blender/intern/cycles/render/film.cpp
Sergey Sharybin 27d660ad20 Cycles: Add support for debug passes
Currently only summed number of traversal steps and intersections used by the
camera ray intersection pass is implemented, but in the future we will support
more debug passes which would help checking what things makes the scene slow.
Example of such extra passes could be number of bounces, time spent on the
shader tree evaluation and so.

Implementation from the Cycles side is pretty much straightforward, could only
mention here that it's a build-time option disabled by default.

From the blender side it's implemented as a PASS_DEBUG with several subtypes
possible. This way we don't need to create an extra DNA pass type for each of
the debug passes, saving us a bits.

Reviewers: campbellbarton

Reviewed By: campbellbarton

Differential Revision: https://developer.blender.org/D813
2014-10-04 19:00:26 +06:00

469 lines
11 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License
*/
#include "camera.h"
#include "device.h"
#include "film.h"
#include "integrator.h"
#include "mesh.h"
#include "scene.h"
#include "tables.h"
#include "util_algorithm.h"
#include "util_debug.h"
#include "util_foreach.h"
#include "util_math.h"
CCL_NAMESPACE_BEGIN
/* Pass */
static bool compare_pass_order(const Pass& a, const Pass& b)
{
if(a.components == b.components)
return (a.type < b.type);
return (a.components > b.components);
}
void Pass::add(PassType type, vector<Pass>& passes)
{
foreach(Pass& existing_pass, passes)
if(existing_pass.type == type)
return;
Pass pass;
pass.type = type;
pass.filter = true;
pass.exposure = false;
pass.divide_type = PASS_NONE;
switch(type) {
case PASS_NONE:
pass.components = 0;
break;
case PASS_COMBINED:
pass.components = 4;
pass.exposure = true;
break;
case PASS_DEPTH:
pass.components = 1;
pass.filter = false;
break;
case PASS_MIST:
pass.components = 1;
break;
case PASS_NORMAL:
pass.components = 4;
break;
case PASS_UV:
pass.components = 4;
break;
case PASS_MOTION:
pass.components = 4;
pass.divide_type = PASS_MOTION_WEIGHT;
break;
case PASS_MOTION_WEIGHT:
pass.components = 1;
break;
case PASS_OBJECT_ID:
case PASS_MATERIAL_ID:
pass.components = 1;
pass.filter = false;
break;
case PASS_DIFFUSE_COLOR:
case PASS_GLOSSY_COLOR:
case PASS_TRANSMISSION_COLOR:
case PASS_SUBSURFACE_COLOR:
pass.components = 4;
break;
case PASS_DIFFUSE_INDIRECT:
pass.components = 4;
pass.exposure = true;
pass.divide_type = PASS_DIFFUSE_COLOR;
break;
case PASS_GLOSSY_INDIRECT:
pass.components = 4;
pass.exposure = true;
pass.divide_type = PASS_GLOSSY_COLOR;
break;
case PASS_TRANSMISSION_INDIRECT:
pass.components = 4;
pass.exposure = true;
pass.divide_type = PASS_TRANSMISSION_COLOR;
break;
case PASS_SUBSURFACE_INDIRECT:
pass.components = 4;
pass.exposure = true;
pass.divide_type = PASS_SUBSURFACE_COLOR;
break;
case PASS_DIFFUSE_DIRECT:
pass.components = 4;
pass.exposure = true;
pass.divide_type = PASS_DIFFUSE_COLOR;
break;
case PASS_GLOSSY_DIRECT:
pass.components = 4;
pass.exposure = true;
pass.divide_type = PASS_GLOSSY_COLOR;
break;
case PASS_TRANSMISSION_DIRECT:
pass.components = 4;
pass.exposure = true;
pass.divide_type = PASS_TRANSMISSION_COLOR;
break;
case PASS_SUBSURFACE_DIRECT:
pass.components = 4;
pass.exposure = true;
pass.divide_type = PASS_SUBSURFACE_COLOR;
break;
case PASS_EMISSION:
case PASS_BACKGROUND:
pass.components = 4;
pass.exposure = true;
break;
case PASS_AO:
pass.components = 4;
break;
case PASS_SHADOW:
pass.components = 4;
pass.exposure = false;
break;
case PASS_LIGHT:
/* ignores */
break;
#ifdef WITH_CYCLES_DEBUG
case PASS_BVH_TRAVERSAL_STEPS:
