blender/intern/cycles/render/shader.cpp
Brecht Van Lommel 1b4961b318 OpenColorIO: upgrade to version 2.0.0
Ref T84819

Build System
============

This is an API breaking new version, and the updated code only builds with
OpenColorIO 2.0 and later. Adding backwards compatibility was too complicated.

* Tinyxml was replaced with Expat, adding a new dependency.
* Yaml-cpp is now built as a dependency on Unix, as was already done on Windows.
* Removed currently unused LCMS code.
* Pystring remains built as part of OCIO itself, since it has no good build system.
* Linux and macOS check for the OpenColorIO verison, and disable it if too old.

Ref D10270

Processors and Transforms
=========================

CPU processors now need to be created to do CPU processing. These are cached
internally, but the cache lookup is not fast enough to execute per pixel or
texture sample, so for performance these are now also exposed in the C API.

The C API for transforms will no longer be needed afer all changes, so remove
it to simplify the API and fallback implementation.

Ref D10271

Display Transforms
==================

Needs a bit more manual work constructing the transform. LegacyViewingPipeline
could also have been used, but isn't really any simpler and since it's legacy
we better not rely on it.

We moved more logic into the opencolorio module, to simplify the API. There is
no need to wrap a dozen functions just to be able to do this in C rather than C++.
It's also tightly coupled to the GPU shader logic, and so should be in the same
module.

Ref D10271

GPU Display Shader
==================

To avoid baking exposure and gamma into the GLSL shader and requiring slow
recompiles when tweaking, we manually apply them in the shader. This leads
to some logic duplicaton between the CPU and GPU display processor, but it
seems unavoidable.

Caching was also changed. Previously this was done both on the imbuf and
opencolorio module levels. Now it's all done in the opencolorio module by
simply matching color space names. We no longer use cacheIDs from OpenColorIO
since computing them is expensive, and they are unlikely to match now that
more is baked into the shader code.

Shaders can now use multiple 2D textures, 3D textures and uniforms, rather
than a single 3D texture. So allocating and binding those adds some code.

Color space conversions for blending with overlays is now hardcoded in the
shader. This was using harcoded numbers anyway, if this every becomes a
general OpenColorIO transform it can be changed, but for now there is no
point to add code complexity.

Ref D10273

CIE XYZ
=======

We need standard CIE XYZ values for rendering effects like blackbody emission.
The relation to the scene linear role is based on OpenColorIO configuration.

In OpenColorIO 2.0 configs roles can no longer have the same name as color
spaces, which means our XYZ role and colorspace in the configuration give an
error.

Instead use the new standard aces_interchange role, which relates scene linear
to a known scene referred color space. Compatibility with the old XYZ role is
preserved, if the configuration file has no conflicting names.

Also includes a non-functional change to the configuraton file to use an
XYZ-to-ACES matrix instead of REC709-to-ACES, makes debugging a little easier
since the matrix is the same one we have in the code now and that is also
found easily in the ACES specs.

