blender/intern/cycles/render/mesh_subdivision.cpp
Kévin Dietrich 31a620b942 Cycles API: encapsulate Node socket members
This encapsulates Node socket members behind a set of specific methods;
as such it is no longer possible to directly access Node class members
from exporters and parts of Cycles.

The methods are defined via the NODE_SOCKET_API macros in `graph/
node.h`, and are for getting or setting a specific socket's value, as
well as querying or modifying the state of its update flag.

The setters will check whether the value has changed and tag the socket
as modified appropriately. This will let us know how a Node has changed
and what to update, which is the first concrete step toward a more
granular scene update system.

Since the setters will tag the Node sockets as modified when passed
different data, this patch also removes the various modified methods
on Nodes in favor of Node::is_modified which checks the sockets'
update flags status.

Reviewed By: brecht

Maniphest Tasks: T79174

Differential Revision: https://developer.blender.org/D8544
2020-11-04 13:03:33 +01:00

649 lines
19 KiB
C++

/*
* Copyright 2011-2016 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "render/attribute.h"
#include "render/camera.h"
#include "render/mesh.h"
#include "subd/subd_patch.h"
#include "subd/subd_patch_table.h"
#include "subd/subd_split.h"
#include "util/util_algorithm.h"
#include "util/util_foreach.h"
#include "util/util_hash.h"
CCL_NAMESPACE_BEGIN
#ifdef WITH_OPENSUBDIV
CCL_NAMESPACE_END
# include <opensubdiv/far/patchMap.h>
# include <opensubdiv/far/patchTableFactory.h>
# include <opensubdiv/far/primvarRefiner.h>
# include <opensubdiv/far/topologyRefinerFactory.h>
/* specializations of TopologyRefinerFactory for ccl::Mesh */
namespace OpenSubdiv {
namespace OPENSUBDIV_VERSION {
namespace Far {
template<>
bool TopologyRefinerFactory<ccl::Mesh>::resizeComponentTopology(TopologyRefiner &refiner,
ccl::Mesh const &mesh)
{
setNumBaseVertices(refiner, mesh.get_verts().size());
setNumBaseFaces(refiner, mesh.get_num_subd_faces());
for (int i = 0; i < mesh.get_num_subd_faces(); i++) {
setNumBaseFaceVertices(refiner, i, mesh.get_subd_num_corners()[i]);
}
return true;
}
template<>
bool TopologyRefinerFactory<ccl::Mesh>::assignComponentTopology(TopologyRefiner &refiner,
ccl::Mesh const &mesh)
{
const ccl::array<int> &subd_face_corners = mesh.get_subd_face_corners();
const ccl::array<int> &subd_start_corner = mesh.get_subd_start_corner();
const ccl::array<int> &subd_num_corners = mesh.get_subd_num_corners();
for (int i = 0; i < mesh.get_num_subd_faces(); i++) {
IndexArray face_verts = getBaseFaceVertices(refiner, i);
int start_corner = subd_start_corner[i];
int *corner = &subd_face_corners[start_corner];
for (int j = 0; j < subd_num_corners[i]; j++, corner++) {
face_verts[j] = *corner;
}
}
return true;
}
template<>
bool TopologyRefinerFactory<ccl::Mesh>::assignComponentTags(TopologyRefiner &refiner,
ccl::Mesh const &mesh)
{
size_t num_creases = mesh.get_subd_creases_weight().size();
for (int i = 0; i < num_creases; i++) {
ccl::Mesh::SubdEdgeCrease crease = mesh.get_subd_crease(i);
Index edge = findBaseEdge(refiner, crease.v[0], crease.v[1]);
if (edge != INDEX_INVALID) {
setBaseEdgeSharpness(refiner, edge, crease.crease * 10.0f);
}
}