pass.components = 1;
pass.exposure = false;
break;
#endif
}
passes.push_back(pass);
/* order from by components, to ensure alignment so passes with size 4
* come first and then passes with size 1 */
sort(passes.begin(), passes.end(), compare_pass_order);
if(pass.divide_type != PASS_NONE)
Pass::add(pass.divide_type, passes);
}
bool Pass::equals(const vector<Pass>& A, const vector<Pass>& B)
{
if(A.size() != B.size())
return false;
for(int i = 0; i < A.size(); i++)
if(A[i].type != B[i].type)
return false;
return true;
}
bool Pass::contains(const vector<Pass>& passes, PassType type)
{
foreach(const Pass& pass, passes)
if(pass.type == type)
return true;
return false;
}
/* Pixel Filter */
static float filter_func_box(float v, float width)
{
return 1.0f;
}
static float filter_func_gaussian(float v, float width)
{
v *= 2.0f/width;
return expf(-2.0f*v*v);
}
static vector<float> filter_table(FilterType type, float width)
{
const int filter_table_size = FILTER_TABLE_SIZE-1;
vector<float> filter_table_cdf(filter_table_size+1);
vector<float> filter_table(filter_table_size+1);
float (*filter_func)(float, float) = NULL;
int i, half_size = filter_table_size/2;
switch(type) {
case FILTER_BOX:
filter_func = filter_func_box;
break;
case FILTER_GAUSSIAN:
filter_func = filter_func_gaussian;
break;
default:
assert(0);
}
/* compute cumulative distribution function */
filter_table_cdf[0] = 0.0f;
for(i = 0; i < filter_table_size; i++) {
float x = i*width*0.5f/(filter_table_size-1);
float y = filter_func(x, width);
filter_table_cdf[i+1] += filter_table_cdf[i] + fabsf(y);
}
for(i = 0; i <= filter_table_size; i++)
filter_table_cdf[i] /= filter_table_cdf[filter_table_size];
/* create importance sampling table */
for(i = 0; i <= half_size; i++) {
float x = i/(float)half_size;
int index = upper_bound(filter_table_cdf.begin(), filter_table_cdf.end(), x) - filter_table_cdf.begin();
float t;
if(index < filter_table_size+1) {
t = (x - filter_table_cdf[index])/(filter_table_cdf[index+1] - filter_table_cdf[index]);
}
else {
t = 0.0f;
index = filter_table_size;
}
float y = ((index + t)/(filter_table_size))*width;
filter_table[half_size+i] = 0.5f*(1.0f + y);
filter_table[half_size-i] = 0.5f*(1.0f - y);
}
return filter_table;
}
/* Film */
Film::Film()
{
exposure = 0.8f;
Pass::add(PASS_COMBINED, passes);
pass_alpha_threshold = 0.5f;
filter_type = FILTER_BOX;
filter_width = 1.0f;
filter_table_offset = TABLE_OFFSET_INVALID;
mist_start = 0.0f;
mist_depth = 100.0f;
mist_falloff = 1.0f;
use_light_visibility = false;
use_sample_clamp = false;
need_update = true;
}
Film::~Film()
{
}
void Film::device_update(Device *device, DeviceScene *dscene, Scene *scene)
{
if(!need_update)
return;
device_free(device, dscene, scene);
KernelFilm *kfilm = &dscene->data.film;
/* update __data */
kfilm->exposure = exposure;
kfilm->pass_flag = 0;
kfilm->pass_stride = 0;
kfilm->use_light_pass = use_light_visibility || use_sample_clamp;
foreach(Pass& pass, passes) {
kfilm->pass_flag |= pass.type;
switch(pass.type) {
case PASS_COMBINED:
kfilm->pass_combined = kfilm->pass_stride;
break;
case PASS_DEPTH:
kfilm->pass_depth = kfilm->pass_stride;
break;
case PASS_MIST:
kfilm->pass_mist = kfilm->pass_stride;
kfilm->use_light_pass = 1;
break;
case PASS_NORMAL:
kfilm->pass_normal = kfilm->pass_stride;
break;
case PASS_UV:
kfilm->pass_uv = kfilm->pass_stride;
break;
case PASS_MOTION:
kfilm->pass_motion = kfilm->pass_stride;
break;
case PASS_MOTION_WEIGHT:
kfilm->pass_motion_weight = kfilm->pass_stride;
break;
case PASS_OBJECT_ID:
kfilm->pass_object_id = kfilm->pass_stride;
break;
case PASS_MATERIAL_ID:
kfilm->pass_material_id = kfilm->pass_stride;
