blender/intern/cycles/kernel/svm/svm.h
Thomas Dinges d539bd4672 Cycles / Sky Texture:
* Added a new sky model by Hosek and Wilkie: "An Analytic Model for Full Spectral Sky-Dome Radiance" http://cgg.mff.cuni.cz/projects/SkylightModelling/ 

Example render:
http://archive.dingto.org/2013/blender/code/new_sky_model.png
Documentation:
http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Nodes/Textures#Sky_Texture

Details:
* User can choose between the older Preetham and the new Hosek / Wilkie model via a dropdown. For older files, backwards compatibility is preserved. When we add a new Sky texture, it defaults to the new model though. 
* For the new model, you can specify the ground albedo (see documentation for details). 
* Turbidity now has a UI soft range between 1 and 10, higher values (up to 30) are still possible, but can result in weird colors or black. 
* Removed the limitation of 1 sky texture per SVM stack. (Patch by Lukas Tönne, thanks!)

Thanks to Brecht for code review and some help! 

This is part of my GSoC 2013 project, SVN merge of r59214, r59220, r59251 and r59601.
2013-08-28 14:11:28 +00:00

459 lines
13 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License
*/
#ifndef __SVM_H__
#define __SVM_H__
/* Shader Virtual Machine
*
* A shader is a list of nodes to be executed. These are simply read one after
* the other and executed, using an node counter. Each node and it's associated
* data is encoded as one or more uint4's in a 1D texture. If the data is larger
* than an uint4, the node can increase the node counter to compensate for this.
* Floats are encoded as int and then converted to float again.
*
* Nodes write their output into a stack. All stack data in the stack is
* floats, since it's all factors, colors and vectors. The stack will be stored
* in local memory on the GPU, as it would take too many register and indexes in
* ways not known at compile time. This seems the only solution even though it
* may be slow, with two positive factors. If the same shader is being executed,
* memory access will be coalesced, and on fermi cards, memory will actually be
* cached.
*
* The result of shader execution will be a single closure. This means the
* closure type, associated label, data and weight. Sampling from multiple
* closures is supported through the mix closure node, the logic for that is
* mostly taken care of in the SVM compiler.
*/
#include "svm_types.h"
CCL_NAMESPACE_BEGIN
/* Stack */
__device_inline float3 stack_load_float3(float *stack, uint a)
{
kernel_assert(a+2 < SVM_STACK_SIZE);
return make_float3(stack[a+0], stack[a+1], stack[a+2]);
}
__device_inline void stack_store_float3(float *stack, uint a, float3 f)
{
kernel_assert(a+2 < SVM_STACK_SIZE);
stack[a+0] = f.x;
stack[a+1] = f.y;
stack[a+2] = f.z;
}
__device_inline float stack_load_float(float *stack, uint a)
{
kernel_assert(a < SVM_STACK_SIZE);
return stack[a];
}
__device_inline float stack_load_float_default(float *stack, uint a, uint value)
{
return (a == (uint)SVM_STACK_INVALID)? __uint_as_float(value): stack_load_float(stack, a);
}
__device_inline void stack_store_float(float *stack, uint a, float f)
{