Ref D10274
2021-02-12 19:06:35 +01:00

887 lines
27 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "device/device.h"
#include "render/alembic.h"
#include "render/background.h"
#include "render/camera.h"
#include "render/colorspace.h"
#include "render/graph.h"
#include "render/integrator.h"
#include "render/light.h"
#include "render/mesh.h"
#include "render/nodes.h"
#include "render/object.h"
#include "render/osl.h"
#include "render/scene.h"
#include "render/shader.h"
#include "render/svm.h"
#include "render/tables.h"
#include "util/util_foreach.h"
#include "util/util_murmurhash.h"
#include "util/util_task.h"
#include "util/util_transform.h"
#ifdef WITH_OCIO
# include <OpenColorIO/OpenColorIO.h>
namespace OCIO = OCIO_NAMESPACE;
#endif
CCL_NAMESPACE_BEGIN
thread_mutex ShaderManager::lookup_table_mutex;
vector<float> ShaderManager::beckmann_table;
bool ShaderManager::beckmann_table_ready = false;
/* Beckmann sampling precomputed table, see bsdf_microfacet.h */
/* 2D slope distribution (alpha = 1.0) */
static float beckmann_table_P22(const float slope_x, const float slope_y)
{
return expf(-(slope_x * slope_x + slope_y * slope_y));
}
/* maximal slope amplitude (range that contains 99.99% of the distribution) */
static float beckmann_table_slope_max()
{
return 6.0;
}
/* MSVC 2015 needs this ugly hack to prevent a codegen bug on x86
* see T50176 for details
*/
#if defined(_MSC_VER) && (_MSC_VER == 1900)
# define MSVC_VOLATILE volatile
#else
# define MSVC_VOLATILE
#endif
/* Paper used: Importance Sampling Microfacet-Based BSDFs with the
* Distribution of Visible Normals. Supplemental Material 2/2.
*
* http://hal.inria.fr/docs/01/00/66/20/ANNEX/supplemental2.pdf
*/
static void beckmann_table_rows(float *table, int row_from, int row_to)
{
/* allocate temporary data */
const int DATA_TMP_SIZE = 512;
vector<double> slope_x(DATA_TMP_SIZE);
vector<double> CDF_P22_omega_i(DATA_TMP_SIZE);
/* loop over incident directions */
for (int index_theta = row_from; index_theta < row_to; index_theta++) {
/* incident vector */
const float cos_theta = index_theta / (BECKMANN_TABLE_SIZE - 1.0f);
const float sin_theta = safe_sqrtf(1.0f - cos_theta * cos_theta);
/* for a given incident vector
* integrate P22_{omega_i}(x_slope, 1, 1), Eq. (10) */
slope_x[0] = (double)-beckmann_table_slope_max();
CDF_P22_omega_i[0] = 0;
for (MSVC_VOLATILE int index_slope_x = 1; index_slope_x < DATA_TMP_SIZE; ++index_slope_x) {
/* slope_x */
slope_x[index_slope_x] = (double)(-beckmann_table_slope_max() +
2.0f * beckmann_table_slope_max() * index_slope_x /
(DATA_TMP_SIZE - 1.0f));
/* dot product with incident vector */
float dot_product = fmaxf(0.0f, -(float)slope_x[index_slope_x] * sin_theta + cos_theta);
/* marginalize P22_{omega_i}(x_slope, 1, 1), Eq. (10) */
float P22_omega_i = 0.0f;
for (int j = 0; j < 100; ++j) {
float slope_y = -beckmann_table_slope_max() +
2.0f * beckmann_table_slope_max() * j * (1.0f / 99.0f);
P22_omega_i += dot_product * beckmann_table_P22((float)slope_x[index_slope_x], slope_y);
}
/* CDF of P22_{omega_i}(x_slope, 1, 1), Eq. (10) */
CDF_P22_omega_i[index_slope_x] = CDF_P22_omega_i[index_slope_x - 1] + (double)P22_omega_i;
}
/* renormalize CDF_P22_omega_i */
for (int index_slope_x = 1; index_slope_x < DATA_TMP_SIZE; ++index_slope_x)
CDF_P22_omega_i[index_slope_x] /= CDF_P22_omega_i[DATA_TMP_SIZE - 1];
/* loop over random number U1 */
int index_slope_x = 0;
for (int index_U = 0; index_U < BECKMANN_TABLE_SIZE; ++index_U) {
