blender/intern/cycles/util/util_math_intersect.h
Sergey Sharybin a96110e710 Cycles: Remove old non-optimized triangle intersection function
It is unused now and if we want similar function we should use
Pluecker intersection which is same performance with SSE optimization
but which is more watertight.
2017-03-23 17:59:34 +01:00

327 lines
9.5 KiB
C

/*
* Copyright 2011-2017 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __UTIL_MATH_INTERSECT_H__
#define __UTIL_MATH_INTERSECT_H__
CCL_NAMESPACE_BEGIN
/* Ray Intersection */
ccl_device bool ray_sphere_intersect(
float3 ray_P, float3 ray_D, float ray_t,
float3 sphere_P, float sphere_radius,
float3 *isect_P, float *isect_t)
{
const float3 d = sphere_P - ray_P;
const float radiussq = sphere_radius*sphere_radius;
const float tsq = dot(d, d);
if(tsq > radiussq) {
/* Ray origin outside sphere. */
const float tp = dot(d, ray_D);
if(tp < 0.0f) {
/* Ray points away from sphere. */
return false;
}
const float dsq = tsq - tp*tp; /* pythagoras */
if(dsq > radiussq) {
/* Closest point on ray outside sphere. */
return false;
}
const float t = tp - sqrtf(radiussq - dsq); /* pythagoras */
if(t < ray_t) {
*isect_t = t;
*isect_P = ray_P + ray_D*t;
return true;
}
}
return false;
}
ccl_device bool ray_aligned_disk_intersect(
float3 ray_P, float3 ray_D, float ray_t,
float3 disk_P, float disk_radius,
float3 *isect_P, float *isect_t)
{
/* Aligned disk normal. */
float disk_t;
const float3 disk_N = normalize_len(ray_P - disk_P, &disk_t);
const float div = dot(ray_D, disk_N);
if(UNLIKELY(div == 0.0f)) {
return false;
}
/* Compute t to intersection point. */
const float t = -disk_t/div;
if(t < 0.0f || t > ray_t) {
return false;
}
/* Test if within radius. */
float3 P = ray_P + ray_D*t;
if(len_squared(P - disk_P) > disk_radius*disk_radius) {
return false;
}
*isect_P = P;
*isect_t = t;
return true;
}
/* Optimized watertight ray-triangle intersection.
*
* Sven Woop
* Watertight Ray/Triangle Intersection
*
* http://jcgt.org/published/0002/01/05/paper.pdf
*/
/* Precalculated data for the ray->tri intersection. */
typedef struct TriangleIsectPrecalc {
/* Maximal dimension kz, and orthogonal dimensions. */
int kx, ky, kz;
/* Shear constants. */
float Sx, Sy, Sz;
} TriangleIsectPrecalc;
/* Workaround stupidness of CUDA/OpenCL which doesn't allow to access indexed
* component of float3 value.
*/
#ifdef __KERNEL_GPU__
# define IDX(vec, idx) \
((idx == 0) ? ((vec).x) : ( (idx == 1) ? ((vec).y) : ((vec).z) ))
#else
# define IDX(vec, idx) ((vec)[idx])
#endif
#if (defined(__KERNEL_OPENCL_APPLE__)) || \
(defined(__KERNEL_CUDA__) && (defined(i386) || defined(_M_IX86)))
ccl_device_noinline
#else
ccl_device_inline
#endif
void ray_triangle_intersect_precalc(float3 dir,
TriangleIsectPrecalc *isect_precalc)
{
/* Calculate dimension where the ray direction is maximal. */
#ifndef __KERNEL_SSE__
int kz = util_max_axis(make_float3(fabsf(dir.x),
fabsf(dir.y),
