blender/intern/cycles/device/device.cpp
Brecht Van Lommel 001414fb2f Cycles: delay CUDA and OpenCL initialization to avoid driver crashes.
We've had many reported crashes on Windows where we suspect there is a
corrupted OpenCL driver. The purpose here is to keep Blender generally
usable in such cases.

Now it always shows None / CUDA / OpenCL in the preferences, and only when
selecting one will it reveal if there are any GPUs available. This should
avoid crashes when opening the preferences or on startup.

Differential Revision: https://developer.blender.org/D4265
2019-01-29 17:00:02 +01:00

467 lines
12 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdlib.h>
#include <string.h>
#include "device/device.h"
#include "device/device_intern.h"
#include "util/util_foreach.h"
#include "util/util_half.h"
#include "util/util_logging.h"
#include "util/util_math.h"
#include "util/util_opengl.h"
#include "util/util_time.h"
#include "util/util_system.h"
#include "util/util_types.h"
#include "util/util_vector.h"
#include "util/util_string.h"
CCL_NAMESPACE_BEGIN
bool Device::need_types_update = true;
bool Device::need_devices_update = true;
thread_mutex Device::device_mutex;
vector<DeviceInfo> Device::opencl_devices;
vector<DeviceInfo> Device::cuda_devices;
vector<DeviceInfo> Device::cpu_devices;
vector<DeviceInfo> Device::network_devices;
uint Device::devices_initialized_mask = 0;
/* Device Requested Features */
std::ostream& operator <<(std::ostream &os,
const DeviceRequestedFeatures& requested_features)
{
os << "Experimental features: "
<< (requested_features.experimental ? "On" : "Off") << std::endl;
os << "Max nodes group: " << requested_features.max_nodes_group << std::endl;
/* TODO(sergey): Decode bitflag into list of names. */
os << "Nodes features: " << requested_features.nodes_features << std::endl;
os << "Use Hair: "
<< string_from_bool(requested_features.use_hair) << std::endl;
os << "Use Object Motion: "
<< string_from_bool(requested_features.use_object_motion) << std::endl;
os << "Use Camera Motion: "
<< string_from_bool(requested_features.use_camera_motion) << std::endl;
os << "Use Baking: "
<< string_from_bool(requested_features.use_baking) << std::endl;
os << "Use Subsurface: "
<< string_from_bool(requested_features.use_subsurface) << std::endl;
os << "Use Volume: "
<< string_from_bool(requested_features.use_volume) << std::endl;
os << "Use Branched Integrator: "
<< string_from_bool(requested_features.use_integrator_branched) << std::endl;
os << "Use Patch Evaluation: "
<< string_from_bool(requested_features.use_patch_evaluation) << std::endl;
os << "Use Transparent Shadows: "
<< string_from_bool(requested_features.use_transparent) << std::endl;
os << "Use Principled BSDF: "
<< string_from_bool(requested_features.use_principled) << std::endl;
os << "Use Denoising: "
<< string_from_bool(requested_features.use_denoising) << std::endl;
return os;
}
/* Device */
Device::~Device()
{
if(!background && vertex_buffer != 0) {
glDeleteBuffers(1, &vertex_buffer);
}
}
void Device::draw_pixels(device_memory& rgba, int y, int w, int h, int dx, int dy, int width, int height, bool transparent,
const DeviceDrawParams &draw_params)
{
assert(rgba.type == MEM_PIXELS);
mem_copy_from(rgba, y, w, h, rgba.memory_elements_size(1));
if(transparent) {
glEnable(GL_BLEND);
glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
}
glColor3f(1.0f, 1.0f, 1.0f);
if(rgba.data_type == TYPE_HALF) {
/* for multi devices, this assumes the inefficient method that we allocate
* all pixels on the device even though we only render to a subset */
GLhalf *host_pointer = (GLhalf*)rgba.host_pointer;
float vbuffer[16], *basep;
float *vp = NULL;
host_pointer += 4*y*w;
/* draw half float texture, GLSL shader for display transform assumed to be bound */