for (int i = 0; i < mesh.get_verts().size(); i++) {
ConstIndexArray vert_edges = getBaseVertexEdges(refiner, i);
if (vert_edges.size() == 2) {
float sharpness = refiner.getLevel(0).getEdgeSharpness(vert_edges[0]);
sharpness = ccl::min(sharpness, refiner.getLevel(0).getEdgeSharpness(vert_edges[1]));
setBaseVertexSharpness(refiner, i, sharpness);
}
}
return true;
}
template<>
bool TopologyRefinerFactory<ccl::Mesh>::assignFaceVaryingTopology(TopologyRefiner & /*refiner*/,
ccl::Mesh const & /*mesh*/)
{
return true;
}
template<>
void TopologyRefinerFactory<ccl::Mesh>::reportInvalidTopology(TopologyError /*err_code*/,
char const * /*msg*/,
ccl::Mesh const & /*mesh*/)
{
}
} /* namespace Far */
} /* namespace OPENSUBDIV_VERSION */
} /* namespace OpenSubdiv */
CCL_NAMESPACE_BEGIN
using namespace OpenSubdiv;
/* struct that implements OpenSubdiv's vertex interface */
template<typename T> struct OsdValue {
T value;
OsdValue()
{
}
void Clear(void * = 0)
{
memset(&value, 0, sizeof(T));
}
void AddWithWeight(OsdValue<T> const &src, float weight)
{
value += src.value * weight;
}
};
template<> void OsdValue<uchar4>::AddWithWeight(OsdValue<uchar4> const &src, float weight)
{
for (int i = 0; i < 4; i++) {
value[i] += (uchar)(src.value[i] * weight);
}
}
/* class for holding OpenSubdiv data used during tessellation */
class OsdData {
Mesh *mesh;
vector<OsdValue<float3>> verts;
Far::TopologyRefiner *refiner;
Far::PatchTable *patch_table;
Far::PatchMap *patch_map;
public:
OsdData() : mesh(NULL), refiner(NULL), patch_table(NULL), patch_map(NULL)
{
}
~OsdData()
{
delete refiner;
delete patch_table;
delete patch_map;
}
void build_from_mesh(Mesh *mesh_)
{
mesh = mesh_;
/* type and options */
Sdc::SchemeType type = Sdc::SCHEME_CATMARK;
Sdc::Options options;
options.SetVtxBoundaryInterpolation(Sdc::Options::VTX_BOUNDARY_EDGE_ONLY);
/* create refiner */
refiner = Far::TopologyRefinerFactory<Mesh>::Create(
*mesh, Far::TopologyRefinerFactory<Mesh>::Options(type, options));
/* adaptive refinement */
int max_isolation = calculate_max_isolation();
refiner->RefineAdaptive(Far::TopologyRefiner::AdaptiveOptions(max_isolation));
/* create patch table */
Far::PatchTableFactory::Options patch_options;
patch_options.endCapType = Far::PatchTableFactory::Options::ENDCAP_GREGORY_BASIS;
patch_table = Far::PatchTableFactory::Create(*refiner, patch_options);
/* interpolate verts */
int num_refiner_verts = refiner->GetNumVerticesTotal();
int num_local_points = patch_table->GetNumLocalPoints();
verts.resize(num_refiner_verts + num_local_points);
for (int i = 0; i < mesh->get_verts().size(); i++) {
verts[i].value = mesh->get_verts()[i];
}
OsdValue<float3> *src = verts.data();
for (int i = 0; i < refiner->GetMaxLevel(); i++) {
OsdValue<float3> *dest = src + refiner->GetLevel(i).GetNumVertices();
Far::PrimvarRefiner(*refiner).Interpolate(i + 1, src, dest);
src = dest;
}
if (num_local_points) {
patch_table->ComputeLocalPointValues(&verts[0], &verts[num_refiner_verts]);
}
/* create patch map */
patch_map = new Far::PatchMap(*patch_table);
}
void subdivide_attribute(Attribute &attr)
{
Far::PrimvarRefiner primvar_refiner(*refiner);
if (attr.element == ATTR_ELEMENT_VERTEX) {
int num_refiner_verts = refiner->GetNumVerticesTotal();
int num_local_points = patch_table->GetNumLocalPoints();