const double U = 0.0000001 + 0.9999998 * index_U / (double)(BECKMANN_TABLE_SIZE - 1);
/* inverse CDF_P22_omega_i, solve Eq.(11) */
while (CDF_P22_omega_i[index_slope_x] <= U)
++index_slope_x;
const double interp = (CDF_P22_omega_i[index_slope_x] - U) /
(CDF_P22_omega_i[index_slope_x] - CDF_P22_omega_i[index_slope_x - 1]);
/* store value */
table[index_U + index_theta * BECKMANN_TABLE_SIZE] =
(float)(interp * slope_x[index_slope_x - 1] + (1.0 - interp) * slope_x[index_slope_x]);
}
}
}
#undef MSVC_VOLATILE
static void beckmann_table_build(vector<float> &table)
{
table.resize(BECKMANN_TABLE_SIZE * BECKMANN_TABLE_SIZE);
/* multithreaded build */
TaskPool pool;
for (int i = 0; i < BECKMANN_TABLE_SIZE; i += 8)
pool.push(function_bind(&beckmann_table_rows, &table[0], i, i + 8));
pool.wait_work();
}
/* Shader */
NODE_DEFINE(Shader)
{
NodeType *type = NodeType::add("shader", create);
SOCKET_BOOLEAN(use_mis, "Use MIS", true);
SOCKET_BOOLEAN(use_transparent_shadow, "Use Transparent Shadow", true);
SOCKET_BOOLEAN(heterogeneous_volume, "Heterogeneous Volume", true);
static NodeEnum volume_sampling_method_enum;
volume_sampling_method_enum.insert("distance", VOLUME_SAMPLING_DISTANCE);
volume_sampling_method_enum.insert("equiangular", VOLUME_SAMPLING_EQUIANGULAR);
volume_sampling_method_enum.insert("multiple_importance", VOLUME_SAMPLING_MULTIPLE_IMPORTANCE);
SOCKET_ENUM(volume_sampling_method,
"Volume Sampling Method",
volume_sampling_method_enum,
VOLUME_SAMPLING_MULTIPLE_IMPORTANCE);
static NodeEnum volume_interpolation_method_enum;
volume_interpolation_method_enum.insert("linear", VOLUME_INTERPOLATION_LINEAR);
volume_interpolation_method_enum.insert("cubic", VOLUME_INTERPOLATION_CUBIC);
SOCKET_ENUM(volume_interpolation_method,
"Volume Interpolation Method",
volume_interpolation_method_enum,
VOLUME_INTERPOLATION_LINEAR);
SOCKET_FLOAT(volume_step_rate, "Volume Step Rate", 1.0f);
static NodeEnum displacement_method_enum;
displacement_method_enum.insert("bump", DISPLACE_BUMP);
displacement_method_enum.insert("true", DISPLACE_TRUE);
displacement_method_enum.insert("both", DISPLACE_BOTH);
SOCKET_ENUM(displacement_method, "Displacement Method", displacement_method_enum, DISPLACE_BUMP);
SOCKET_INT(pass_id, "Pass ID", 0);
return type;
}
Shader::Shader() : Node(node_type)
{
pass_id = 0;
graph = NULL;
has_surface = false;
has_surface_transparent = false;
has_surface_emission = false;
has_surface_bssrdf = false;
has_volume = false;
has_displacement = false;
has_bump = false;
has_bssrdf_bump = false;
has_surface_spatial_varying = false;
has_volume_spatial_varying = false;
has_volume_attribute_dependency = false;
has_integrator_dependency = false;
has_volume_connected = false;
prev_volume_step_rate = 0.0f;
displacement_method = DISPLACE_BUMP;
id = -1;
used = false;
need_update_uvs = true;
need_update_attribute = true;
need_update_displacement = true;
}
Shader::~Shader()
{
delete graph;
}
bool Shader::is_constant_emission(float3 *emission)
{
/* If the shader has AOVs, they need to be evaluated, so we can't skip the shader. */
foreach (ShaderNode *node, graph->nodes) {
if (node->special_type == SHADER_SPECIAL_TYPE_OUTPUT_AOV) {
return false;
}
}
ShaderInput *surf = graph->output()->input("Surface");
if (surf->link == NULL) {
return false;
}
if (surf->link->parent->type == EmissionNode::node_type) {
EmissionNode *node = (EmissionNode *)surf->link->parent;
assert(node->input("Color"));
assert(node->input("Strength"));