break;
case PASS_DIFFUSE_COLOR:
kfilm->pass_diffuse_color = kfilm->pass_stride;
kfilm->use_light_pass = 1;
break;
case PASS_GLOSSY_COLOR:
kfilm->pass_glossy_color = kfilm->pass_stride;
kfilm->use_light_pass = 1;
break;
case PASS_TRANSMISSION_COLOR:
kfilm->pass_transmission_color = kfilm->pass_stride;
kfilm->use_light_pass = 1;
break;
case PASS_SUBSURFACE_COLOR:
kfilm->pass_subsurface_color = kfilm->pass_stride;
kfilm->use_light_pass = 1;
break;
case PASS_DIFFUSE_INDIRECT:
kfilm->pass_diffuse_indirect = kfilm->pass_stride;
kfilm->use_light_pass = 1;
break;
case PASS_GLOSSY_INDIRECT:
kfilm->pass_glossy_indirect = kfilm->pass_stride;
kfilm->use_light_pass = 1;
break;
case PASS_TRANSMISSION_INDIRECT:
kfilm->pass_transmission_indirect = kfilm->pass_stride;
kfilm->use_light_pass = 1;
break;
case PASS_SUBSURFACE_INDIRECT:
kfilm->pass_subsurface_indirect = kfilm->pass_stride;
kfilm->use_light_pass = 1;
break;
case PASS_DIFFUSE_DIRECT:
kfilm->pass_diffuse_direct = kfilm->pass_stride;
kfilm->use_light_pass = 1;
break;
case PASS_GLOSSY_DIRECT:
kfilm->pass_glossy_direct = kfilm->pass_stride;
kfilm->use_light_pass = 1;
break;
case PASS_TRANSMISSION_DIRECT:
kfilm->pass_transmission_direct = kfilm->pass_stride;
kfilm->use_light_pass = 1;
break;
case PASS_SUBSURFACE_DIRECT:
kfilm->pass_subsurface_direct = kfilm->pass_stride;
kfilm->use_light_pass = 1;
break;
case PASS_EMISSION:
kfilm->pass_emission = kfilm->pass_stride;
kfilm->use_light_pass = 1;
break;
case PASS_BACKGROUND:
kfilm->pass_background = kfilm->pass_stride;
kfilm->use_light_pass = 1;
break;
case PASS_AO:
kfilm->pass_ao = kfilm->pass_stride;
kfilm->use_light_pass = 1;
break;
case PASS_SHADOW:
kfilm->pass_shadow = kfilm->pass_stride;
kfilm->use_light_pass = 1;
break;
case PASS_LIGHT:
kfilm->use_light_pass = 1;
break;
#ifdef WITH_CYCLES_DEBUG
case PASS_BVH_TRAVERSAL_STEPS:
kfilm->pass_bvh_traversal_steps = kfilm->pass_stride;
break;
#endif
case PASS_NONE:
break;
}
kfilm->pass_stride += pass.components;
}
kfilm->pass_stride = align_up(kfilm->pass_stride, 4);
kfilm->pass_alpha_threshold = pass_alpha_threshold;
/* update filter table */
vector<float> table = filter_table(filter_type, filter_width);
filter_table_offset = scene->lookup_tables->add_table(dscene, table);
kfilm->filter_table_offset = (int)filter_table_offset;
/* mist pass parameters */
kfilm->mist_start = mist_start;
kfilm->mist_inv_depth = (mist_depth > 0.0f)? 1.0f/mist_depth: 0.0f;
kfilm->mist_falloff = mist_falloff;
need_update = false;
}
void Film::device_free(Device *device, DeviceScene *dscene, Scene *scene)
{
if(filter_table_offset != TABLE_OFFSET_INVALID) {
scene->lookup_tables->remove_table(filter_table_offset);
filter_table_offset = TABLE_OFFSET_INVALID;
}
}
bool Film::modified(const Film& film)
{
return !(exposure == film.exposure
&& Pass::equals(passes, film.passes)
&& pass_alpha_threshold == film.pass_alpha_threshold
&& use_sample_clamp == film.use_sample_clamp
&& filter_type == film.filter_type
&& filter_width == film.filter_width
&& mist_start == film.mist_start
&& mist_depth == film.mist_depth
&& mist_falloff == film.mist_falloff);
}
void Film::tag_passes_update(Scene *scene, const vector<Pass>& passes_)
{
if(Pass::contains(passes, PASS_UV) != Pass::contains(passes_, PASS_UV)) {
scene->mesh_manager->tag_update(scene);
foreach(Shader *shader, scene->shaders)
shader->need_update_attributes = true;
}
else if(Pass::contains(passes, PASS_MOTION) != Pass::contains(passes_, PASS_MOTION))
scene->mesh_manager->tag_update(scene);
passes = passes_;
}
void Film::tag_update(Scene *scene)
{
need_update = true;
}
CCL_NAMESPACE_END