blender/intern/cycles/kernel/kernel_bake.h
Sergey Sharybin bfaf4f2d0d Fix T41219: Cycles backface detection doesn't work properly
Root of the issue goes back to the on-fly normals commit and the
latest fix for it wasn't actually correct. I've mixed two fixes
in there.

So the idea here goes back to storing negative scaled object flag
and flip runtime-calculated normal if this flag is set, which is
pretty much the same as the original fix for the issue from me.

The issue with motion blur wasn't caused by the rumtime normals
patch and it had issues before, because it already did runtime
normals calculation. Now made it so motion triangles takes the
negative scale flag into account.

This actually makes code more clean imo and avoids rather confusing
flipping code in mesh.cpp.
2014-08-13 16:35:54 +06:00

466 lines
12 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License
*/
CCL_NAMESPACE_BEGIN
ccl_device void compute_light_pass(KernelGlobals *kg, ShaderData *sd, PathRadiance *L, RNG rng,
const bool is_combined, const bool is_ao, const bool is_sss, int sample)
{
/* initialize master radiance accumulator */
kernel_assert(kernel_data.film.use_light_pass);
path_radiance_init(L, kernel_data.film.use_light_pass);
PathRadiance L_sample;
PathState state;
Ray ray;
float3 throughput = make_float3(1.0f, 1.0f, 1.0f);
bool is_sss_sample = is_sss;
/* init radiance */
path_radiance_init(&L_sample, kernel_data.film.use_light_pass);
/* init path state */
path_state_init(kg, &state, &rng, sample);
/* evaluate surface shader */
float rbsdf = path_state_rng_1D(kg, &rng, &state, PRNG_BSDF);
shader_eval_surface(kg, sd, rbsdf, state.flag, SHADER_CONTEXT_MAIN);
/* TODO, disable the closures we won't need */
#ifdef __BRANCHED_PATH__
if(!kernel_data.integrator.branched) {
/* regular path tracer */
#endif
/* sample ambient occlusion */
if(is_combined || is_ao) {
kernel_path_ao(kg, sd, &L_sample, &state, &rng, throughput);
}
#ifdef __SUBSURFACE__
/* sample subsurface scattering */
if((is_combined || is_sss_sample) && (sd->flag & SD_BSSRDF)) {
/* when mixing BSSRDF and BSDF closures we should skip BSDF lighting if scattering was successful */
if (kernel_path_subsurface_scatter(kg, sd, &L_sample, &state, &rng, &ray, &throughput))
is_sss_sample = true;
}
#endif
/* sample light and BSDF */
if((!is_sss_sample) && (!is_ao)) {
if(sd->flag & SD_EMISSION) {
float3 emission = indirect_primitive_emission(kg, sd, 0.0f, state.flag, state.ray_pdf);
path_radiance_accum_emission(&L_sample, throughput, emission, state.bounce);
}
kernel_path_surface_connect_light(kg, &rng, sd, throughput, &state, &L_sample);
if(kernel_path_surface_bounce(kg, &rng, sd, &throughput, &state, &L_sample, &ray)) {
#ifdef __LAMP_MIS__
state.ray_t = 0.0f;
#endif
/* compute indirect light */
kernel_path_indirect(kg, &rng, ray, throughput, 1, state, &L_sample);
/* sum and reset indirect light pass variables for the next samples */
path_radiance_sum_indirect(&L_sample);
path_radiance_reset_indirect(&L_sample);