if (node->input("Color")->link || node->input("Strength")->link) {
return false;
}
*emission = node->get_color() * node->get_strength();
}
else if (surf->link->parent->type == BackgroundNode::node_type) {
BackgroundNode *node = (BackgroundNode *)surf->link->parent;
assert(node->input("Color"));
assert(node->input("Strength"));
if (node->input("Color")->link || node->input("Strength")->link) {
return false;
}
*emission = node->get_color() * node->get_strength();
}
else {
return false;
}
return true;
}
void Shader::set_graph(ShaderGraph *graph_)
{
/* do this here already so that we can detect if mesh or object attributes
* are needed, since the node attribute callbacks check if their sockets
* are connected but proxy nodes should not count */
if (graph_) {
graph_->remove_proxy_nodes();
if (displacement_method != DISPLACE_BUMP) {
graph_->compute_displacement_hash();
}
}
/* update geometry if displacement changed */
if (displacement_method != DISPLACE_BUMP) {
const char *old_hash = (graph) ? graph->displacement_hash.c_str() : "";
const char *new_hash = (graph_) ? graph_->displacement_hash.c_str() : "";
if (strcmp(old_hash, new_hash) != 0) {
need_update_displacement = true;
}
}
/* assign graph */
delete graph;
graph = graph_;
/* Store info here before graph optimization to make sure that
* nodes that get optimized away still count. */
has_volume_connected = (graph->output()->input("Volume")->link != NULL);
}
void Shader::tag_update(Scene *scene)
{
/* update tag */
tag_modified();
scene->shader_manager->tag_update(scene, ShaderManager::SHADER_MODIFIED);
/* if the shader previously was emissive, update light distribution,
* if the new shader is emissive, a light manager update tag will be
* done in the shader manager device update. */
if (use_mis && has_surface_emission)
scene->light_manager->tag_update(scene, LightManager::SHADER_MODIFIED);
/* Special handle of background MIS light for now: for some reason it
* has use_mis set to false. We are quite close to release now, so
* better to be safe.
*/
if (this == scene->background->get_shader(scene)) {
scene->light_manager->need_update_background = true;
if (scene->light_manager->has_background_light(scene)) {
scene->light_manager->tag_update(scene, LightManager::SHADER_MODIFIED);
}
}
/* quick detection of which kind of shaders we have to avoid loading
* e.g. surface attributes when there is only a volume shader. this could
* be more fine grained but it's better than nothing */
OutputNode *output = graph->output();
bool prev_has_volume = has_volume;
has_surface = has_surface || output->input("Surface")->link;
has_volume = has_volume || output->input("Volume")->link;
has_displacement = has_displacement || output->input("Displacement")->link;
/* get requested attributes. this could be optimized by pruning unused
* nodes here already, but that's the job of the shader manager currently,
* and may not be so great for interactive rendering where you temporarily
* disconnect a node */
AttributeRequestSet prev_attributes = attributes;
attributes.clear();
foreach (ShaderNode *node, graph->nodes)
node->attributes(this, &attributes);
if (has_displacement) {
if (displacement_method == DISPLACE_BOTH) {
attributes.add(ATTR_STD_POSITION_UNDISPLACED);
}
if (displacement_method_is_modified()) {
need_update_displacement = true;
scene->geometry_manager->tag_update(scene, GeometryManager::SHADER_DISPLACEMENT_MODIFIED);
scene->object_manager->need_flags_update = true;
}
}
/* compare if the attributes changed, mesh manager will check