GLuint texid;
glGenTextures(1, &texid);
glBindTexture(GL_TEXTURE_2D, texid);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F_ARB, w, h, 0, GL_RGBA, GL_HALF_FLOAT, host_pointer);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glEnable(GL_TEXTURE_2D);
if(draw_params.bind_display_space_shader_cb) {
draw_params.bind_display_space_shader_cb();
}
if(GLEW_VERSION_1_5) {
if(!vertex_buffer)
glGenBuffers(1, &vertex_buffer);
glBindBuffer(GL_ARRAY_BUFFER, vertex_buffer);
/* invalidate old contents - avoids stalling if buffer is still waiting in queue to be rendered */
glBufferData(GL_ARRAY_BUFFER, 16 * sizeof(float), NULL, GL_STREAM_DRAW);
vp = (float *)glMapBuffer(GL_ARRAY_BUFFER, GL_WRITE_ONLY);
basep = NULL;
}
else {
basep = vbuffer;
vp = vbuffer;
}
if(vp) {
/* texture coordinate - vertex pair */
vp[0] = 0.0f;
vp[1] = 0.0f;
vp[2] = dx;
vp[3] = dy;
vp[4] = 1.0f;
vp[5] = 0.0f;
vp[6] = (float)width + dx;
vp[7] = dy;
vp[8] = 1.0f;
vp[9] = 1.0f;
vp[10] = (float)width + dx;
vp[11] = (float)height + dy;
vp[12] = 0.0f;
vp[13] = 1.0f;
vp[14] = dx;
vp[15] = (float)height + dy;
if(vertex_buffer)
glUnmapBuffer(GL_ARRAY_BUFFER);
}
glTexCoordPointer(2, GL_FLOAT, 4 * sizeof(float), basep);
glVertexPointer(2, GL_FLOAT, 4 * sizeof(float), ((char *)basep) + 2 * sizeof(float));
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glDisableClientState(GL_VERTEX_ARRAY);
if(vertex_buffer) {
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
if(draw_params.unbind_display_space_shader_cb) {
draw_params.unbind_display_space_shader_cb();
}
glBindTexture(GL_TEXTURE_2D, 0);
glDisable(GL_TEXTURE_2D);
glDeleteTextures(1, &texid);
}
else {
/* fallback for old graphics cards that don't support GLSL, half float,
* and non-power-of-two textures */
glPixelZoom((float)width/(float)w, (float)height/(float)h);
glRasterPos2f(dx, dy);
uint8_t *pixels = (uint8_t*)rgba.host_pointer;
pixels += 4*y*w;
glDrawPixels(w, h, GL_RGBA, GL_UNSIGNED_BYTE, pixels);
glRasterPos2f(0.0f, 0.0f);
glPixelZoom(1.0f, 1.0f);
}
if(transparent)
glDisable(GL_BLEND);
}
Device *Device::create(DeviceInfo& info, Stats &stats, Profiler &profiler, bool background)
{
Device *device;
switch(info.type) {
case DEVICE_CPU:
device = device_cpu_create(info, stats, profiler, background);
break;
#ifdef WITH_CUDA
case DEVICE_CUDA:
if(device_cuda_init())
device = device_cuda_create(info, stats, profiler, background);
else
device = NULL;
break;
#endif
#ifdef WITH_MULTI
case DEVICE_MULTI:
device = device_multi_create(info, stats, profiler, background);
break;
#endif
#ifdef WITH_NETWORK
case DEVICE_NETWORK:
device = device_network_create(info, stats, profiler, "127.0.0.1");
break;
#endif
#ifdef WITH_OPENCL
case DEVICE_OPENCL:
if(device_opencl_init())
device = device_opencl_create(info, stats, profiler, background);
else
device = NULL;
break;
#endif
default:
return NULL;
}
return device;
}
DeviceType Device::type_from_string(const char *name)
{
if(strcmp(name, "CPU") == 0)
return DEVICE_CPU;
else if(strcmp(name, "CUDA") == 0)
return DEVICE_CUDA;
else if(strcmp(name, "OPENCL") == 0)
return DEVICE_OPENCL;
else if(strcmp(name, "NETWORK") == 0)
return DEVICE_NETWORK;
else if(strcmp(name, "MULTI") == 0)
return DEVICE_MULTI;
return DEVICE_NONE;
}
string Device::string_from_type(DeviceType type)
{
if(type == DEVICE_CPU)
return "CPU";
else if(type == DEVICE_CUDA)
return "CUDA";
else if(type == DEVICE_OPENCL)
return "OPENCL";
else if(type == DEVICE_NETWORK)
return "NETWORK";
else if(type == DEVICE_MULTI)
return "MULTI";
return "";
}
vector<DeviceType> Device::available_types()
{
vector<DeviceType> types;
types.push_back(DEVICE_CPU);
#ifdef WITH_CUDA
types.push_back(DEVICE_CUDA);
#endif
#ifdef WITH_OPENCL
types.push_back(DEVICE_OPENCL);
#endif
