj,gameobj,logicmgr,kxscene,ketsjiEngine,executePriority, layerMask,isInActiveLayer,rendertools,converter);
}
for ( i=0;i<logicbrick_conversionlist->GetCount();i++)
{
KX_GameObject* gameobj = static_cast<KX_GameObject*>(logicbrick_conversionlist->GetValue(i));
struct Object* blenderobj = converter->FindBlenderObject(gameobj);
int layerMask = (groupobj.find(blenderobj) == groupobj.end()) ? activeLayerBitInfo : 0;
bool isInActiveLayer = (blenderobj->lay & layerMask)!=0;
BL_ConvertControllers(blenderobj,gameobj,logicmgr,pythondictionary,executePriority,layerMask,isInActiveLayer,converter);
}
for ( i=0;i<logicbrick_conversionlist->GetCount();i++)
{
KX_GameObject* gameobj = static_cast<KX_GameObject*>(logicbrick_conversionlist->GetValue(i));
struct Object* blenderobj = converter->FindBlenderObject(gameobj);
int layerMask = (groupobj.find(blenderobj) == groupobj.end()) ? activeLayerBitInfo : 0;
bool isInActiveLayer = (blenderobj->lay & layerMask)!=0;
BL_ConvertSensors(blenderobj,gameobj,logicmgr,kxscene,ketsjiEngine,keydev,executePriority,layerMask,isInActiveLayer,canvas,converter);
// set the init state to all objects
gameobj->SetInitState((blenderobj->init_state)?blenderobj->init_state:blenderobj->state);
}
// apply the initial state to controllers, only on the active objects as this registers the sensors
for ( i=0;i<objectlist->GetCount();i++)
{
KX_GameObject* gameobj = static_cast<KX_GameObject*>(objectlist->GetValue(i));
gameobj->ResetState();
}
#endif //CONVERT_LOGIC
logicbrick_conversionlist->Release();
// Calculate the scene btree -
// too slow - commented out.
//kxscene->SetNodeTree(tf.MakeTree());
// instantiate dupli group, we will loop trough the object
// that are in active layers. Note that duplicating group
// has the effect of adding objects at the end of objectlist.
// Only loop through the first part of the list.
int objcount = objectlist->GetCount();
for (i=0;i<objcount;i++)
{
KX_GameObject* gameobj = (KX_GameObject*) objectlist->GetValue(i);
if (gameobj->IsDupliGroup())
{
kxscene->DupliGroupRecurse(gameobj, 0);
}
}
KX_Camera *activecam = kxscene->GetActiveCamera();
MT_Scalar distance = (activecam)? activecam->GetCameraFar() - activecam->GetCameraNear(): 100.0f;
RAS_BucketManager *bucketmanager = kxscene->GetBucketManager();
bucketmanager->OptimizeBuckets(distance);
}