blender/release/scripts/bpymodules/BPyMesh_redux.py
Campbell Barton 3e1a5ce7a2 PyAPI.
moved bpy into bpy.data and bpy will be eventually replace the root level 'Blender' module.
currently we have bpy.library bpy.config and bpy.data
2007-04-18 14:40:01 +00:00

654 lines
19 KiB
Python

# ***** BEGIN GPL LICENSE BLOCK *****
#
# (C) Copyright 2006 MetaVR, Inc.
# http://www.metavr.com
# Written by Campbell Barton
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
# ***** END GPL LICENCE BLOCK *****
# --------------------------------------------------------------------------
import Blender
import bpy
Vector= Blender.Mathutils.Vector
Ang= Blender.Mathutils.AngleBetweenVecs
CrossVecs= Blender.Mathutils.CrossVecs
MidpointVecs= Blender.Mathutils.MidpointVecs
import BPyMesh
# If python version is less than 2.4, try to get set stuff from module
try:
set
except:
try:
from sets import Set as set
except:
set= None
def uv_key(uv):
return round(uv.x, 5), round(uv.y, 5)
def uv_key_mix(uv1, uv2, w1, w2):
# Weighted mix. w1+w2==1.0
return w1*uv1[0]+w2*uv2[0], w1*uv1[1]+w2*uv2[1]
def col_key(col):
return col.r, col.g, col.b
def col_key_mix(col1, col2, w1, w2):
# Weighted mix. w1+w2==1.0
return int(w1*col1[0] + w2*col2[0]), int(w1*col1[1] + w2*col2[1]), int(w1*col1[2]+col2[2]*w2)
def redux(ob, REDUX=0.5, BOUNDRY_WEIGHT=2.0, REMOVE_DOUBLES=False, FACE_AREA_WEIGHT=1.0, FACE_TRIANGULATE=True, DO_UV=True, DO_VCOL=True, DO_WEIGHTS=True, VGROUP_INF_REDUX= None, VGROUP_INF_WEIGHT=0.5):
"""
BOUNDRY_WEIGHT - 0 is no boundry weighting. 2.0 will make them twice as unlikely to collapse.
FACE_AREA_WEIGHT - 0 is no weight. 1 is normal, 2.0 is higher.
"""
if REDUX<0 or REDUX>1.0:
raise 'Error, factor must be between 0 and 1.0'
elif not set:
raise 'Error, this function requires Python 2.4 or a full install of Python 2.3'
BOUNDRY_WEIGHT= 1+BOUNDRY_WEIGHT
""" # DEBUG!
if Blender.Get('rt') == 1000:
DEBUG=True
else:
DEBUG= False
"""
me= ob.getData(mesh=1)
me.hide= False # unhide all data,.
if len(me.faces)<5:
return
if FACE_TRIANGULATE or REMOVE_DOUBLES:
me.sel= True
if FACE_TRIANGULATE:
me.quadToTriangle()
if REMOVE_DOUBLES:
me.remDoubles(0.0001)
vgroups= me.getVertGroupNames()
if not me.getVertGroupNames():
DO_WEIGHTS= False
if (VGROUP_INF_REDUX!= None and VGROUP_INF_REDUX not in vgroups) or\
VGROUP_INF_WEIGHT==0.0:
VGROUP_INF_REDUX= None
try:
VGROUP_INF_REDUX_INDEX= vgroups.index(VGROUP_INF_REDUX)
except:
VGROUP_INF_REDUX_INDEX= -1
# del vgroups
len_vgroups= len(vgroups)
OLD_MESH_MODE= Blender.Mesh.Mode()
Blender.Mesh.Mode(Blender.Mesh.SelectModes.VERTEX)
if DO_UV and not me.faceUV:
DO_UV= False
if DO_VCOL and not me.vertexColors:
DO_VCOL = False
current_face_count= len(me.faces)
target_face_count= int(current_face_count * REDUX)
# % of the collapseable faces to collapse per pass.
#collapse_per_pass= 0.333 # between 0.1 - lots of small nibbles, slow but high q. and 0.9 - big passes and faster.
collapse_per_pass= 0.333 # between 0.1 - lots of small nibbles, slow but high q. and 0.9 - big passes and faster.
