blender/intern/cycles/blender/blender_util.h
Brecht Van Lommel b3f21a2254 Cycles Hair: add Generated texture coordinates for curves, so that procedural
textures now work without having to add a UV map.

Also made UV and intercept attributes only export when needed by the shader.
2013-01-03 12:31:05 +00:00

459 lines
9.9 KiB
C++

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#ifndef __BLENDER_UTIL_H__
#define __BLENDER_UTIL_H__
#include "util_map.h"
#include "util_path.h"
#include "util_set.h"
#include "util_transform.h"
#include "util_types.h"
#include "util_vector.h"
/* Hacks to hook into Blender API
* todo: clean this up ... */
extern "C" {
void BLI_timestr(double _time, char *str);
void BKE_image_user_frame_calc(void *iuser, int cfra, int fieldnr);
void BKE_image_user_file_path(void *iuser, void *ima, char *path);
}
CCL_NAMESPACE_BEGIN
static inline BL::Mesh object_to_mesh(BL::Object self, BL::Scene scene, bool apply_modifiers, bool render)
{
return self.to_mesh(scene, apply_modifiers, (render)? 2: 1);
}
static inline void colorramp_to_array(BL::ColorRamp ramp, float4 *data, int size)
{
for(int i = 0; i < size; i++) {
float color[4];
ramp.evaluate(i/(float)(size-1), color);
data[i] = make_float4(color[0], color[1], color[2], color[3]);
}
}
static inline void curvemapping_color_to_array(BL::CurveMapping cumap, float4 *data, int size, bool rgb_curve)
{
cumap.update();
BL::CurveMap mapR = cumap.curves[0];
BL::CurveMap mapG = cumap.curves[1];
BL::CurveMap mapB = cumap.curves[2];
if(rgb_curve) {
BL::CurveMap mapI = cumap.curves[3];
for(int i = 0; i < size; i++) {
float t = i/(float)(size-1);
data[i][0] = mapR.evaluate(mapI.evaluate(t));
data[i][1] = mapG.evaluate(mapI.evaluate(t));
data[i][2] = mapB.evaluate(mapI.evaluate(t));
}
}
else {
for(int i = 0; i < size; i++) {
float t = i/(float)(size-1);
data[i][0] = mapR.evaluate(t);
data[i][1] = mapG.evaluate(t);
data[i][2] = mapB.evaluate(t);
}
}
}
static inline bool BKE_object_is_modified(BL::Object self, BL::Scene scene, bool preview)
{
return self.is_modified(scene, (preview)? (1<<0): (1<<1))? true: false;
}
static inline bool BKE_object_is_deform_modified(BL::Object self, BL::Scene scene, bool preview)
{
return self.is_deform_modified(scene, (preview)? (1<<0): (1<<1))? true: false;
}
static inline string image_user_file_path(BL::ImageUser iuser, BL::Image ima, int cfra)
{
char filepath[1024];
BKE_image_user_frame_calc(iuser.ptr.data, cfra, 0);
BKE_image_user_file_path(iuser.ptr.data, ima.ptr.data, filepath);
return string(filepath);
}
/* Utilities */
static inline Transform get_transform(BL::Array<float, 16> array)
{
Transform tfm;
/* we assume both types to be just 16 floats, and transpose because blender
* use column major matrix order while we use row major */
memcpy(&tfm, &array, sizeof(float)*16);
tfm = transform_transpose(tfm);
return tfm;
}
static inline float2 get_float2(BL::Array<float, 2> array)
{
return make_float2(array[0], array[1]);
}
static inline float3 get_float3(BL::Array<float, 2> array)
{
return make_float3(array[0], array[1], 0.0f);
}
static inline float3 get_float3(BL::Array<float, 3> array)
{
return make_float3(array[0], array[1], array[2]);
}
static inline float3 get_float3(BL::Array<float, 4> array)
{
return make_float3(array[0], array[1], array[2]);
}
static inline float4 get_float4(BL::Array<float, 4> array)
{
return make_float4(array[0], array[1], array[2], array[3]);
}
static inline int4 get_int4(BL::Array<int, 4> array)
{
return make_int4(array[0], array[1], array[2], array[3]);
}
static inline uint get_layer(BL::Array<int, 20> array)
{
uint layer = 0;
for(uint i = 0; i < 20; i++)
if(array[i])
layer |= (1 << i);
return layer;
}
static inline uint get_layer(BL::Array<int, 20> array, BL::Array<int, 8> local_array, bool use_local, bool is_light = false)
{
uint layer = 0;
for(uint i = 0; i < 20; i++)
if(array[i])
layer |= (1 << i);
if(is_light) {
/* consider lamps on all local view layers */
for(uint i = 0; i < 8; i++)
layer |= (1 << (20+i));
}
else {
for(uint i = 0; i < 8; i++)
if(local_array[i])
layer |= (1 << (20+i));
}
/* we don't have spare bits for localview (normally 20-28) because
* PATH_RAY_LAYER_SHIFT uses 20-32. So - check if we have localview and if
* so, shift local view bits down to 1-8, since this is done for the view
* port only - it should be OK and not conflict with render layers. */
if(use_local)
layer >>= 20;
return layer;
}
#if 0
static inline float3 get_float3(PointerRNA& ptr, const char *name)
{
float3 f;
RNA_float_get_array(&ptr, name, &f.x);
return f;
}
#endif
static inline bool get_boolean(PointerRNA& ptr, const char *name)
{
