blender/source/gameengine/GamePlayer/common/GPC_RenderTools.cpp
Stefan Gartner 3531f874e0 added a buch of
#ifdef __APPLE__
#include <OpenGL/gl.h>
#else
#include <GL/gl.h>
#endif
(also for <GL/glu.h>)

so that people don't have to create symlinks in
/System/Library/Frameworks/OpenGL.framework on Mac OS X
(Charles Wardlaw)
2003-01-07 00:18:59 +00:00

506 lines
14 KiB
C++

/**
* $Id$
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#ifdef WIN32
#pragma warning (disable : 4786)
#include <windows.h>
#endif
#ifdef __APPLE__
#include <OpenGL/gl.h>
#else
#include <GL/gl.h>
#endif
#include <iostream>
#include "GPC_RenderTools.h"
#include "RAS_IRenderTools.h"
#include "RAS_IRasterizer.h"
#include "RAS_LightObject.h"
#include "RAS_ICanvas.h"
// next two includes/dependencies come from the shadow feature
// it needs the gameobject and the sumo physics scene for a raycast
#include "KX_GameObject.h"
#include "GPC_PolygonMaterial.h"
#include "Value.h"
//#include "KX_BlenderGL.h" // for text printing
//#include "KX_BlenderClientObject.h"
#include "STR_String.h"
#include "RAS_BucketManager.h" // for polymaterial (needed for textprinting)
// Blender includes
/* This list includes only data type definitions */
#include "DNA_object_types.h"
#include "DNA_material_types.h"
#include "DNA_image_types.h"
#include "DNA_lamp_types.h"
#include "DNA_group_types.h"
#include "DNA_scene_types.h"
#include "DNA_camera_types.h"
#include "DNA_property_types.h"
#include "DNA_text_types.h"
#include "DNA_sensor_types.h"
#include "DNA_controller_types.h"
#include "DNA_actuator_types.h"
#include "DNA_mesh_types.h"
#include "DNA_view3d_types.h"
#include "DNA_world_types.h"
#include "BKE_global.h"
#include "BKE_image.h"
#include "BKE_bmfont.h"
#include "BKE_bmfont_types.h"
#include "BKE_main.h"
#include "IMB_imbuf_types.h"
// End of Blender includes
GPC_RenderTools::GPC_RenderTools()
{
m_font = BMF_GetFont(BMF_kHelvetica10);
}
GPC_RenderTools::~GPC_RenderTools()
{
}
void GPC_RenderTools::EndFrame(RAS_IRasterizer* rasty)
{
}
void GPC_RenderTools::BeginFrame(RAS_IRasterizer* rasty)
{
m_clientobject=NULL;
m_modified=true;
DisableOpenGLLights();
}
int GPC_RenderTools::ProcessLighting(int layer)
{
int result = false;
if (layer < 0)
{
DisableOpenGLLights();
result = false;
} else
{
if (m_clientobject)
{
if (applyLights(layer))
{
EnableOpenGLLights();
result = true;
} else
{
DisableOpenGLLights();
result = false;
}
}
}
return result;
}
void GPC_RenderTools::RenderText2D(RAS_TEXT_RENDER_MODE mode,
const char* text,
int xco,
int yco,
int width,
int height)
{
STR_String tmpstr(text);
int lines;
char* s = tmpstr.Ptr();
char* p;
// Save and change OpenGL settings
int texture2D;
glGetIntegerv(GL_TEXTURE_2D, (GLint*)&texture2D);
glDisable(GL_TEXTURE_2D);
int fog;
glGetIntegerv(GL_FOG, (GLint*)&fog);
glDisable(GL_FOG);
// Set up viewing settings
glMatrixMode(GL_PROJECTION);
glPushMatrix();
glLoadIdentity();
glOrtho(0, width, 0, height, -1, 1);
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
// Actual drawing