* need_update_attribute, update the relevant meshes and clear it. */
if (attributes.modified(prev_attributes)) {
need_update_attribute = true;
scene->geometry_manager->tag_update(scene, GeometryManager::SHADER_ATTRIBUTE_MODIFIED);
scene->procedural_manager->tag_update();
}
if (has_volume != prev_has_volume || volume_step_rate != prev_volume_step_rate) {
scene->geometry_manager->need_flags_update = true;
scene->object_manager->need_flags_update = true;
prev_volume_step_rate = volume_step_rate;
}
}
void Shader::tag_used(Scene *scene)
{
/* if an unused shader suddenly gets used somewhere, it needs to be
* recompiled because it was skipped for compilation before */
if (!used) {
tag_modified();
scene->shader_manager->tag_update(scene, ShaderManager::SHADER_MODIFIED);
}
}
bool Shader::need_update_geometry() const
{
return need_update_uvs || need_update_attribute || need_update_displacement;
}
/* Shader Manager */
ShaderManager::ShaderManager()
{
update_flags = UPDATE_ALL;
beckmann_table_offset = TABLE_OFFSET_INVALID;
init_xyz_transforms();
}
ShaderManager::~ShaderManager()
{
}
ShaderManager *ShaderManager::create(int shadingsystem)
{
ShaderManager *manager;
(void)shadingsystem; /* Ignored when built without OSL. */
#ifdef WITH_OSL
if (shadingsystem == SHADINGSYSTEM_OSL) {
manager = new OSLShaderManager();
}
else
#endif
{
manager = new SVMShaderManager();
}
return manager;
}
uint ShaderManager::get_attribute_id(ustring name)
{
thread_scoped_spin_lock lock(attribute_lock_);
/* get a unique id for each name, for SVM attribute lookup */
AttributeIDMap::iterator it = unique_attribute_id.find(name);
if (it != unique_attribute_id.end())
return it->second;
uint id = (uint)ATTR_STD_NUM + unique_attribute_id.size();
unique_attribute_id[name] = id;
return id;
}
uint ShaderManager::get_attribute_id(AttributeStandard std)
{
return (uint)std;
}
int ShaderManager::get_shader_id(Shader *shader, bool smooth)
{
/* get a shader id to pass to the kernel */
int id = shader->id;
/* smooth flag */
if (smooth)
id |= SHADER_SMOOTH_NORMAL;
/* default flags */
id |= SHADER_CAST_SHADOW | SHADER_AREA_LIGHT;
return id;
}
void ShaderManager::update_shaders_used(Scene *scene)
{
if (!need_update()) {
return;
}
/* figure out which shaders are in use, so SVM/OSL can skip compiling them
* for speed and avoid loading image textures into memory */
uint id = 0;
foreach (Shader *shader, scene->shaders) {
shader->used = false;
shader->id = id++;
}
scene->default_surface->used = true;
scene->default_light->used = true;
scene->default_background->used = true;
scene->default_empty->used = true;
if (scene->background->get_shader())
scene->background->get_shader()->used = true;
#ifdef WITH_ALEMBIC
foreach (Procedural *procedural, scene->procedurals) {
AlembicProcedural *abc_proc = static_cast<AlembicProcedural *>(procedural);
foreach (Node *abc_node, abc_proc->get_objects()) {
AlembicObject *abc_object = static_cast<AlembicObject *>(abc_node);
foreach (Node *node, abc_object->get_used_shaders()) {
Shader *shader = static_cast<Shader *>(node);
shader->used = true;
}
}
}
#endif
foreach (Geometry *geom, scene->geometry)
foreach (Node *node, geom->get_used_shaders()) {
Shader *shader = static_cast<Shader *>(node);
shader->used = true;
}
foreach (Light *light, scene->lights)
if (light->get_shader())
const_cast<Shader *>(light->get_shader())->used = true;
}
void ShaderManager::device_update_common(Device *device,
DeviceScene *dscene,