"""# DEBUG!
if DEBUG:
COUNT= [0]
def rd():
if COUNT[0]< 330:
COUNT[0]+=1
return
me.update()
Blender.Window.RedrawAll()
print 'Press key for next, count "%s"' % COUNT[0]
try: input()
except KeyboardInterrupt:
raise "Error"
except:
pass
COUNT[0]+=1
"""
class collapseEdge(object):
__slots__ = 'length', 'key', 'faces', 'collapse_loc', 'v1', 'v2','uv1', 'uv2', 'col1', 'col2', 'collapse_weight'
def __init__(self, ed):
self.init_from_edge(ed) # So we can re-use the classes without using more memory.
def init_from_edge(self, ed):
self.key= ed.key
self.length= ed.length
self.faces= []
self.v1= ed.v1
self.v2= ed.v2
if DO_UV or DO_VCOL:
self.uv1= []
self.uv2= []
self.col1= []
self.col2= []
# self.collapse_loc= None # new collapse location.
# Basic weighting.
#self.collapse_weight= self.length * (1+ ((ed.v1.no-ed.v2.no).length**2))
self.collapse_weight= 1.0
def collapse_locations(self, w1, w2):
'''
Generate a smart location for this edge to collapse to
w1 and w2 are vertex location bias
'''
v1co= self.v1.co
v2co= self.v2.co
v1no= self.v1.no
v2no= self.v2.no
# Basic operation, works fine but not as good as predicting the best place.
#between= ((v1co*w1) + (v2co*w2))
#self.collapse_loc= between
# normalize the weights of each vert - se we can use them as scalers.
wscale= w1+w2
if not wscale: # no scale?
w1=w2= 0.5
else:
w1/=wscale
w2/=wscale
length= self.length
between= MidpointVecs(v1co, v2co)
# Collapse
# new_location = between # Replace tricky code below. this code predicts the best collapse location.
# Make lines at right angles to the normals- these 2 lines will intersect and be
# the point of collapsing.
# Enlarge so we know they intersect: self.length*2
cv1= CrossVecs(v1no, CrossVecs(v1no, v1co-v2co))
cv2= CrossVecs(v2no, CrossVecs(v2no, v2co-v1co))
# Scale to be less then the edge lengths.
cv2.length = cv1.length = 1
cv1 = cv1 * (length* 0.4)
cv2 = cv2 * (length* 0.4)
smart_offset_loc= between + (cv1 + cv2)
# Now we need to blend between smart_offset_loc and w1/w2
# you see were blending between a vert and the edges midpoint, so we cant use a normal weighted blend.
if w1 > 0.5: # between v1 and smart_offset_loc
#self.collapse_loc= v1co*(w2+0.5) + smart_offset_loc*(w1-0.5)
w2*=2
w1= 1-w2
new_loc_smart= v1co*w1 + smart_offset_loc*w2
else: # w between v2 and smart_offset_loc
w1*=2
w2= 1-w1
new_loc_smart= v2co*w2 + smart_offset_loc*w1
if new_loc_smart.x != new_loc_smart.x: # NAN LOCATION, revert to between
new_loc_smart= None
return new_loc_smart, between, v1co*0.99999 + v2co*0.00001, v1co*0.00001 + v2co*0.99999
class collapseFace(object):
__slots__ = 'verts', 'normal', 'area', 'index', 'orig_uv', 'orig_col', 'uv', 'col' # , 'collapse_edge_count'
def __init__(self, f):
self.init_from_face(f)
def init_from_face(self, f):
self.verts= f.v
self.normal= f.no
self.area= f.area
self.index= f.index
if DO_UV:
self.orig_uv= [uv_key(uv) for uv in f.uv]
self.uv= f.uv
if DO_VCOL:
self.orig_col= [col_key(col) for col in f.col]
self.col= f.col
collapse_edges= collapse_faces= None
# So meshCalcNormals can avoid making a new list all the time.
reuse_vertNormals= [ Vector() for v in xrange(len(me.verts)) ]
while target_face_count <= len(me.faces):
BPyMesh.meshCalcNormals(me, reuse_vertNormals)
if DO_WEIGHTS:
#groupNames, vWeightDict= BPyMesh.meshWeight2Dict(me)
groupNames, vWeightList= BPyMesh.meshWeight2List(me)
# THIS CRASHES? Not anymore.
verts= list(me.verts)
edges= list(me.edges)
faces= list(me.faces)
# THIS WORKS
#verts= me.verts
#edges= me.edges
#faces= me.faces
# if DEBUG: DOUBLE_CHECK= [0]*len(verts)
me.sel= False
if not collapse_faces: # Initialize the list.
