blender/extern/bullet/LinearMath/SimdQuaternion.h
Erwin Coumans af9573e9ea Synchronized Bullet physics to latest version.
- Changed license from MIT to ZLib.
- Added 3D Sweep and Prune contribution
- More stable native constraint solver

Sorry for any inconvenience caused by this checkin.
All Blender buildsystems require update: added files and moved files.
2006-03-27 06:37:30 +00:00

291 lines
7.4 KiB
C++

/*
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef SIMD__QUATERNION_H_
#define SIMD__QUATERNION_H_
#include "SimdVector3.h"
class SimdQuaternion : public SimdQuadWord {
public:
SimdQuaternion() {}
// template <typename SimdScalar>
// explicit Quaternion(const SimdScalar *v) : Tuple4<SimdScalar>(v) {}
SimdQuaternion(const SimdScalar& x, const SimdScalar& y, const SimdScalar& z, const SimdScalar& w)
: SimdQuadWord(x, y, z, w)
{}
SimdQuaternion(const SimdVector3& axis, const SimdScalar& angle)
{
setRotation(axis, angle);
}
SimdQuaternion(const SimdScalar& yaw, const SimdScalar& pitch, const SimdScalar& roll)
{
setEuler(yaw, pitch, roll);
}
void setRotation(const SimdVector3& axis, const SimdScalar& angle)
{
SimdScalar d = axis.length();
assert(d != SimdScalar(0.0));
SimdScalar s = SimdSin(angle * SimdScalar(0.5)) / d;
setValue(axis.x() * s, axis.y() * s, axis.z() * s,
SimdCos(angle * SimdScalar(0.5)));
}
void setEuler(const SimdScalar& yaw, const SimdScalar& pitch, const SimdScalar& roll)
{
SimdScalar halfYaw = SimdScalar(yaw) * SimdScalar(0.5);
SimdScalar halfPitch = SimdScalar(pitch) * SimdScalar(0.5);
SimdScalar halfRoll = SimdScalar(roll) * SimdScalar(0.5);
SimdScalar cosYaw = SimdCos(halfYaw);
SimdScalar sinYaw = SimdSin(halfYaw);
SimdScalar cosPitch = SimdCos(halfPitch);
SimdScalar sinPitch = SimdSin(halfPitch);
SimdScalar cosRoll = SimdCos(halfRoll);
SimdScalar sinRoll = SimdSin(halfRoll);
setValue(cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw,
cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw,
sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw,
cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw);
}
SimdQuaternion& operator+=(const SimdQuaternion& q)
{
m_x += q.x(); m_y += q.y(); m_z += q.z(); m_unusedW += q[3];
return *this;
}
SimdQuaternion& operator-=(const SimdQuaternion& q)
{
m_x -= q.x(); m_y -= q.y(); m_z -= q.z(); m_unusedW -= q[3];
return *this;
}
SimdQuaternion& operator*=(const SimdScalar& s)
{
m_x *= s; m_y *= s; m_z *= s; m_unusedW *= s;
return *this;
}
SimdQuaternion& operator*=(const SimdQuaternion& q)
{
setValue(m_unusedW * q.x() + m_x * q[3] + m_y * q.z() - m_z * q.y(),
m_unusedW * q.y() + m_y * q[3] + m_z * q.x() - m_x * q.z(),
m_unusedW * q.z() + m_z * q[3] + m_x * q.y() - m_y * q.x(),
m_unusedW * q[3] - m_x * q.x() - m_y * q.y() - m_z * q.z());
return *this;
}
SimdScalar dot(const SimdQuaternion& q) const
{
return m_x * q.x() + m_y * q.y() + m_z * q.z() + m_unusedW * q[3];
}
SimdScalar length2() const
{
return dot(*this);
}
SimdScalar length() const
{
return SimdSqrt(length2());
}
SimdQuaternion& normalize()
{
return *this /= length();
}
SIMD_FORCE_INLINE SimdQuaternion
operator*(const SimdScalar& s) const
{
return SimdQuaternion(x() * s, y() * s, z() * s, m_unusedW * s);
}
SimdQuaternion operator/(const SimdScalar& s) const
{
assert(s != SimdScalar(0.0));
return *this * (SimdScalar(1.0) / s);
}
SimdQuaternion& operator/=(const SimdScalar& s)