Scene *scene,
Progress & /*progress*/)
{
dscene->shaders.free();
if (scene->shaders.size() == 0)
return;
KernelShader *kshader = dscene->shaders.alloc(scene->shaders.size());
bool has_volumes = false;
bool has_transparent_shadow = false;
foreach (Shader *shader, scene->shaders) {
uint flag = 0;
if (shader->get_use_mis())
flag |= SD_USE_MIS;
if (shader->has_surface_transparent && shader->get_use_transparent_shadow())
flag |= SD_HAS_TRANSPARENT_SHADOW;
if (shader->has_volume) {
flag |= SD_HAS_VOLUME;
has_volumes = true;
/* todo: this could check more fine grained, to skip useless volumes
* enclosed inside an opaque bsdf.
*/
flag |= SD_HAS_TRANSPARENT_SHADOW;
}
/* in this case we can assume transparent surface */
if (shader->has_volume_connected && !shader->has_surface)
flag |= SD_HAS_ONLY_VOLUME;
if (shader->has_volume) {
if (shader->get_heterogeneous_volume() && shader->has_volume_spatial_varying)
flag |= SD_HETEROGENEOUS_VOLUME;
}
if (shader->has_volume_attribute_dependency)
flag |= SD_NEED_VOLUME_ATTRIBUTES;
if (shader->has_bssrdf_bump)
flag |= SD_HAS_BSSRDF_BUMP;
if (device->info.has_volume_decoupled) {
if (shader->get_volume_sampling_method() == VOLUME_SAMPLING_EQUIANGULAR)
flag |= SD_VOLUME_EQUIANGULAR;
if (shader->get_volume_sampling_method() == VOLUME_SAMPLING_MULTIPLE_IMPORTANCE)
flag |= SD_VOLUME_MIS;
}
if (shader->get_volume_interpolation_method() == VOLUME_INTERPOLATION_CUBIC)
flag |= SD_VOLUME_CUBIC;
if (shader->has_bump)
flag |= SD_HAS_BUMP;
if (shader->get_displacement_method() != DISPLACE_BUMP)
flag |= SD_HAS_DISPLACEMENT;
/* constant emission check */
float3 constant_emission = make_float3(0.0f, 0.0f, 0.0f);
if (shader->is_constant_emission(&constant_emission))
flag |= SD_HAS_CONSTANT_EMISSION;
uint32_t cryptomatte_id = util_murmur_hash3(shader->name.c_str(), shader->name.length(), 0);
/* regular shader */
kshader->flags = flag;
kshader->pass_id = shader->get_pass_id();
kshader->constant_emission[0] = constant_emission.x;
kshader->constant_emission[1] = constant_emission.y;
kshader->constant_emission[2] = constant_emission.z;
kshader->cryptomatte_id = util_hash_to_float(cryptomatte_id);
kshader++;
has_transparent_shadow |= (flag & SD_HAS_TRANSPARENT_SHADOW) != 0;
}
dscene->shaders.copy_to_device();
/* lookup tables */
KernelTables *ktables = &dscene->data.tables;
/* beckmann lookup table */
if (beckmann_table_offset == TABLE_OFFSET_INVALID) {
if (!beckmann_table_ready) {
thread_scoped_lock lock(lookup_table_mutex);
if (!beckmann_table_ready) {
beckmann_table_build(beckmann_table);
beckmann_table_ready = true;
}
}
beckmann_table_offset = scene->lookup_tables->add_table(dscene, beckmann_table);
}
ktables->beckmann_offset = (int)beckmann_table_offset;
/* integrator */
KernelIntegrator *kintegrator = &dscene->data.integrator;
kintegrator->use_volumes = has_volumes;
/* TODO(sergey): De-duplicate with flags set in integrator.cpp. */
kintegrator->transparent_shadows = has_transparent_shadow;
/* film */
KernelFilm *kfilm = &dscene->data.film;
/* color space, needs to be here because e.g. displacement shaders could depend on it */
kfilm->xyz_to_r = float3_to_float4(xyz_to_r);
kfilm->xyz_to_g = float3_to_float4(xyz_to_g);
kfilm->xyz_to_b = float3_to_float4(xyz_to_b);
kfilm->rgb_to_y = float3_to_float4(rgb_to_y);
}
void ShaderManager::device_free_common(Device *, DeviceScene *dscene, Scene *scene)
{
scene->lookup_tables->remove_table(&beckmann_table_offset);
dscene->shaders.free();
}