collapse_faces= [collapseFace(f) for f in faces]
collapse_edges= [collapseEdge(ed) for ed in edges]
else:
for i, ed in enumerate(edges):
collapse_edges[i].init_from_edge(ed)
# Strip the unneeded end off the list
collapse_edges[i+1:]= []
for i, f in enumerate(faces):
collapse_faces[i].init_from_face(f)
# Strip the unneeded end off the list
collapse_faces[i+1:]= []
collapse_edges_dict= dict( [(ced.key, ced) for ced in collapse_edges] )
# Store verts edges.
vert_ed_users= [[] for i in xrange(len(verts))]
for ced in collapse_edges:
vert_ed_users[ced.key[0]].append(ced)
vert_ed_users[ced.key[1]].append(ced)
# Store face users
vert_face_users= [[] for i in xrange(len(verts))]
# Have decieded not to use this. area is better.
#face_perim= [0.0]* len(me.faces)
for ii, cfa in enumerate(collapse_faces):
for i, v1 in enumerate(cfa.verts):
vert_face_users[v1.index].append( (i,cfa) )
# add the uv coord to the vert
v2 = cfa.verts[i-1]
i1= v1.index
i2= v2.index
if i1>i2: ced= collapse_edges_dict[i2,i1]
else: ced= collapse_edges_dict[i1,i2]
ced.faces.append(cfa)
if DO_UV or DO_VCOL:
# if the edge is flipped from its order in the face then we need to flip the order indicies.
if cfa.verts[i]==ced.v1: i1,i2 = i, i-1
else: i1,i2 = i-1, i
if DO_UV:
ced.uv1.append( cfa.orig_uv[i1] )
ced.uv2.append( cfa.orig_uv[i2] )
if DO_VCOL:
ced.col1.append( cfa.orig_col[i1] )
ced.col2.append( cfa.orig_col[i2] )
# PERIMITER
#face_perim[ii]+= ced.length
# How weight the verts by the area of their faces * the normal difference.
# when the edge collapses, to vert weights are taken into account
vert_weights= [0.5] * len(verts)
for ii, vert_faces in enumerate(vert_face_users):
for f in vert_faces:
try:
no_ang= (Ang(verts[ii].no, f[1].normal)/180) * f[1].area
except:
no_ang= 1.0
vert_weights[ii] += no_ang
# Use a vertex group as a weighting.
if VGROUP_INF_REDUX!=None:
# Get Weights from a vgroup.
"""
vert_weights_map= [1.0] * len(verts)
for i, wd in enumerate(vWeightDict):
try: vert_weights_map[i]= 1+(wd[VGROUP_INF_REDUX] * VGROUP_INF_WEIGHT)
except: pass
"""
vert_weights_map= [1+(wl[VGROUP_INF_REDUX_INDEX]*VGROUP_INF_WEIGHT) for wl in vWeightList ]
# BOUNDRY CHECKING AND WEIGHT EDGES. CAN REMOVE
# Now we know how many faces link to an edge. lets get all the boundry verts
if BOUNDRY_WEIGHT > 0:
verts_boundry= [1] * len(verts)
#for ed_idxs, faces_and_uvs in edge_faces_and_uvs.iteritems():
for ced in collapse_edges:
if len(ced.faces) < 2:
for key in ced.key: # only ever 2 key indicies.
verts_boundry[key]= 2
for ced in collapse_edges:
b1= verts_boundry[ced.key[0]]
b2= verts_boundry[ced.key[1]]
if b1 != b2:
# Edge has 1 boundry and 1 non boundry vert. weight higher
ced.collapse_weight= BOUNDRY_WEIGHT
#elif b1==b2==2: # if both are on a seam then weigh half as bad.
# ced.collapse_weight= ((BOUNDRY_WEIGHT-1)/2) +1
# weight the verts by their boundry status
del b1
del b2
for ii, boundry in enumerate(verts_boundry):
if boundry==2:
vert_weights[ii] *= BOUNDRY_WEIGHT
vert_collapsed= verts_boundry
del verts_boundry
else:
vert_collapsed= [1] * len(verts)
# Best method, no quick hacks here, Correction. Should be the best but needs tweaks.
def ed_set_collapse_error(ced):
# Use the vertex weights to bias the new location.
new_locs= ced.collapse_locations(vert_weights[ced.key[0]], vert_weights[ced.key[1]])