#ifdef WITH_NETWORK
types.push_back(DEVICE_NETWORK);
#endif
return types;
}
vector<DeviceInfo> Device::available_devices(uint mask)
{
/* Lazy initialize devices. On some platforms OpenCL or CUDA drivers can
* be broken and cause crashes when only trying to get device info, so
* we don't want to do any initialization until the user chooses to. */
thread_scoped_lock lock(device_mutex);
vector<DeviceInfo> devices;
#ifdef WITH_OPENCL
if(mask & DEVICE_MASK_OPENCL) {
if(!(devices_initialized_mask & DEVICE_MASK_OPENCL)) {
if(device_opencl_init()) {
device_opencl_info(opencl_devices);
}
devices_initialized_mask |= DEVICE_MASK_OPENCL;
}
foreach(DeviceInfo& info, opencl_devices) {
devices.push_back(info);
}
}
#endif
#ifdef WITH_CUDA
if(mask & DEVICE_MASK_CUDA) {
if(!(devices_initialized_mask & DEVICE_MASK_CUDA)) {
if(device_cuda_init()) {
device_cuda_info(cuda_devices);
}
devices_initialized_mask |= DEVICE_MASK_CUDA;
}
foreach(DeviceInfo& info, cuda_devices) {
devices.push_back(info);
}
}
#endif
if(mask & DEVICE_MASK_CPU) {
if(!(devices_initialized_mask & DEVICE_MASK_CPU)) {
device_cpu_info(cpu_devices);
devices_initialized_mask |= DEVICE_MASK_CPU;
}
foreach(DeviceInfo& info, cpu_devices) {
devices.push_back(info);
}
}
#ifdef WITH_NETWORK
if(mask & DEVICE_MASK_NETWORK) {
if(!(devices_initialized_mask & DEVICE_MASK_NETWORK)) {
device_network_info(network_devices);
devices_initialized_mask |= DEVICE_MASK_NETWORK;
}
foreach(DeviceInfo& info, network_devices) {
devices.push_back(info);
}
}
#endif
return devices;
}
string Device::device_capabilities(uint mask)
{
thread_scoped_lock lock(device_mutex);
string capabilities = "";
if(mask & DEVICE_MASK_CPU) {
capabilities += "\nCPU device capabilities: ";
capabilities += device_cpu_capabilities() + "\n";
}
#ifdef WITH_OPENCL
if(mask & DEVICE_MASK_OPENCL) {
if(device_opencl_init()) {
capabilities += "\nOpenCL device capabilities:\n";
capabilities += device_opencl_capabilities();
}
}
#endif
#ifdef WITH_CUDA
if(mask & DEVICE_MASK_CUDA) {
if(device_cuda_init()) {
capabilities += "\nCUDA device capabilities:\n";
capabilities += device_cuda_capabilities();
}
}
#endif
return capabilities;
}
DeviceInfo Device::get_multi_device(const vector<DeviceInfo>& subdevices, int threads, bool background)
{
assert(subdevices.size() > 0);
if(subdevices.size() == 1) {
/* No multi device needed. */
return subdevices.front();
}
DeviceInfo info;
info.type = DEVICE_MULTI;
info.id = "MULTI";
info.description = "Multi Device";
info.num = 0;
info.has_half_images = true;
info.has_volume_decoupled = true;
info.has_osl = true;
info.has_profiling = true;
foreach(const DeviceInfo &device, subdevices) {
/* Ensure CPU device does not slow down GPU. */
if(device.type == DEVICE_CPU && subdevices.size() > 1) {
if(background) {
int orig_cpu_threads = (threads)? threads: system_cpu_thread_count();
int cpu_threads = max(orig_cpu_threads - (subdevices.size() - 1), 0);
VLOG(1) << "CPU render threads reduced from "
<< orig_cpu_threads << " to " << cpu_threads
<< ", to dedicate to GPU.";
if(cpu_threads >= 1) {
DeviceInfo cpu_device = device;
cpu_device.cpu_threads = cpu_threads;
info.multi_devices.push_back(cpu_device);
}
else {
continue;
}
}
else {
VLOG(1) << "CPU render threads disabled for interactive render.";
continue;
}
}
else {
info.multi_devices.push_back(device);
}
/* Accumulate device info. */
info.has_half_images &= device.has_half_images;
info.has_volume_decoupled &= device.has_volume_decoupled;
info.has_osl &= device.has_osl;
info.has_profiling &= device.has_profiling;
}
return info;
}
void Device::tag_update()
{
free_memory();
}
void Device::free_memory()
{
devices_initialized_mask = 0;
cuda_devices.clear();
opencl_devices.clear();
cpu_devices.clear();
network_devices.clear();
}
CCL_NAMESPACE_END