unsigned char colors[2][3] = {
{0x00, 0x00, 0x00},
{0xFF, 0xFF, 0xFF}
};
int numTimes = mode == RAS_TEXT_PADDED ? 2 : 1;
for (int i = 0; i < numTimes; i++) {
glColor3ub(colors[i][0], colors[i][1], colors[i][2]);
glRasterPos2i(xco, yco);
for (p = s, lines = 0; *p; p++) {
if (*p == '\n')
{
lines++;
glRasterPos2i(xco, yco-(lines*18));
}
BMF_DrawCharacter(m_font, *p);
}
xco += 1;
yco += 1;
}
// Restore view settings
glMatrixMode(GL_PROJECTION);
glPopMatrix();
glMatrixMode(GL_MODELVIEW);
glPopMatrix();
// Restore OpenGL Settings
fog ? ::glEnable(GL_FOG) : ::glDisable(GL_FOG);
texture2D ? ::glEnable(GL_TEXTURE_2D) : ::glDisable(GL_TEXTURE_2D);
}
/**
* Copied from KX_BlenderRenderTools.cpp in KX_blenderhook
* Renders text into a (series of) polygon(s), using a texture font,
* Each character consists of one polygon (one quad or two triangles)
*/
void GPC_RenderTools::RenderText(
int mode,
RAS_IPolyMaterial* polymat,
float v1[3], float v2[3], float v3[3], float v4[3])
{
STR_String mytext = ((CValue*)m_clientobject)->GetPropertyText("Text");
GPC_PolygonMaterial* blenderpoly = (GPC_PolygonMaterial*)polymat;
struct TFace* tface = blenderpoly->GetTFace();
BL_RenderText(mode, mytext, mytext.Length(), tface, v1, v2, v3, v4);
}
/**
* Copied from KX_BlenderGL.cpp in KX_blenderhook
*/
void GPC_RenderTools::BL_RenderText(
int mode,
const char* textstr,
int textlen,
struct TFace* tface,
float v1[3],float v2[3],float v3[3],float v4[3])
{
struct Image* ima;
if (mode & TF_BMFONT) {
//char string[MAX_PROPSTRING];
// float tmat[4][4];
int characters, index, character;
float centerx, centery, sizex, sizey, transx, transy, movex, movey, advance;
// bProperty *prop;
// string = "Frank van Beek";
characters = textlen;
ima = (struct Image*) tface->tpage;
if (ima == NULL) {
characters = 0;
}
glPushMatrix();
for (index = 0; index < characters; index++) {
// lets calculate offset stuff
character = textstr[index];
// space starts at offset 1
// character = character - ' ' + 1;
matrixGlyph(ima->ibuf, character, & centerx, &centery, &sizex, &sizey, &transx, &transy, &movex, &movey, &advance);
glBegin(GL_POLYGON);
// printf(" %c %f %f %f %f\n", character, tface->uv[0][0], tface->uv[0][1], );
// glTexCoord2f((tface->uv[0][0] - centerx) * sizex + transx, (tface->uv[0][1] - centery) * sizey + transy);
glTexCoord2f((tface->uv[0][0] - centerx) * sizex + transx, (tface->uv[0][1] - centery) * sizey + transy);
BL_spack(tface->col[0]);
// glVertex3fv(v1);
glVertex3f(sizex * v1[0] + movex, sizey * v1[1] + movey, v1[2]);
glTexCoord2f((tface->uv[1][0] - centerx) * sizex + transx, (tface->uv[1][1] - centery) * sizey + transy);
BL_spack(tface->col[1]);
// glVertex3fv(v2);
glVertex3f(sizex * v2[0] + movex, sizey * v2[1] + movey, v2[2]);
glTexCoord2f((tface->uv[2][0] - centerx) * sizex + transx, (tface->uv[2][1] - centery) * sizey + transy);
BL_spack(tface->col[2]);
// glVertex3fv(v3);
glVertex3f(sizex * v3[0] + movex, sizey * v3[1] + movey, v3[2]);
if(v4) {