# Find the connecting faces of the 2 verts.
i1, i2= ced.key
test_faces= set()
for i in (i1,i2): # faster then LC's
for f in vert_face_users[i]:
test_faces.add(f[1].index)
for f in ced.faces:
test_faces.remove(f.index)
v1_orig= Vector(ced.v1.co)
v2_orig= Vector(ced.v2.co)
def test_loc(new_loc):
'''
Takes a location and tests the error without changing anything
'''
new_weight= ced.collapse_weight
ced.v1.co= ced.v2.co= new_loc
new_nos= [faces[i].no for i in test_faces]
# So we can compare the befire and after normals
ced.v1.co= v1_orig
ced.v2.co= v2_orig
# now see how bad the normals are effected
angle_diff= 1.0
for ii, i in enumerate(test_faces): # local face index, global face index
cfa= collapse_faces[i] # this collapse face
try:
# can use perim, but area looks better.
if FACE_AREA_WEIGHT:
# Psudo code for wrighting
# angle_diff= The before and after angle difference between the collapsed and un-collapsed face.
# ... devide by 180 so the value will be between 0 and 1.0
# ... add 1 so we can use it as a multiplyer and not make the area have no eefect (below)
# area_weight= The faces original area * the area weight
# ... add 1.0 so a small area face dosent make the angle_diff have no effect.
#
# Now multiply - (angle_diff * area_weight)
# ... The weight will be a minimum of 1.0 - we need to subtract this so more faces done give the collapse an uneven weighting.
angle_diff+= ((1+(Ang(cfa.normal, new_nos[ii])/180)) * (1+(cfa.area * FACE_AREA_WEIGHT))) -1 # 4 is how much to influence area
else:
angle_diff+= (Ang(cfa.normal), new_nos[ii])/180
except:
pass
# This is very arbirary, feel free to modify
try: no_ang= (Ang(ced.v1.no, ced.v2.no)/180) + 1
except: no_ang= 2.0
# do *= because we face the boundry weight to initialize the weight. 1.0 default.
new_weight *= ((no_ang * ced.length) * (1-(1/angle_diff)))# / max(len(test_faces), 1)
return new_weight
# End testloc
# Test the collapse locatons
collapse_loc_best= None
collapse_weight_best= 1000000000
ii= 0
for collapse_loc in new_locs:
if collapse_loc: # will only ever fail if smart loc is NAN
test_weight= test_loc(collapse_loc)
if test_weight < collapse_weight_best:
iii= ii
collapse_weight_best = test_weight
collapse_loc_best= collapse_loc
ii+=1
ced.collapse_loc= collapse_loc_best
ced.collapse_weight= collapse_weight_best
# are we using a weight map
if VGROUP_INF_REDUX:
v= vert_weights_map[i1]+vert_weights_map[i2]
ced.collapse_weight*= v
# End collapse Error
# We can calculate the weights on __init__ but this is higher qualuity.
for ced in collapse_edges:
if ced.faces: # dont collapse faceless edges.
ed_set_collapse_error(ced)
# Wont use the function again.
del ed_set_collapse_error
# END BOUNDRY. Can remove
# sort by collapse weight
try: collapse_edges.sort(key = lambda ced: ced.collapse_weight) # edges will be used for sorting
except: collapse_edges.sort(lambda ced1, ced2: cmp(ced1.collapse_weight, ced2.collapse_weight)) # edges will be used for sorting
vert_collapsed= [0]*len(verts)
collapse_edges_to_collapse= []
# Make a list of the first half edges we can collapse,
# these will better edges to remove.
collapse_count=0
for ced in collapse_edges:
if ced.faces:
i1, i2= ced.key
# Use vert selections
if vert_collapsed[i1] or vert_collapsed[i2]:
pass
else:
# Now we know the verts havnyt been collapsed.
vert_collapsed[i2]= vert_collapsed[i1]= 1 # Dont collapse again.
collapse_count+=1
collapse_edges_to_collapse.append(ced)
# Get a subset of the entire list- the first "collapse_per_pass", that are best to collapse.
if collapse_count > 4:
collapse_count = int(collapse_count*collapse_per_pass)
else:
collapse_count = len(collapse_edges)
# We know edge_container_list_collapse can be removed.
for ced in collapse_edges_to_collapse:
"""# DEBUG!