attr.resize(num_refiner_verts + num_local_points);
attr.flags |= ATTR_FINAL_SIZE;
char *src = attr.buffer.data();
for (int i = 0; i < refiner->GetMaxLevel(); i++) {
char *dest = src + refiner->GetLevel(i).GetNumVertices() * attr.data_sizeof();
if (attr.same_storage(attr.type, TypeDesc::TypeFloat)) {
primvar_refiner.Interpolate(i + 1, (OsdValue<float> *)src, (OsdValue<float> *&)dest);
}
else if (attr.same_storage(attr.type, TypeFloat2)) {
primvar_refiner.Interpolate(i + 1, (OsdValue<float2> *)src, (OsdValue<float2> *&)dest);
}
else {
primvar_refiner.Interpolate(i + 1, (OsdValue<float4> *)src, (OsdValue<float4> *&)dest);
}
src = dest;
}
if (num_local_points) {
if (attr.same_storage(attr.type, TypeDesc::TypeFloat)) {
patch_table->ComputeLocalPointValues(
(OsdValue<float> *)&attr.buffer[0],
(OsdValue<float> *)&attr.buffer[num_refiner_verts * attr.data_sizeof()]);
}
else if (attr.same_storage(attr.type, TypeFloat2)) {
patch_table->ComputeLocalPointValues(
(OsdValue<float2> *)&attr.buffer[0],
(OsdValue<float2> *)&attr.buffer[num_refiner_verts * attr.data_sizeof()]);
}
else {
patch_table->ComputeLocalPointValues(
(OsdValue<float4> *)&attr.buffer[0],
(OsdValue<float4> *)&attr.buffer[num_refiner_verts * attr.data_sizeof()]);
}
}
}
else if (attr.element == ATTR_ELEMENT_CORNER || attr.element == ATTR_ELEMENT_CORNER_BYTE) {
// TODO(mai): fvar interpolation
}
}
int calculate_max_isolation()
{
/* loop over all edges to find longest in screen space */
const Far::TopologyLevel &level = refiner->GetLevel(0);
const SubdParams *subd_params = mesh->get_subd_params();
Transform objecttoworld = subd_params->objecttoworld;
Camera *cam = subd_params->camera;
float longest_edge = 0.0f;
for (size_t i = 0; i < level.GetNumEdges(); i++) {
Far::ConstIndexArray verts = level.GetEdgeVertices(i);
float3 a = mesh->get_verts()[verts[0]];
float3 b = mesh->get_verts()[verts[1]];
float edge_len;
if (cam) {
a = transform_point(&objecttoworld, a);
b = transform_point(&objecttoworld, b);
edge_len = len(a - b) / cam->world_to_raster_size((a + b) * 0.5f);
}
else {
edge_len = len(a - b);
}
longest_edge = max(longest_edge, edge_len);
}
/* calculate isolation level */
int isolation = (int)(log2f(max(longest_edge / subd_params->dicing_rate, 1.0f)) + 1.0f);
return min(isolation, 10);
}
friend struct OsdPatch;
friend class Mesh;
};
/* ccl::Patch implementation that uses OpenSubdiv for eval */
struct OsdPatch : Patch {
OsdData *osd_data;
OsdPatch()
{
}
OsdPatch(OsdData *data) : osd_data(data)
{
}
void eval(float3 *P, float3 *dPdu, float3 *dPdv, float3 *N, float u, float v)
{
const Far::PatchTable::PatchHandle *handle = osd_data->patch_map->FindPatch(patch_index, u, v);
assert(handle);
float p_weights[20], du_weights[20], dv_weights[20];
osd_data->patch_table->EvaluateBasis(*handle, u, v, p_weights, du_weights, dv_weights);
Far::ConstIndexArray cv = osd_data->patch_table->GetPatchVertices(*handle);
float3 du, dv;
if (P)
*P = make_float3(0.0f, 0.0f, 0.0f);
du = make_float3(0.0f, 0.0f, 0.0f);
dv = make_float3(0.0f, 0.0f, 0.0f);
for (int i = 0; i < cv.size(); i++) {
float3 p = osd_data->verts[cv[i]].value;
if (P)
*P += p * p_weights[i];
du += p * du_weights[i];
dv += p * dv_weights[i];
}
if (dPdu)
*dPdu = du;
if (dPdv)
*dPdv = dv;
if (N) {
*N = cross(du, dv);
float t = len(*N);