fabsf(dir.z)));
int kx = kz + 1; if(kx == 3) kx = 0;
int ky = kx + 1; if(ky == 3) ky = 0;
#else
int kx, ky, kz;
/* Avoiding mispredicted branch on direction. */
kz = util_max_axis(fabs(dir));
static const char inc_xaxis[] = {1, 2, 0, 55};
static const char inc_yaxis[] = {2, 0, 1, 55};
kx = inc_xaxis[kz];
ky = inc_yaxis[kz];
#endif
float dir_kz = IDX(dir, kz);
/* Swap kx and ky dimensions to preserve winding direction of triangles. */
if(dir_kz < 0.0f) {
int tmp = kx;
kx = ky;
ky = tmp;
}
/* Calculate the shear constants. */
float inv_dir_z = 1.0f / dir_kz;
isect_precalc->Sx = IDX(dir, kx) * inv_dir_z;
isect_precalc->Sy = IDX(dir, ky) * inv_dir_z;
isect_precalc->Sz = inv_dir_z;
/* Store the dimensions. */
isect_precalc->kx = kx;
isect_precalc->ky = ky;
isect_precalc->kz = kz;
}
ccl_device_forceinline bool ray_triangle_intersect(
const TriangleIsectPrecalc *isect_precalc,
float3 ray_P, float ray_t,
#if defined(__KERNEL_AVX2__) && defined(__KERNEL_SSE__)
const ssef *ssef_verts,
#else
const float3 tri_a, const float3 tri_b, const float3 tri_c,
#endif
float *isect_u, float *isect_v, float *isect_t)
{
const int kx = isect_precalc->kx;
const int ky = isect_precalc->ky;
const int kz = isect_precalc->kz;
const float Sx = isect_precalc->Sx;
const float Sy = isect_precalc->Sy;
const float Sz = isect_precalc->Sz;
#if defined(__KERNEL_AVX2__) && defined(__KERNEL_SSE__)
const avxf avxf_P(ray_P.m128, ray_P.m128);
const avxf tri_ab(_mm256_loadu_ps((float *)(ssef_verts)));
const avxf tri_bc(_mm256_loadu_ps((float *)(ssef_verts + 1)));
const avxf AB = tri_ab - avxf_P;
const avxf BC = tri_bc - avxf_P;
const __m256i permute_mask = _mm256_set_epi32(0x3, kz, ky, kx, 0x3, kz, ky, kx);
const avxf AB_k = shuffle(AB, permute_mask);
const avxf BC_k = shuffle(BC, permute_mask);
/* Akz, Akz, Bkz, Bkz, Bkz, Bkz, Ckz, Ckz */
const avxf ABBC_kz = shuffle<2>(AB_k, BC_k);
/* Akx, Aky, Bkx, Bky, Bkx,Bky, Ckx, Cky */
const avxf ABBC_kxy = shuffle<0,1,0,1>(AB_k, BC_k);
const avxf Sxy(Sy, Sx, Sy, Sx);
/* Ax, Ay, Bx, By, Bx, By, Cx, Cy */
const avxf ABBC_xy = nmadd(ABBC_kz, Sxy, ABBC_kxy);
float ABBC_kz_array[8];
_mm256_storeu_ps((float*)&ABBC_kz_array, ABBC_kz);
const float A_kz = ABBC_kz_array[0];
const float B_kz = ABBC_kz_array[2];
const float C_kz = ABBC_kz_array[6];
/* By, Bx, Cy, Cx, By, Bx, Ay, Ax */
const avxf BCBA_yx = permute<3,2,7,6,3,2,1,0>(ABBC_xy);
const avxf neg_mask(0,0,0,0,0x80000000, 0x80000000, 0x80000000, 0x80000000);
/* W U V
* (AxBy-AyBx) (BxCy-ByCx) XX XX (BxBy-ByBx) (CxAy-CyAx) XX XX
*/
const avxf WUxxxxVxx_neg = _mm256_hsub_ps(ABBC_xy * BCBA_yx, neg_mask /* Dont care */);
const avxf WUVWnegWUVW = permute<0,1,5,0,0,1,5,0>(WUxxxxVxx_neg) ^ neg_mask;
/* Calculate scaled barycentric coordinates. */
float WUVW_array[4];
_mm_storeu_ps((float*)&WUVW_array, _mm256_castps256_ps128 (WUVWnegWUVW));
const float W = WUVW_array[0];
const float U = WUVW_array[1];
const float V = WUVW_array[2];