return RNA_boolean_get(&ptr, name)? true: false;
}
static inline float get_float(PointerRNA& ptr, const char *name)
{
return RNA_float_get(&ptr, name);
}
static inline int get_int(PointerRNA& ptr, const char *name)
{
return RNA_int_get(&ptr, name);
}
static inline int get_enum(PointerRNA& ptr, const char *name)
{
return RNA_enum_get(&ptr, name);
}
static inline string get_enum_identifier(PointerRNA& ptr, const char *name)
{
PropertyRNA *prop = RNA_struct_find_property(&ptr, name);
const char *identifier = "";
int value = RNA_property_enum_get(&ptr, prop);
RNA_property_enum_identifier(NULL, &ptr, prop, value, &identifier);
return string(identifier);
}
/* Relative Paths */
static inline string blender_absolute_path(BL::BlendData b_data, BL::ID b_id, const string& path)
{
if(path.size() >= 2 && path[0] == '/' && path[1] == '/') {
string dirname;
if(b_id.library())
dirname = blender_absolute_path(b_data, b_id.library(), b_id.library().filepath());
else
dirname = b_data.filepath();
return path_join(path_dirname(dirname), path.substr(2));
}
return path;
}
/* Texture Space */
static inline void mesh_texture_space(BL::Mesh b_mesh, float3& loc, float3& size)
{
loc = get_float3(b_mesh.texspace_location());
size = get_float3(b_mesh.texspace_size());
if(size.x != 0.0f) size.x = 0.5f/size.x;
if(size.y != 0.0f) size.y = 0.5f/size.y;
if(size.z != 0.0f) size.z = 0.5f/size.z;
loc = loc*size - make_float3(0.5f, 0.5f, 0.5f);
}
/* ID Map
*
* Utility class to keep in sync with blender data.
* Used for objects, meshes, lights and shaders. */
template<typename K, typename T>
class id_map {
public:
id_map(vector<T*> *scene_data_)
{
scene_data = scene_data_;
}
T *find(BL::ID id)
{
return find(id.ptr.id.data);
}
T *find(const K& key)
{
if(b_map.find(key) != b_map.end()) {
T *data = b_map[key];
return data;
}
return NULL;
}
void set_recalc(BL::ID id)
{
b_recalc.insert(id.ptr.data);
}
bool has_recalc()
{
return !(b_recalc.empty());
}
void pre_sync()
{
used_set.clear();
}
bool sync(T **r_data, BL::ID id)
{
return sync(r_data, id, id, id.ptr.id.data);
}
bool sync(T **r_data, BL::ID id, BL::ID parent, const K& key)
{
T *data = find(key);
bool recalc;
if(!data) {
/* add data if it didn't exist yet */
data = new T();
scene_data->push_back(data);
b_map[key] = data;
recalc = true;
}
else {
recalc = (b_recalc.find(id.ptr.data) != b_recalc.end());
if(parent.ptr.data)
recalc = recalc || (b_recalc.find(parent.ptr.data) != b_recalc.end());
}
used(data);
*r_data = data;
return recalc;
}
bool is_used(const K& key)
{
T *data = find(key);
return (data) ? used_set.find(data) != used_set.end() : false;
}
void used(T *data)
{
/* tag data as still in use */
used_set.insert(data);
}
void set_default(T *data)
{
b_map[NULL] = data;
}
bool post_sync(bool do_delete = true)
{
/* remove unused data */
vector<T*> new_scene_data;
typename vector<T*>::iterator it;
bool deleted = false;
for(it = scene_data->begin(); it != scene_data->end(); it++) {
T *data = *it;
if(do_delete && used_set.find(data) == used_set.end()) {
delete data;
deleted = true;
}
else
new_scene_data.push_back(data);
}
*scene_data = new_scene_data;
/* update mapping */
map<K, T*> new_map;
typedef pair<const K, T*> TMapPair;
typename map<K, T*>::iterator jt;
for(jt = b_map.begin(); jt != b_map.end(); jt++) {
TMapPair& pair = *jt;
if(used_set.find(pair.second) != used_set.end())
new_map[pair.first] = pair.second;
}
used_set.clear();
b_recalc.clear();
b_map = new_map;
return deleted;
}
protected:
vector<T*> *scene_data;
map<K, T*> b_map;
set<T*> used_set;
set<void*> b_recalc;
};
/* Object Key */
enum { OBJECT_PERSISTENT_ID_SIZE = 8 };
struct ObjectKey {
void *parent;
int id[OBJECT_PERSISTENT_ID_SIZE];
void *ob;
ObjectKey(void *parent_, int id_[OBJECT_PERSISTENT_ID_SIZE], void *ob_)
: parent(parent_), ob(ob_)
{
if(id_)
memcpy(id, id_, sizeof(id));
else
memset(id, 0, sizeof(id));
}
bool operator<(const ObjectKey& k) const
{
if(ob < k.ob) {
return true;
}
else if(ob == k.ob) {
if(parent < k.parent)
return true;
else if(parent == k.parent)
return memcmp(id, k.id, sizeof(id)) < 0;
}
return false;
}
};
/* Particle System Key */
struct ParticleSystemKey {
void *ob;
int id[OBJECT_PERSISTENT_ID_SIZE];
ParticleSystemKey(void *ob_, int id_[OBJECT_PERSISTENT_ID_SIZE])
: ob(ob_)
{
if(id_)
memcpy(id, id_, sizeof(id));
else
memset(id, 0, sizeof(id));
}
bool operator<(const ParticleSystemKey& k) const
{
/* first id is particle index, we don't compare that */
if(ob < k.ob)
return true;
else if(ob == k.ob)
return memcmp(id+1, k.id+1, sizeof(int)*(OBJECT_PERSISTENT_ID_SIZE-1)) < 0;
return false;
}
};
CCL_NAMESPACE_END
#endif /* __BLENDER_UTIL_H__ */