kernel_assert(a < SVM_STACK_SIZE);
stack[a] = f;
}
__device_inline int stack_load_int(float *stack, uint a)
{
kernel_assert(a < SVM_STACK_SIZE);
return __float_as_int(stack[a]);
}
__device_inline float stack_load_int_default(float *stack, uint a, uint value)
{
return (a == (uint)SVM_STACK_INVALID)? (int)value: stack_load_int(stack, a);
}
__device_inline void stack_store_int(float *stack, uint a, int i)
{
kernel_assert(a < SVM_STACK_SIZE);
stack[a] = __int_as_float(i);
}
__device_inline bool stack_valid(uint a)
{
return a != (uint)SVM_STACK_INVALID;
}
/* Reading Nodes */
__device_inline uint4 read_node(KernelGlobals *kg, int *offset)
{
uint4 node = kernel_tex_fetch(__svm_nodes, *offset);
(*offset)++;
return node;
}
__device_inline float4 read_node_float(KernelGlobals *kg, int *offset)
{
uint4 node = kernel_tex_fetch(__svm_nodes, *offset);
float4 f = make_float4(__uint_as_float(node.x), __uint_as_float(node.y), __uint_as_float(node.z), __uint_as_float(node.w));
(*offset)++;
return f;
}
__device_inline float4 fetch_node_float(KernelGlobals *kg, int offset)
{
uint4 node = kernel_tex_fetch(__svm_nodes, offset);
return make_float4(__uint_as_float(node.x), __uint_as_float(node.y), __uint_as_float(node.z), __uint_as_float(node.w));
}
__device_inline void decode_node_uchar4(uint i, uint *x, uint *y, uint *z, uint *w)
{
if(x) *x = (i & 0xFF);
if(y) *y = ((i >> 8) & 0xFF);
if(z) *z = ((i >> 16) & 0xFF);
if(w) *w = ((i >> 24) & 0xFF);
}
CCL_NAMESPACE_END
/* Nodes */
#include "svm_noise.h"
#include "svm_texture.h"
#include "svm_attribute.h"
#include "svm_gradient.h"
#include "svm_blackbody.h"
#include "svm_closure.h"
#include "svm_noisetex.h"
#include "svm_convert.h"
#include "svm_displace.h"
#include "svm_fresnel.h"
#include "svm_wireframe.h"
#include "svm_wavelength.h"
#include "svm_camera.h"
#include "svm_geometry.h"
#include "svm_hsv.h"
#include "svm_image.h"
#include "svm_gamma.h"
#include "svm_brightness.h"
#include "svm_invert.h"
#include "svm_light_path.h"
#include "svm_magic.h"
#include "svm_mapping.h"
#include "svm_normal.h"
#include "svm_wave.h"
#include "svm_math.h"
#include "svm_mix.h"
#include "svm_ramp.h"
#include "svm_sepcomb_rgb.h"
#include "svm_sepcomb_hsv.h"
#include "svm_musgrave.h"
#include "svm_sky.h"
#include "svm_tex_coord.h"
#include "svm_value.h"
#include "svm_voronoi.h"
#include "svm_checker.h"
#include "svm_brick.h"
#include "svm_vector_transform.h"
CCL_NAMESPACE_BEGIN
/* Main Interpreter Loop */
__device_noinline void svm_eval_nodes(KernelGlobals *kg, ShaderData *sd, ShaderType type, float randb, int path_flag)
{
float stack[SVM_STACK_SIZE];
float closure_weight = 1.0f;
int offset = sd->shader & SHADER_MASK;
#ifdef __MULTI_CLOSURE__
sd->num_closure = 0;
sd->randb_closure = randb;
#else
sd->closure.type = NBUILTIN_CLOSURES;
#endif
while(1) {
uint4 node = read_node(kg, &offset);
switch(node.x) {
case NODE_SHADER_JUMP: {
if(type == SHADER_TYPE_SURFACE) offset = node.y;
else if(type == SHADER_TYPE_VOLUME) offset = node.z;
else if(type == SHADER_TYPE_DISPLACEMENT) offset = node.w;
else return;
break;
}
case NODE_CLOSURE_BSDF:
svm_node_closure_bsdf(kg, sd, stack, node, randb, path_flag, &offset);