const int WUVW_mask = 0x7 & _mm256_movemask_ps(WUVWnegWUVW);
const int WUVW_zero = 0x7 & _mm256_movemask_ps(_mm256_cmp_ps(WUVWnegWUVW,
_mm256_setzero_ps(), 0));
if(!((WUVW_mask == 7) || (WUVW_mask == 0)) && ((WUVW_mask | WUVW_zero) != 7)) {
return false;
}
#else
/* Calculate vertices relative to ray origin. */
const float3 A = make_float3(tri_a.x - ray_P.x, tri_a.y - ray_P.y, tri_a.z - ray_P.z);
const float3 B = make_float3(tri_b.x - ray_P.x, tri_b.y - ray_P.y, tri_b.z - ray_P.z);
const float3 C = make_float3(tri_c.x - ray_P.x, tri_c.y - ray_P.y, tri_c.z - ray_P.z);
const float A_kx = IDX(A, kx), A_ky = IDX(A, ky), A_kz = IDX(A, kz);
const float B_kx = IDX(B, kx), B_ky = IDX(B, ky), B_kz = IDX(B, kz);
const float C_kx = IDX(C, kx), C_ky = IDX(C, ky), C_kz = IDX(C, kz);
/* Perform shear and scale of vertices. */
const float Ax = A_kx - Sx * A_kz;
const float Ay = A_ky - Sy * A_kz;
const float Bx = B_kx - Sx * B_kz;
const float By = B_ky - Sy * B_kz;
const float Cx = C_kx - Sx * C_kz;
const float Cy = C_ky - Sy * C_kz;
/* Calculate scaled barycentric coordinates. */
float U = Cx * By - Cy * Bx;
float V = Ax * Cy - Ay * Cx;
float W = Bx * Ay - By * Ax;
if((U < 0.0f || V < 0.0f || W < 0.0f) &&
(U > 0.0f || V > 0.0f || W > 0.0f))
{
return false;
}
#endif
/* Calculate determinant. */
float det = U + V + W;
if(UNLIKELY(det == 0.0f)) {
return false;
}
/* Calculate scaled z-coordinates of vertices and use them to calculate
* the hit distance.
*/
const float T = (U * A_kz + V * B_kz + W * C_kz) * Sz;
const int sign_det = (__float_as_int(det) & 0x80000000);
const float sign_T = xor_signmask(T, sign_det);
if((sign_T < 0.0f) ||
(sign_T > ray_t * xor_signmask(det, sign_det)))
{
return false;
}
/* Workaround precision error on CUDA. */
#ifdef __KERNEL_CUDA__
if(A == B && B == C) {
return false;
}
#endif
const float inv_det = 1.0f / det;
*isect_u = U * inv_det;
*isect_v = V * inv_det;
*isect_t = T * inv_det;
return true;
}
#undef IDX
ccl_device bool ray_quad_intersect(float3 ray_P, float3 ray_D,
float ray_mint, float ray_maxt,
float3 quad_P,
float3 quad_u, float3 quad_v, float3 quad_n,
float3 *isect_P, float *isect_t,
float *isect_u, float *isect_v)
{
/* Perform intersection test. */
float t = -(dot(ray_P, quad_n) - dot(quad_P, quad_n)) / dot(ray_D, quad_n);
if(t < ray_mint || t > ray_maxt) {
return false;
}
const float3 hit = ray_P + t*ray_D;
const float3 inplane = hit - quad_P;
const float u = dot(inplane, quad_u) / dot(quad_u, quad_u) + 0.5f;
if(u < 0.0f || u > 1.0f) {
return false;
}
const float v = dot(inplane, quad_v) / dot(quad_v, quad_v) + 0.5f;
if(v < 0.0f || v > 1.0f) {
return false;
}
/* Store the result. */
/* TODO(sergey): Check whether we can avoid some checks here. */
if(isect_P != NULL) *isect_P = hit;
if(isect_t != NULL) *isect_t = t;
if(isect_u != NULL) *isect_u = u;
if(isect_v != NULL) *isect_v = v;
return true;
}
CCL_NAMESPACE_END
#endif /* __UTIL_MATH_INTERSECT_H__ */