void ShaderManager::add_default(Scene *scene)
{
/* default surface */
{
ShaderGraph *graph = new ShaderGraph();
DiffuseBsdfNode *diffuse = graph->create_node<DiffuseBsdfNode>();
diffuse->set_color(make_float3(0.8f, 0.8f, 0.8f));
graph->add(diffuse);
graph->connect(diffuse->output("BSDF"), graph->output()->input("Surface"));
Shader *shader = scene->create_node<Shader>();
shader->name = "default_surface";
shader->set_graph(graph);
scene->default_surface = shader;
shader->tag_update(scene);
}
/* default volume */
{
ShaderGraph *graph = new ShaderGraph();
PrincipledVolumeNode *principled = graph->create_node<PrincipledVolumeNode>();
graph->add(principled);
graph->connect(principled->output("Volume"), graph->output()->input("Volume"));
Shader *shader = scene->create_node<Shader>();
shader->name = "default_volume";
shader->set_graph(graph);
scene->default_volume = shader;
shader->tag_update(scene);
}
/* default light */
{
ShaderGraph *graph = new ShaderGraph();
EmissionNode *emission = graph->create_node<EmissionNode>();
emission->set_color(make_float3(0.8f, 0.8f, 0.8f));
emission->set_strength(0.0f);
graph->add(emission);
graph->connect(emission->output("Emission"), graph->output()->input("Surface"));
Shader *shader = scene->create_node<Shader>();
shader->name = "default_light";
shader->set_graph(graph);
scene->default_light = shader;
shader->tag_update(scene);
}
/* default background */
{
ShaderGraph *graph = new ShaderGraph();
Shader *shader = scene->create_node<Shader>();
shader->name = "default_background";
shader->set_graph(graph);
scene->default_background = shader;
shader->tag_update(scene);
}
/* default empty */
{
ShaderGraph *graph = new ShaderGraph();
Shader *shader = scene->create_node<Shader>();
shader->name = "default_empty";
shader->set_graph(graph);
scene->default_empty = shader;
shader->tag_update(scene);
}
}
void ShaderManager::get_requested_graph_features(ShaderGraph *graph,
DeviceRequestedFeatures *requested_features)
{
foreach (ShaderNode *node, graph->nodes) {
requested_features->max_nodes_group = max(requested_features->max_nodes_group,
node->get_group());
requested_features->nodes_features |= node->get_feature();
if (node->special_type == SHADER_SPECIAL_TYPE_CLOSURE) {
BsdfBaseNode *bsdf_node = static_cast<BsdfBaseNode *>(node);
if (CLOSURE_IS_VOLUME(bsdf_node->get_closure_type())) {
requested_features->nodes_features |= NODE_FEATURE_VOLUME;
}
else if (CLOSURE_IS_PRINCIPLED(bsdf_node->get_closure_type())) {
requested_features->use_principled = true;
}
}
if (node->has_surface_bssrdf()) {
requested_features->use_subsurface = true;
}
if (node->has_surface_transparent()) {
requested_features->use_transparent = true;
}
if (node->has_raytrace()) {
requested_features->use_shader_raytrace = true;
}
}
}
void ShaderManager::get_requested_features(Scene *scene,
DeviceRequestedFeatures *requested_features)
{
requested_features->max_nodes_group = NODE_GROUP_LEVEL_0;
requested_features->nodes_features = 0;
for (int i = 0; i < scene->shaders.size(); i++) {
Shader *shader = scene->shaders[i];
if (!shader->used) {
continue;
}
/* Gather requested features from all the nodes from the graph nodes. */
get_requested_graph_features(shader->graph, requested_features);
ShaderNode *output_node = shader->graph->output();
if (output_node->input("Displacement")->link != NULL) {
requested_features->nodes_features |= NODE_FEATURE_BUMP;
if (shader->get_displacement_method() == DISPLACE_BOTH) {
requested_features->nodes_features |= NODE_FEATURE_BUMP_STATE;