}
}
#ifdef __BRANCHED_PATH__
}
else {
/* branched path tracer */
/* sample ambient occlusion */
if(is_combined || is_ao) {
kernel_branched_path_ao(kg, sd, &L_sample, &state, &rng, throughput);
}
#ifdef __SUBSURFACE__
/* sample subsurface scattering */
if((is_combined || is_sss_sample) && (sd->flag & SD_BSSRDF)) {
/* when mixing BSSRDF and BSDF closures we should skip BSDF lighting if scattering was successful */
kernel_branched_path_subsurface_scatter(kg, sd, &L_sample, &state, &rng, throughput);
}
#endif
/* sample light and BSDF */
if((!is_sss_sample) && (!is_ao)) {
if(sd->flag & SD_EMISSION) {
float3 emission = indirect_primitive_emission(kg, sd, 0.0f, state.flag, state.ray_pdf);
path_radiance_accum_emission(&L_sample, throughput, emission, state.bounce);
}
#if defined(__EMISSION__)
/* direct light */
if(kernel_data.integrator.use_direct_light) {
bool all = kernel_data.integrator.sample_all_lights_direct;
kernel_branched_path_surface_connect_light(kg, &rng,
sd, &state, throughput, 1.0f, &L_sample, all);
}
#endif
/* indirect light */
kernel_branched_path_surface_indirect_light(kg, &rng,
sd, throughput, 1.0f, &state, &L_sample);
}
}
#endif
/* accumulate into master L */
path_radiance_accum_sample(L, &L_sample, 1);
}
ccl_device bool is_aa_pass(ShaderEvalType type)
{
switch(type) {
case SHADER_EVAL_UV:
case SHADER_EVAL_NORMAL:
return false;
default:
return true;
}
}
ccl_device bool is_light_pass(ShaderEvalType type)
{
switch (type) {
case SHADER_EVAL_AO:
case SHADER_EVAL_COMBINED:
case SHADER_EVAL_SHADOW:
case SHADER_EVAL_DIFFUSE_DIRECT:
case SHADER_EVAL_GLOSSY_DIRECT:
case SHADER_EVAL_TRANSMISSION_DIRECT:
case SHADER_EVAL_SUBSURFACE_DIRECT:
case SHADER_EVAL_DIFFUSE_INDIRECT:
case SHADER_EVAL_GLOSSY_INDIRECT:
case SHADER_EVAL_TRANSMISSION_INDIRECT:
case SHADER_EVAL_SUBSURFACE_INDIRECT:
return true;
default:
return false;
}
}
#if 0
ccl_device_inline float bake_clamp_mirror_repeat(float u)
{
/* use mirror repeat (like opengl texture) so that if the barycentric
* coordinate goes past the end of the triangle it is not always clamped
* to the same value, gives ugly patterns */
float fu = floorf(u);
u = u - fu;
return (((int)fu) & 1)? 1.0f - u: u;
}
#endif
ccl_device void kernel_bake_evaluate(KernelGlobals *kg, ccl_global uint4 *input, ccl_global float4 *output, ShaderEvalType type, int i, int sample)
{
ShaderData sd;
uint4 in = input[i * 2];
uint4 diff = input[i * 2 + 1];
float3 out;
int object = in.x;
int prim = in.y;
if(prim == -1)
return;
float u = __uint_as_float(in.z);
float v = __uint_as_float(in.w);
float dudx = __uint_as_float(diff.x);
float dudy = __uint_as_float(diff.y);
float dvdx = __uint_as_float(diff.z);
float dvdy = __uint_as_float(diff.w);
int num_samples = kernel_data.integrator.aa_samples;
/* random number generator */
RNG rng = cmj_hash(i, 0);
#if 0
uint rng_state = cmj_hash(i, 0);
float filter_x, filter_y;
path_rng_init(kg, &rng_state, sample, num_samples, &rng, 0, 0, &filter_x, &filter_y);