break;
case NODE_CLOSURE_EMISSION:
svm_node_closure_emission(sd, stack, node);
break;
case NODE_CLOSURE_BACKGROUND:
svm_node_closure_background(sd, stack, node);
break;
case NODE_CLOSURE_HOLDOUT:
svm_node_closure_holdout(sd, stack, node);
break;
case NODE_CLOSURE_AMBIENT_OCCLUSION:
svm_node_closure_ambient_occlusion(sd, stack, node);
break;
case NODE_CLOSURE_VOLUME:
svm_node_closure_volume(kg, sd, stack, node, path_flag);
break;
case NODE_CLOSURE_SET_WEIGHT:
svm_node_closure_set_weight(sd, node.y, node.z, node.w);
break;
case NODE_CLOSURE_WEIGHT:
svm_node_closure_weight(sd, stack, node.y);
break;
case NODE_EMISSION_WEIGHT:
svm_node_emission_weight(kg, sd, stack, node);
break;
case NODE_MIX_CLOSURE:
svm_node_mix_closure(sd, stack, node, &offset, &randb);
break;
case NODE_ADD_CLOSURE:
svm_node_add_closure(sd, stack, node.y, node.z, &offset, &randb, &closure_weight);
break;
case NODE_JUMP:
offset = node.y;
break;
#ifdef __IMAGE_TEXTURES__
case NODE_TEX_IMAGE:
svm_node_tex_image(kg, sd, stack, node);
break;
case NODE_TEX_IMAGE_BOX:
svm_node_tex_image_box(kg, sd, stack, node);
break;
case NODE_TEX_ENVIRONMENT:
svm_node_tex_environment(kg, sd, stack, node);
break;
#endif
#ifdef __PROCEDURAL_TEXTURES__
case NODE_TEX_SKY:
svm_node_tex_sky(kg, sd, stack, node, &offset);
break;
case NODE_TEX_GRADIENT:
svm_node_tex_gradient(sd, stack, node);
break;
case NODE_TEX_NOISE:
svm_node_tex_noise(kg, sd, stack, node, &offset);
break;
case NODE_TEX_VORONOI:
svm_node_tex_voronoi(kg, sd, stack, node, &offset);
break;
case NODE_TEX_MUSGRAVE:
svm_node_tex_musgrave(kg, sd, stack, node, &offset);
break;
case NODE_TEX_WAVE:
svm_node_tex_wave(kg, sd, stack, node, &offset);
break;
case NODE_TEX_MAGIC:
svm_node_tex_magic(kg, sd, stack, node, &offset);
break;
case NODE_TEX_CHECKER:
svm_node_tex_checker(kg, sd, stack, node);
break;
case NODE_TEX_BRICK:
svm_node_tex_brick(kg, sd, stack, node, &offset);
break;
#endif
case NODE_CAMERA:
svm_node_camera(kg, sd, stack, node.y, node.z, node.w);
break;
case NODE_GEOMETRY:
svm_node_geometry(kg, sd, stack, node.y, node.z);
break;
#ifdef __EXTRA_NODES__
case NODE_GEOMETRY_BUMP_DX:
svm_node_geometry_bump_dx(kg, sd, stack, node.y, node.z);
break;
case NODE_GEOMETRY_BUMP_DY:
svm_node_geometry_bump_dy(kg, sd, stack, node.y, node.z);
break;
case NODE_LIGHT_PATH:
svm_node_light_path(sd, stack, node.y, node.z, path_flag);
break;
case NODE_OBJECT_INFO:
svm_node_object_info(kg, sd, stack, node.y, node.z);
break;
case NODE_PARTICLE_INFO:
svm_node_particle_info(kg, sd, stack, node.y, node.z);
break;
#ifdef __HAIR__
case NODE_HAIR_INFO:
svm_node_hair_info(kg, sd, stack, node.y, node.z);
break;
#endif
#endif
case NODE_CONVERT:
svm_node_convert(sd, stack, node.y, node.z, node.w);
break;
case NODE_VALUE_F:
svm_node_value_f(kg, sd, stack, node.y, node.z);
break;
case NODE_VALUE_V:
svm_node_value_v(kg, sd, stack, node.y, &offset);
break;
#ifdef __EXTRA_NODES__
case NODE_INVERT:
svm_node_invert(sd, stack, node.y, node.z, node.w);
break;
case NODE_GAMMA:
svm_node_gamma(sd, stack, node.y, node.z, node.w);
break;
case NODE_BRIGHTCONTRAST:
svm_node_brightness(sd, stack, node.y, node.z, node.w);