// glTexCoord2f((tface->uv[3][0] - centerx) * sizex + transx, 1.0 - (1.0 - tface->uv[3][1]) * sizey - transy);
glTexCoord2f((tface->uv[3][0] - centerx) * sizex + transx, (tface->uv[3][1] - centery) * sizey + transy);
BL_spack(tface->col[3]);
// glVertex3fv(v4);
glVertex3f(sizex * v4[0] + movex, sizey * v4[1] + movey, v4[2]);
}
glEnd();
glTranslatef(advance, 0.0, 0.0);
}
glPopMatrix();
}
}
RAS_IPolyMaterial* GPC_RenderTools::CreateBlenderPolyMaterial(
const STR_String &texname,
bool ba,const STR_String& matname,int tile,int tilexrep,int tileyrep,int mode,int transparant,int lightlayer
,bool bIsTriangle,void* clientobject,void* tface)
{
return new GPC_PolygonMaterial(texname, ba,matname,tile,tilexrep,tileyrep,
mode,transparant,lightlayer,bIsTriangle,clientobject,tface);
}
int GPC_RenderTools::applyLights(int objectlayer)
{
// taken from blender source, incompatibility between Blender Object / GameObject
int count;
float vec[4];
vec[3]= 1.0;
for(count=0; count<8; count++)
glDisable((GLenum)(GL_LIGHT0+count));
count= 0;
//std::vector<struct RAS_LightObject*> m_lights;
std::vector<struct RAS_LightObject*>::iterator lit = m_lights.begin();
for (lit = m_lights.begin(); !(lit==m_lights.end()); ++lit)
{
RAS_LightObject* lightdata = (*lit);
if (lightdata->m_layer & objectlayer)
{
glPushMatrix();
glLoadMatrixf(m_viewmat);
vec[0] = (*(lightdata->m_worldmatrix))(0,3);
vec[1] = (*(lightdata->m_worldmatrix))(1,3);
vec[2] = (*(lightdata->m_worldmatrix))(2,3);
vec[3] = 1;
if(lightdata->m_type==RAS_LightObject::LIGHT_SUN) {
vec[0] = (*(lightdata->m_worldmatrix))(0,2);
vec[1] = (*(lightdata->m_worldmatrix))(1,2);
vec[2] = (*(lightdata->m_worldmatrix))(2,2);
//vec[0]= base->object->obmat[2][0];
//vec[1]= base->object->obmat[2][1];
//vec[2]= base->object->obmat[2][2];
vec[3]= 0.0;
glLightfv((GLenum)(GL_LIGHT0+count), GL_POSITION, vec);
}
else {
//vec[3]= 1.0;
glLightfv((GLenum)(GL_LIGHT0+count), GL_POSITION, vec);
glLightf((GLenum)(GL_LIGHT0+count), GL_CONSTANT_ATTENUATION, 1.0);
glLightf((GLenum)(GL_LIGHT0+count), GL_LINEAR_ATTENUATION, lightdata->m_att1/lightdata->m_distance);
// without this next line it looks backward compatible.
//attennuation still is acceptable
// glLightf((GLenum)(GL_LIGHT0+count), GL_QUADRATIC_ATTENUATION, la->att2/(la->dist*la->dist));
if(lightdata->m_type==RAS_LightObject::LIGHT_SPOT) {
vec[0] = -(*(lightdata->m_worldmatrix))(0,2);
vec[1] = -(*(lightdata->m_worldmatrix))(1,2);
vec[2] = -(*(lightdata->m_worldmatrix))(2,2);
//vec[0]= -base->object->obmat[2][0];
//vec[1]= -base->object->obmat[2][1];
//vec[2]= -base->object->obmat[2][2];
glLightfv((GLenum)(GL_LIGHT0+count), GL_SPOT_DIRECTION, vec);
glLightf((GLenum)(GL_LIGHT0+count), GL_SPOT_CUTOFF, lightdata->m_spotsize/2.0);
glLightf((GLenum)(GL_LIGHT0+count), GL_SPOT_EXPONENT, 128.0*lightdata->m_spotblend);
}
else glLightf((GLenum)(GL_LIGHT0+count), GL_SPOT_CUTOFF, 180.0);
}
vec[0]= lightdata->m_energy*lightdata->m_red;
vec[1]= lightdata->m_energy*lightdata->m_green;
vec[2]= lightdata->m_energy*lightdata->m_blue;
vec[3]= 1.0;