/* subpixel u/v offset */
if(sample > 0) {
u = bake_clamp_mirror_repeat(u + dudx*(filter_x - 0.5f) + dudy*(filter_y - 0.5f));
v = bake_clamp_mirror_repeat(v + dvdx*(filter_x - 0.5f) + dvdy*(filter_y - 0.5f));
}
#endif
/* triangle */
int shader;
float3 P, Ng;
triangle_point_normal(kg, object, prim, u, v, &P, &Ng, &shader);
/* dummy initilizations copied from SHADER_EVAL_DISPLACE */
float3 I = Ng;
float t = 0.0f;
float time = TIME_INVALID;
int bounce = 0;
int transparent_bounce = 0;
/* light passes */
PathRadiance L;
shader_setup_from_sample(kg, &sd, P, Ng, I, shader, object, prim, u, v, t, time, bounce, transparent_bounce);
sd.I = sd.N;
/* update differentials */
sd.dP.dx = sd.dPdu * dudx + sd.dPdv * dvdx;
sd.dP.dy = sd.dPdu * dudy + sd.dPdv * dvdy;
sd.du.dx = dudx;
sd.du.dy = dudy;
sd.dv.dx = dvdx;
sd.dv.dy = dvdy;
/* light passes */
if(is_light_pass(type)) {
compute_light_pass(kg, &sd, &L, rng,
(type == SHADER_EVAL_COMBINED),
(type == SHADER_EVAL_AO),
(type == SHADER_EVAL_SUBSURFACE_DIRECT ||
type == SHADER_EVAL_SUBSURFACE_INDIRECT),
sample);
}
switch (type) {
/* data passes */
case SHADER_EVAL_NORMAL:
{
/* compression: normal = (2 * color) - 1 */
out = sd.N * 0.5f + make_float3(0.5f, 0.5f, 0.5f);
break;
}
case SHADER_EVAL_UV:
{
out = primitive_uv(kg, &sd);
break;
}
case SHADER_EVAL_DIFFUSE_COLOR:
{
shader_eval_surface(kg, &sd, 0.f, 0, SHADER_CONTEXT_MAIN);
out = shader_bsdf_diffuse(kg, &sd);
break;
}
case SHADER_EVAL_GLOSSY_COLOR:
{
shader_eval_surface(kg, &sd, 0.f, 0, SHADER_CONTEXT_MAIN);
out = shader_bsdf_glossy(kg, &sd);
break;
}
case SHADER_EVAL_TRANSMISSION_COLOR:
{
shader_eval_surface(kg, &sd, 0.f, 0, SHADER_CONTEXT_MAIN);
out = shader_bsdf_transmission(kg, &sd);
break;
}
case SHADER_EVAL_SUBSURFACE_COLOR:
{
#ifdef __SUBSURFACE__
shader_eval_surface(kg, &sd, 0.f, 0, SHADER_CONTEXT_MAIN);
out = shader_bsdf_subsurface(kg, &sd);
#endif
break;
}
case SHADER_EVAL_EMISSION:
{
shader_eval_surface(kg, &sd, 0.f, 0, SHADER_CONTEXT_EMISSION);
out = shader_emissive_eval(kg, &sd);
break;
}
#ifdef __PASSES__
/* light passes */
case SHADER_EVAL_AO:
{
out = L.ao;
break;
}
case SHADER_EVAL_COMBINED:
{
out = path_radiance_clamp_and_sum(kg, &L);
break;
}
case SHADER_EVAL_SHADOW:
{
out = make_float3(L.shadow.x, L.shadow.y, L.shadow.z);
break;
}
case SHADER_EVAL_DIFFUSE_DIRECT:
{
shader_eval_surface(kg, &sd, 0.f, 0, SHADER_CONTEXT_MAIN);
out = safe_divide_color(L.direct_diffuse, shader_bsdf_diffuse(kg, &sd));
break;
}
case SHADER_EVAL_GLOSSY_DIRECT:
{
shader_eval_surface(kg, &sd, 0.f, 0, SHADER_CONTEXT_MAIN);
out = safe_divide_color(L.direct_glossy, shader_bsdf_glossy(kg, &sd));
break;
}
case SHADER_EVAL_TRANSMISSION_DIRECT:
{
shader_eval_surface(kg, &sd, 0.f, 0, SHADER_CONTEXT_MAIN);
out = safe_divide_color(L.direct_transmission, shader_bsdf_transmission(kg, &sd));
break;
}
case SHADER_EVAL_SUBSURFACE_DIRECT:
{
#ifdef __SUBSURFACE__
shader_eval_surface(kg, &sd, 0.f, 0, SHADER_CONTEXT_MAIN);
out = safe_divide_color(L.direct_subsurface, shader_bsdf_subsurface(kg, &sd));