*N = (t != 0.0f) ? *N / t : make_float3(0.0f, 0.0f, 1.0f);
}
}
};
#endif
void Mesh::tessellate(DiagSplit *split)
{
/* reset the number of subdivision vertices, in case the Mesh was not cleared
* between calls or data updates */
num_subd_verts = 0;
#ifdef WITH_OPENSUBDIV
OsdData osd_data;
bool need_packed_patch_table = false;
if (subdivision_type == SUBDIVISION_CATMULL_CLARK) {
if (get_num_subd_faces()) {
osd_data.build_from_mesh(this);
}
}
else
#endif
{
/* force linear subdivision if OpenSubdiv is unavailable to avoid
* falling into catmull-clark code paths by accident
*/
subdivision_type = SUBDIVISION_LINEAR;
/* force disable attribute subdivision for same reason as above */
foreach (Attribute &attr, subd_attributes.attributes) {
attr.flags &= ~ATTR_SUBDIVIDED;
}
}
int num_faces = get_num_subd_faces();
Attribute *attr_vN = subd_attributes.find(ATTR_STD_VERTEX_NORMAL);
float3 *vN = (attr_vN) ? attr_vN->data_float3() : NULL;
/* count patches */
int num_patches = 0;
for (int f = 0; f < num_faces; f++) {
SubdFace face = get_subd_face(f);
if (face.is_quad()) {
num_patches++;
}
else {
num_patches += face.num_corners;
}
}
/* build patches from faces */
#ifdef WITH_OPENSUBDIV
if (subdivision_type == SUBDIVISION_CATMULL_CLARK) {
vector<OsdPatch> osd_patches(num_patches, &osd_data);
OsdPatch *patch = osd_patches.data();
for (int f = 0; f < num_faces; f++) {
SubdFace face = get_subd_face(f);
if (face.is_quad()) {
patch->patch_index = face.ptex_offset;
patch->from_ngon = false;
patch->shader = face.shader;
patch++;
}
else {
for (int corner = 0; corner < face.num_corners; corner++) {
patch->patch_index = face.ptex_offset + corner;
patch->from_ngon = true;
patch->shader = face.shader;
patch++;
}
}
}
/* split patches */
split->split_patches(osd_patches.data(), sizeof(OsdPatch));
}
else
#endif
{
vector<LinearQuadPatch> linear_patches(num_patches);
LinearQuadPatch *patch = linear_patches.data();
for (int f = 0; f < num_faces; f++) {
SubdFace face = get_subd_face(f);
if (face.is_quad()) {
float3 *hull = patch->hull;
float3 *normals = patch->normals;
patch->patch_index = face.ptex_offset;
patch->from_ngon = false;
for (int i = 0; i < 4; i++) {
hull[i] = verts[subd_face_corners[face.start_corner + i]];
}
if (face.smooth) {
for (int i = 0; i < 4; i++) {
normals[i] = vN[subd_face_corners[face.start_corner + i]];
}
}
else {
float3 N = face.normal(this);
for (int i = 0; i < 4; i++) {
normals[i] = N;
}
}
swap(hull[2], hull[3]);
swap(normals[2], normals[3]);
patch->shader = face.shader;
patch++;
}
else {
/* ngon */
float3 center_vert = make_float3(0.0f, 0.0f, 0.0f);
float3 center_normal = make_float3(0.0f, 0.0f, 0.0f);
float inv_num_corners = 1.0f / float(face.num_corners);
for (int corner = 0; corner < face.num_corners; corner++) {
center_vert += verts[subd_face_corners[face.start_corner + corner]] * inv_num_corners;
center_normal += vN[subd_face_corners[face.start_corner + corner]] * inv_num_corners;
}
for (int corner = 0; corner < face.num_corners; corner++) {
float3 *hull = patch->hull;
float3 *normals = patch->normals;
patch->patch_index = face.ptex_offset + corner;
patch->from_ngon = true;
patch->shader = face.shader;
hull[0] =
verts[subd_face_corners[face.start_corner + mod(corner + 0, face.num_corners)]];
hull[1] =