glLightfv((GLenum)(GL_LIGHT0+count), GL_DIFFUSE, vec);
glLightfv((GLenum)(GL_LIGHT0+count), GL_SPECULAR, vec);
glEnable((GLenum)(GL_LIGHT0+count));
glPopMatrix();
count++;
if(count>7)
break;
}
}
return count;
}
void GPC_RenderTools::applyTransform(RAS_IRasterizer* rasty,double* oglmatrix,int objectdrawmode )
{
if (objectdrawmode & RAS_IPolyMaterial::BILLBOARD_SCREENALIGNED ||
objectdrawmode & RAS_IPolyMaterial::BILLBOARD_AXISALIGNED)
{
// rotate the billboard/halo
//page 360/361 3D Game Engine Design, David Eberly for a discussion
// on screen aligned and axis aligned billboards
// assumed is that the preprocessor transformed all billboard polygons
// so that their normal points into the positive x direction (1.0 , 0.0 , 0.0)
// when new parenting for objects is done, this rotation
// will be moved into the object
MT_Point3 objpos (oglmatrix[12],oglmatrix[13],oglmatrix[14]);
MT_Point3 campos = rasty->GetCameraPosition();
MT_Vector3 dir = (campos - objpos).safe_normalized();
MT_Vector3 up(0,0,1.0);
KX_GameObject* gameobj = (KX_GameObject*) this->m_clientobject;
// get scaling of halo object
MT_Vector3 size = gameobj->GetSGNode()->GetLocalScale();
bool screenaligned = (objectdrawmode & RAS_IPolyMaterial::BILLBOARD_SCREENALIGNED)!=0;//false; //either screen or axisaligned
if (screenaligned)
{
up = (up - up.dot(dir) * dir).safe_normalized();
} else
{
dir = (dir - up.dot(dir)*up).safe_normalized();
}
MT_Vector3 left = dir.normalized();
dir = (left.cross(up)).normalized();
// we have calculated the row vectors, now we keep
// local scaling into account:
left *= size[0];
dir *= size[1];
up *= size[2];
double maat[16]={
left[0], left[1],left[2], 0,
dir[0], dir[1],dir[2],0,
up[0],up[1],up[2],0,
0,0,0,1};
glTranslated(objpos[0],objpos[1],objpos[2]);
glMultMatrixd(maat);
} else
{
if (objectdrawmode & RAS_IPolyMaterial::SHADOW)
{
// shadow must be cast to the ground, physics system needed here!
KX_GameObject* gameobj = (KX_GameObject*) this->m_clientobject;
MT_Point3 frompoint(oglmatrix[12],oglmatrix[13],oglmatrix[14]);
MT_Vector3 direction = MT_Vector3(0,0,-1);
direction.normalize();
direction *= 100000;
MT_Point3 topoint = frompoint + direction;
MT_Point3 resultpoint;
MT_Vector3 resultnormal;
//todo: replace by physicsenvironment raycast
//SM_Scene* scene = (SM_Scene*) m_auxilaryClientInfo;
SM_Object* hitObj = 0;
//scene->rayTest(gameobj->GetSumoObject(),frompoint,topoint,
// resultpoint, resultnormal);
if (hitObj)
{
MT_Vector3 left(oglmatrix[0],oglmatrix[1],oglmatrix[2]);
MT_Vector3 dir = -(left.cross(resultnormal)).normalized();
left = (dir.cross(resultnormal)).normalized();
// for the up vector, we take the 'resultnormal' returned by the physics
double maat[16]={
left[0], left[1],left[2], 0,
dir[0], dir[1],dir[2],0,
resultnormal[0],resultnormal[1],resultnormal[2],0,
0,0,0,1};
glTranslated(resultpoint[0],resultpoint[1],resultpoint[2]);
glMultMatrixd(maat);
// glMultMatrixd(oglmatrix);
} else
{
glMultMatrixd(oglmatrix);
}
} else
{
// 'normal' object
glMultMatrixd(oglmatrix);
}
}
}