#endif
break;
}
case SHADER_EVAL_DIFFUSE_INDIRECT:
{
shader_eval_surface(kg, &sd, 0.f, 0, SHADER_CONTEXT_MAIN);
out = safe_divide_color(L.indirect_diffuse, shader_bsdf_diffuse(kg, &sd));
break;
}
case SHADER_EVAL_GLOSSY_INDIRECT:
{
shader_eval_surface(kg, &sd, 0.f, 0, SHADER_CONTEXT_MAIN);
out = safe_divide_color(L.indirect_glossy, shader_bsdf_glossy(kg, &sd));
break;
}
case SHADER_EVAL_TRANSMISSION_INDIRECT:
{
shader_eval_surface(kg, &sd, 0.f, 0, SHADER_CONTEXT_MAIN);
out = safe_divide_color(L.indirect_transmission, shader_bsdf_transmission(kg, &sd));
break;
}
case SHADER_EVAL_SUBSURFACE_INDIRECT:
{
#ifdef __SUBSURFACE__
shader_eval_surface(kg, &sd, 0.f, 0, SHADER_CONTEXT_MAIN);
out = safe_divide_color(L.indirect_subsurface, shader_bsdf_subsurface(kg, &sd));
#endif
break;
}
#endif
/* extra */
case SHADER_EVAL_ENVIRONMENT:
{
/* setup ray */
Ray ray;
ray.P = make_float3(0.0f, 0.0f, 0.0f);
ray.D = normalize(P);
ray.t = 0.0f;
#ifdef __CAMERA_MOTION__
ray.time = 0.5f;
#endif
#ifdef __RAY_DIFFERENTIALS__
ray.dD = differential3_zero();
ray.dP = differential3_zero();
#endif
/* setup shader data */
shader_setup_from_background(kg, &sd, &ray, 0, 0);
/* evaluate */
int flag = 0; /* we can't know which type of BSDF this is for */
out = shader_eval_background(kg, &sd, flag, SHADER_CONTEXT_MAIN);
break;
}
default:
{
/* no real shader, returning the position of the verts for debugging */
out = normalize(P);
break;
}
}
/* write output */
float output_fac = is_aa_pass(type)? 1.0f/num_samples: 1.0f;
if(sample == 0)
output[i] = make_float4(out.x, out.y, out.z, 1.0f) * output_fac;
else
output[i] += make_float4(out.x, out.y, out.z, 1.0f) * output_fac;
}
ccl_device void kernel_shader_evaluate(KernelGlobals *kg, ccl_global uint4 *input, ccl_global float4 *output, ShaderEvalType type, int i, int sample)
{
ShaderData sd;
uint4 in = input[i];
float3 out;
if(type == SHADER_EVAL_DISPLACE) {
/* setup shader data */
int object = in.x;
int prim = in.y;
float u = __uint_as_float(in.z);
float v = __uint_as_float(in.w);
shader_setup_from_displace(kg, &sd, object, prim, u, v);
/* evaluate */
float3 P = sd.P;
shader_eval_displacement(kg, &sd, SHADER_CONTEXT_MAIN);
out = sd.P - P;
}
else { // SHADER_EVAL_BACKGROUND
/* setup ray */
Ray ray;
float u = __uint_as_float(in.x);
float v = __uint_as_float(in.y);
ray.P = make_float3(0.0f, 0.0f, 0.0f);
ray.D = equirectangular_to_direction(u, v);
ray.t = 0.0f;
#ifdef __CAMERA_MOTION__
ray.time = 0.5f;
#endif
#ifdef __RAY_DIFFERENTIALS__
ray.dD = differential3_zero();
ray.dP = differential3_zero();
#endif
/* setup shader data */
shader_setup_from_background(kg, &sd, &ray, 0, 0);
/* evaluate */
int flag = 0; /* we can't know which type of BSDF this is for */
out = shader_eval_background(kg, &sd, flag, SHADER_CONTEXT_MAIN);
}
/* write output */
if(sample == 0)
output[i] = make_float4(out.x, out.y, out.z, 0.0f);
else
output[i] += make_float4(out.x, out.y, out.z, 0.0f);
}
CCL_NAMESPACE_END