if DEBUG:
if DOUBLE_CHECK[ced.v1.index] or\
DOUBLE_CHECK[ced.v2.index]:
raise 'Error'
else:
DOUBLE_CHECK[ced.v1.index]=1
DOUBLE_CHECK[ced.v2.index]=1
tmp= (ced.v1.co+ced.v2.co)*0.5
Blender.Window.SetCursorPos(tmp.x, tmp.y, tmp.z)
Blender.Window.RedrawAll()
"""
# Chech if we have collapsed our quota.
collapse_count-=1
if not collapse_count:
break
current_face_count -= len(ced.faces)
# Find and assign the real weights based on collapse loc.
# Find the weights from the collapse error
if DO_WEIGHTS or DO_UV or DO_VCOL:
i1, i2= ced.key
# Dont use these weights since they may not have been used to make the collapse loc.
#w1= vert_weights[i1]
#w2= vert_weights[i2]
w1= (ced.v2.co-ced.collapse_loc).length
w2= (ced.v1.co-ced.collapse_loc).length
# Normalize weights
wscale= w1+w2
if not wscale: # no scale?
w1=w2= 0.5
else:
w1/= wscale
w2/= wscale
# Interpolate the bone weights.
if DO_WEIGHTS:
# add verts vgroups to eachother
wl1= vWeightList[i1] # v1 weight dict
wl2= vWeightList[i2] # v2 weight dict
for group_index in xrange(len_vgroups):
wl1[group_index]= wl2[group_index]= (wl1[group_index]*w1) + (wl2[group_index]*w2)
# Done finding weights.
if DO_UV or DO_VCOL:
# Handel UV's and vert Colors!
for v, my_weight, other_weight, edge_my_uvs, edge_other_uvs, edge_my_cols, edge_other_cols in (\
(ced.v1, w1, w2, ced.uv1, ced.uv2, ced.col1, ced.col2),\
(ced.v2, w2, w1, ced.uv2, ced.uv1, ced.col2, ced.col1)\
):
uvs_mixed= [ uv_key_mix(edge_my_uvs[iii], edge_other_uvs[iii], my_weight, other_weight) for iii in xrange(len(edge_my_uvs)) ]
cols_mixed= [ col_key_mix(edge_my_cols[iii], edge_other_cols[iii], my_weight, other_weight) for iii in xrange(len(edge_my_cols)) ]
for face_vert_index, cfa in vert_face_users[v.index]:
if len(cfa.verts)==3 and cfa not in ced.faces: # if the face is apart of this edge then dont bother finding the uvs since the face will be removed anyway.
if DO_UV:
# UV COORDS
uvk= cfa.orig_uv[face_vert_index]
try:
tex_index= edge_my_uvs.index(uvk)
except:
tex_index= None
""" # DEBUG!
if DEBUG:
print 'not found', uvk, 'in', edge_my_uvs, 'ed index', ii, '\nwhat about', edge_other_uvs
"""
if tex_index != None: # This face uses a uv in the collapsing face. - do a merge
other_uv= edge_other_uvs[tex_index]
uv_vec= cfa.uv[face_vert_index]
uv_vec.x, uv_vec.y= uvs_mixed[tex_index]
# TEXFACE COLORS
if DO_VCOL:
colk= cfa.orig_col[face_vert_index]
try: tex_index= edge_my_cols.index(colk)
except: pass
if tex_index != None:
other_col= edge_other_cols[tex_index]
col_ob= cfa.col[face_vert_index]
col_ob.r, col_ob.g, col_ob.b= cols_mixed[tex_index]
# DEBUG! if DEBUG: rd()
# Execute the collapse
ced.v1.sel= ced.v2.sel= True # Select so remove doubles removed the edges and faces that use it
ced.v1.co= ced.v2.co= ced.collapse_loc
# DEBUG! if DEBUG: rd()
if current_face_count <= target_face_count:
break
# Copy weights back to the mesh before we remove doubles.
if DO_WEIGHTS:
#BPyMesh.dict2MeshWeight(me, groupNames, vWeightDict)
BPyMesh.list2MeshWeight(me, groupNames, vWeightList)
doubles= me.remDoubles(0.0001)
current_face_count= len(me.faces)
if current_face_count <= target_face_count or not doubles: # not doubles shoule never happen.
break
me.update()
Blender.Mesh.Mode(OLD_MESH_MODE)
# Example usage
def main():
Blender.Window.EditMode(0)
scn= bpy.data.scenes.active
active_ob= scn.objects.active
t= Blender.sys.time()
redux(active_ob, 0.5)
print '%.4f' % (Blender.sys.time()-t)
if __name__=='__main__':
main()