verts[subd_face_corners[face.start_corner + mod(corner + 1, face.num_corners)]];
hull[2] =
verts[subd_face_corners[face.start_corner + mod(corner - 1, face.num_corners)]];
hull[3] = center_vert;
hull[1] = (hull[1] + hull[0]) * 0.5;
hull[2] = (hull[2] + hull[0]) * 0.5;
if (face.smooth) {
normals[0] =
vN[subd_face_corners[face.start_corner + mod(corner + 0, face.num_corners)]];
normals[1] =
vN[subd_face_corners[face.start_corner + mod(corner + 1, face.num_corners)]];
normals[2] =
vN[subd_face_corners[face.start_corner + mod(corner - 1, face.num_corners)]];
normals[3] = center_normal;
normals[1] = (normals[1] + normals[0]) * 0.5;
normals[2] = (normals[2] + normals[0]) * 0.5;
}
else {
float3 N = face.normal(this);
for (int i = 0; i < 4; i++) {
normals[i] = N;
}
}
patch++;
}
}
}
/* split patches */
split->split_patches(linear_patches.data(), sizeof(LinearQuadPatch));
}
/* interpolate center points for attributes */
foreach (Attribute &attr, subd_attributes.attributes) {
#ifdef WITH_OPENSUBDIV
if (subdivision_type == SUBDIVISION_CATMULL_CLARK && attr.flags & ATTR_SUBDIVIDED) {
if (attr.element == ATTR_ELEMENT_CORNER || attr.element == ATTR_ELEMENT_CORNER_BYTE) {
/* keep subdivision for corner attributes disabled for now */
attr.flags &= ~ATTR_SUBDIVIDED;
}
else if (get_num_subd_faces()) {
osd_data.subdivide_attribute(attr);
need_packed_patch_table = true;
continue;
}
}
#endif
char *data = attr.data();
size_t stride = attr.data_sizeof();
int ngons = 0;
switch (attr.element) {
case ATTR_ELEMENT_VERTEX: {
for (int f = 0; f < num_faces; f++) {
SubdFace face = get_subd_face(f);
if (!face.is_quad()) {
char *center = data + (verts.size() - num_subd_verts + ngons) * stride;
attr.zero_data(center);
float inv_num_corners = 1.0f / float(face.num_corners);
for (int corner = 0; corner < face.num_corners; corner++) {
attr.add_with_weight(center,
data + subd_face_corners[face.start_corner + corner] * stride,
inv_num_corners);
}
ngons++;
}
}
} break;
case ATTR_ELEMENT_VERTEX_MOTION: {
// TODO(mai): implement
} break;
case ATTR_ELEMENT_CORNER: {
for (int f = 0; f < num_faces; f++) {
SubdFace face = get_subd_face(f);
if (!face.is_quad()) {
char *center = data + (subd_face_corners.size() + ngons) * stride;
attr.zero_data(center);
float inv_num_corners = 1.0f / float(face.num_corners);
for (int corner = 0; corner < face.num_corners; corner++) {
attr.add_with_weight(
center, data + (face.start_corner + corner) * stride, inv_num_corners);
}
ngons++;
}
}
} break;
case ATTR_ELEMENT_CORNER_BYTE: {
for (int f = 0; f < num_faces; f++) {
SubdFace face = get_subd_face(f);
if (!face.is_quad()) {
uchar *center = (uchar *)data + (subd_face_corners.size() + ngons) * stride;
float inv_num_corners = 1.0f / float(face.num_corners);
float4 val = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
for (int corner = 0; corner < face.num_corners; corner++) {
for (int i = 0; i < 4; i++) {
val[i] += float(*(data + (face.start_corner + corner) * stride + i)) *
inv_num_corners;
}
}
for (int i = 0; i < 4; i++) {
center[i] = uchar(min(max(val[i], 0.0f), 255.0f));
}
ngons++;
}
}
} break;
default:
break;
}
}
#ifdef WITH_OPENSUBDIV
/* pack patch tables */
if (need_packed_patch_table) {
delete patch_table;
patch_table = new PackedPatchTable;
patch_table->pack(osd_data.patch_table);
}
#endif
}
CCL_NAMESPACE_END