{
assert(s != SimdScalar(0.0));
return *this *= SimdScalar(1.0) / s;
}
SimdQuaternion normalized() const
{
return *this / length();
}
SimdScalar angle(const SimdQuaternion& q) const
{
SimdScalar s = SimdSqrt(length2() * q.length2());
assert(s != SimdScalar(0.0));
return SimdAcos(dot(q) / s);
}
SimdScalar getAngle() const
{
SimdScalar s = 2.f * SimdAcos(m_unusedW);
return s;
}
SimdQuaternion inverse() const
{
return SimdQuaternion(m_x, m_y, m_z, -m_unusedW);
}
SIMD_FORCE_INLINE SimdQuaternion
operator+(const SimdQuaternion& q2) const
{
const SimdQuaternion& q1 = *this;
return SimdQuaternion(q1.x() + q2.x(), q1.y() + q2.y(), q1.z() + q2.z(), q1[3] + q2[3]);
}
SIMD_FORCE_INLINE SimdQuaternion
operator-(const SimdQuaternion& q2) const
{
const SimdQuaternion& q1 = *this;
return SimdQuaternion(q1.x() - q2.x(), q1.y() - q2.y(), q1.z() - q2.z(), q1[3] - q2[3]);
}
SIMD_FORCE_INLINE SimdQuaternion operator-() const
{
const SimdQuaternion& q2 = *this;
return SimdQuaternion( - q2.x(), - q2.y(), - q2.z(), - q2[3]);
}
SIMD_FORCE_INLINE SimdQuaternion farthest( const SimdQuaternion& qd) const
{
SimdQuaternion diff,sum;
diff = *this - qd;
sum = *this + qd;
if( diff.dot(diff) > sum.dot(sum) )
return qd;
return (-qd);
}
SimdQuaternion slerp(const SimdQuaternion& q, const SimdScalar& t) const
{
SimdScalar theta = angle(q);
if (theta != SimdScalar(0.0))
{
SimdScalar d = SimdScalar(1.0) / SimdSin(theta);
SimdScalar s0 = SimdSin((SimdScalar(1.0) - t) * theta);
SimdScalar s1 = SimdSin(t * theta);
return SimdQuaternion((m_x * s0 + q.x() * s1) * d,
(m_y * s0 + q.y() * s1) * d,
(m_z * s0 + q.z() * s1) * d,
(m_unusedW * s0 + q[3] * s1) * d);
}
else
{
return *this;
}
}
};
SIMD_FORCE_INLINE SimdQuaternion
operator-(const SimdQuaternion& q)
{
return SimdQuaternion(-q.x(), -q.y(), -q.z(), -q[3]);
}
SIMD_FORCE_INLINE SimdQuaternion
operator*(const SimdQuaternion& q1, const SimdQuaternion& q2) {
return SimdQuaternion(q1[3] * q2.x() + q1.x() * q2[3] + q1.y() * q2.z() - q1.z() * q2.y(),
q1[3] * q2.y() + q1.y() * q2[3] + q1.z() * q2.x() - q1.x() * q2.z(),
q1[3] * q2.z() + q1.z() * q2[3] + q1.x() * q2.y() - q1.y() * q2.x(),
q1[3] * q2[3] - q1.x() * q2.x() - q1.y() * q2.y() - q1.z() * q2.z());
}
SIMD_FORCE_INLINE SimdQuaternion
operator*(const SimdQuaternion& q, const SimdVector3& w)
{
return SimdQuaternion( q[3] * w.x() + q.y() * w.z() - q.z() * w.y(),
q[3] * w.y() + q.z() * w.x() - q.x() * w.z(),
q[3] * w.z() + q.x() * w.y() - q.y() * w.x(),
-q.x() * w.x() - q.y() * w.y() - q.z() * w.z());
}
SIMD_FORCE_INLINE SimdQuaternion
operator*(const SimdVector3& w, const SimdQuaternion& q)
{
return SimdQuaternion( w.x() * q[3] + w.y() * q.z() - w.z() * q.y(),
w.y() * q[3] + w.z() * q.x() - w.x() * q.z(),
w.z() * q[3] + w.x() * q.y() - w.y() * q.x(),
-w.x() * q.x() - w.y() * q.y() - w.z() * q.z());
}
SIMD_FORCE_INLINE SimdScalar
dot(const SimdQuaternion& q1, const SimdQuaternion& q2)
{
return q1.dot(q2);
}
SIMD_FORCE_INLINE SimdScalar
length(const SimdQuaternion& q)
{
return q.length();
}
SIMD_FORCE_INLINE SimdScalar
angle(const SimdQuaternion& q1, const SimdQuaternion& q2)
{
return q1.angle(q2);
}
SIMD_FORCE_INLINE SimdQuaternion
inverse(const SimdQuaternion& q)
{
return q.inverse();
}
SIMD_FORCE_INLINE SimdQuaternion
slerp(const SimdQuaternion& q1, const SimdQuaternion& q2, const SimdScalar& t)
{
return q1.slerp(q2, t);
}
#endif