requested_features->max_nodes_group = max(requested_features->max_nodes_group,
NODE_GROUP_LEVEL_1);
}
}
/* On top of volume nodes, also check if we need volume sampling because
* e.g. an Emission node would slip through the NODE_FEATURE_VOLUME check */
if (shader->has_volume)
requested_features->use_volume |= true;
}
}
void ShaderManager::free_memory()
{
beckmann_table.free_memory();
#ifdef WITH_OSL
OSLShaderManager::free_memory();
#endif
ColorSpaceManager::free_memory();
}
float ShaderManager::linear_rgb_to_gray(float3 c)
{
return dot(c, rgb_to_y);
}
string ShaderManager::get_cryptomatte_materials(Scene *scene)
{
string manifest = "{";
unordered_set<ustring, ustringHash> materials;
foreach (Shader *shader, scene->shaders) {
if (materials.count(shader->name)) {
continue;
}
materials.insert(shader->name);
uint32_t cryptomatte_id = util_murmur_hash3(shader->name.c_str(), shader->name.length(), 0);
manifest += string_printf("\"%s\":\"%08x\",", shader->name.c_str(), cryptomatte_id);
}
manifest[manifest.size() - 1] = '}';
return manifest;
}
void ShaderManager::tag_update(Scene * /*scene*/, uint32_t /*flag*/)
{
/* update everything for now */
update_flags = ShaderManager::UPDATE_ALL;
}
bool ShaderManager::need_update() const
{
return update_flags != UPDATE_NONE;
}
#ifdef WITH_OCIO
static bool to_scene_linear_transform(OCIO::ConstConfigRcPtr &config,
const char *colorspace,
Transform &to_scene_linear)
{
OCIO::ConstProcessorRcPtr processor;
try {
processor = config->getProcessor(OCIO::ROLE_SCENE_LINEAR, colorspace);
}
catch (OCIO::Exception &exception) {
return false;
}
if (!processor) {
return false;
}
OCIO::ConstCPUProcessorRcPtr device_processor = processor->getDefaultCPUProcessor();
if (!device_processor) {
return false;
}
to_scene_linear = transform_identity();
device_processor->applyRGB(&to_scene_linear.x.x);
device_processor->applyRGB(&to_scene_linear.y.x);
device_processor->applyRGB(&to_scene_linear.z.x);
to_scene_linear = transform_transposed_inverse(to_scene_linear);
return true;
}
#endif
void ShaderManager::init_xyz_transforms()
{
/* Default to ITU-BT.709 in case no appropriate transform found. */
xyz_to_r = make_float3(3.2404542f, -1.5371385f, -0.4985314f);
xyz_to_g = make_float3(-0.9692660f, 1.8760108f, 0.0415560f);
xyz_to_b = make_float3(0.0556434f, -0.2040259f, 1.0572252f);
rgb_to_y = make_float3(0.2126729f, 0.7151522f, 0.0721750f);
#ifdef WITH_OCIO
/* Get from OpenColorO config if it has the required roles. */
OCIO::ConstConfigRcPtr config = OCIO::GetCurrentConfig();
if (!(config && config->hasRole(OCIO::ROLE_SCENE_LINEAR))) {
return;
}
Transform xyz_to_rgb;
if (config->hasRole("aces_interchange")) {
/* Standard OpenColorIO role, defined as ACES2065-1. */
const Transform xyz_to_aces = make_transform(1.0498110175f,
0.0f,
-0.0000974845f,
0.0f,
-0.4959030231f,
1.3733130458f,
0.0982400361f,
0.0f,
0.0f,
0.0f,
0.9912520182f,
0.0f);
Transform aces_to_rgb;
if (!to_scene_linear_transform(config, "aces_interchange", aces_to_rgb)) {
return;
}
xyz_to_rgb = aces_to_rgb * xyz_to_aces;
}
else if (config->hasRole("XYZ")) {
/* Custom role used before the standard existed. */
if (!to_scene_linear_transform(config, "XYZ", xyz_to_rgb)) {
return;
}
}
xyz_to_r = float4_to_float3(xyz_to_rgb.x);
xyz_to_g = float4_to_float3(xyz_to_rgb.y);
xyz_to_b = float4_to_float3(xyz_to_rgb.z);
const Transform rgb_to_xyz = transform_inverse(xyz_to_rgb);
rgb_to_y = float4_to_float3(rgb_to_xyz.y);
#endif
}
CCL_NAMESPACE_END