break;
case NODE_MIX:
svm_node_mix(kg, sd, stack, node.y, node.z, node.w, &offset);
break;
case NODE_SEPARATE_RGB:
svm_node_separate_rgb(sd, stack, node.y, node.z, node.w);
break;
case NODE_COMBINE_RGB:
svm_node_combine_rgb(sd, stack, node.y, node.z, node.w);
break;
case NODE_SEPARATE_HSV:
svm_node_separate_hsv(kg, sd, stack, node.y, node.z, node.w, &offset);
break;
case NODE_COMBINE_HSV:
svm_node_combine_hsv(kg, sd, stack, node.y, node.z, node.w, &offset);
break;
case NODE_HSV:
svm_node_hsv(kg, sd, stack, node.y, node.z, node.w, &offset);
break;
#endif
case NODE_ATTR:
svm_node_attr(kg, sd, stack, node);
break;
#ifdef __EXTRA_NODES__
case NODE_ATTR_BUMP_DX:
svm_node_attr_bump_dx(kg, sd, stack, node);
break;
case NODE_ATTR_BUMP_DY:
svm_node_attr_bump_dy(kg, sd, stack, node);
break;
#endif
case NODE_FRESNEL:
svm_node_fresnel(sd, stack, node.y, node.z, node.w);
break;
case NODE_LAYER_WEIGHT:
svm_node_layer_weight(sd, stack, node);
break;
#ifdef __EXTRA_NODES__
case NODE_WIREFRAME:
svm_node_wireframe(kg, sd, stack, node.y, node.z, node.w);
break;
case NODE_WAVELENGTH:
svm_node_wavelength(sd, stack, node.y, node.z);
break;
case NODE_BLACKBODY:
svm_node_blackbody(kg, sd, stack, node.y, node.z);
break;
case NODE_SET_DISPLACEMENT:
svm_node_set_displacement(sd, stack, node.y);
break;
case NODE_SET_BUMP:
svm_node_set_bump(kg, sd, stack, node);
break;
case NODE_MATH:
svm_node_math(kg, sd, stack, node.y, node.z, node.w, &offset);
break;
case NODE_VECTOR_MATH:
svm_node_vector_math(kg, sd, stack, node.y, node.z, node.w, &offset);
break;
case NODE_VECTOR_TRANSFORM:
svm_node_vector_transform(kg, sd, stack, node);
break;
case NODE_NORMAL:
svm_node_normal(kg, sd, stack, node.y, node.z, node.w, &offset);
break;
#endif
case NODE_MAPPING:
svm_node_mapping(kg, sd, stack, node.y, node.z, &offset);
break;
case NODE_MIN_MAX:
svm_node_min_max(kg, sd, stack, node.y, node.z, &offset);
break;
case NODE_TEX_COORD:
svm_node_tex_coord(kg, sd, path_flag, stack, node.y, node.z);
break;
#ifdef __EXTRA_NODES__
case NODE_TEX_COORD_BUMP_DX:
svm_node_tex_coord_bump_dx(kg, sd, path_flag, stack, node.y, node.z);
break;
case NODE_TEX_COORD_BUMP_DY:
svm_node_tex_coord_bump_dy(kg, sd, path_flag, stack, node.y, node.z);
break;
case NODE_CLOSURE_SET_NORMAL:
svm_node_set_normal(kg, sd, stack, node.y, node.z );
break;
#endif
case NODE_EMISSION_SET_WEIGHT_TOTAL:
svm_node_emission_set_weight_total(kg, sd, node.y, node.z, node.w);
break;
#ifdef __EXTRA_NODES__
case NODE_RGB_RAMP:
svm_node_rgb_ramp(kg, sd, stack, node, &offset);
break;
case NODE_RGB_CURVES:
svm_node_rgb_curves(kg, sd, stack, node, &offset);
break;
case NODE_VECTOR_CURVES:
svm_node_vector_curves(kg, sd, stack, node, &offset);
break;
case NODE_LIGHT_FALLOFF:
svm_node_light_falloff(sd, stack, node);
break;
#endif
#ifdef __ANISOTROPIC__
case NODE_TANGENT:
svm_node_tangent(kg, sd, stack, node);
break;
#endif
#ifdef __NORMAL_MAP__
case NODE_NORMAL_MAP:
svm_node_normal_map(kg, sd, stack, node);
break;
#endif
case NODE_END:
default:
#ifndef __MULTI_CLOSURE__
sd->closure.weight *= closure_weight;
#endif
return;
}
}
}
CCL_NAMESPACE_END
#endif /* __SVM_H__ */