forked from bartvdbraak/blender
225 lines
6.8 KiB
Python
225 lines
6.8 KiB
Python
# ##### BEGIN GPL LICENSE BLOCK #####
|
|
#
|
|
# This program is free software; you can redistribute it and/or
|
|
# modify it under the terms of the GNU General Public License
|
|
# as published by the Free Software Foundation; either version 2
|
|
# of the License, or (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with this program; if not, write to the Free Software Foundation,
|
|
# Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
#
|
|
# ##### END GPL LICENSE BLOCK #####
|
|
|
|
# <pep8 compliant>
|
|
|
|
import bpy
|
|
from rigify import get_bone_data, empty_layer, copy_bone_simple, get_side_name, get_base_name
|
|
from rna_prop_ui import rna_idprop_ui_prop_get
|
|
from functools import reduce
|
|
|
|
METARIG_NAMES = "finger_01", "finger_02", "finger_03"
|
|
|
|
|
|
def metarig_template():
|
|
bpy.ops.object.mode_set(mode='EDIT')
|
|
obj = bpy.context.object
|
|
arm = obj.data
|
|
bone = arm.edit_bones.new('finger.01')
|
|
bone.head[:] = 0.0000, 0.0000, 0.0000
|
|
bone.tail[:] = 0.8788, -0.4584, -0.1327
|
|
bone.roll = -2.8722
|
|
bone.connected = False
|
|
bone = arm.edit_bones.new('finger.02')
|
|
bone.head[:] = 0.8788, -0.4584, -0.1327
|
|
bone.tail[:] = 1.7483, -0.9059, -0.3643
|
|
bone.roll = -2.7099
|
|
bone.connected = True
|
|
bone.parent = arm.edit_bones['finger.01']
|
|
bone = arm.edit_bones.new('finger.03')
|
|
bone.head[:] = 1.7483, -0.9059, -0.3643
|
|
bone.tail[:] = 2.2478, -1.1483, -0.7408
|
|
bone.roll = -2.1709
|
|
bone.connected = True
|
|
bone.parent = arm.edit_bones['finger.02']
|
|
|
|
bpy.ops.object.mode_set(mode='OBJECT')
|
|
pbone = obj.pose.bones['finger.01']
|
|
pbone['type'] = 'finger'
|
|
|
|
|
|
def metarig_definition(obj, orig_bone_name):
|
|
'''
|
|
The bone given is the first in a chain
|
|
Expects a chain of at least 2 children.
|
|
eg.
|
|
finger -> finger_01 -> finger_02
|
|
'''
|
|
|
|
bone_definition = []
|
|
|
|
orig_bone = obj.data.bones[orig_bone_name]
|
|
|
|
bone_definition.append(orig_bone.name)
|
|
|
|
bone = orig_bone
|
|
chain = 0
|
|
while chain < 2: # first 2 bones only have 1 child
|
|
children = bone.children
|
|
|
|
if len(children) != 1:
|
|
raise Exception("expected the chain to have 2 children without a fork")
|
|
bone = children[0]
|
|
bone_definition.append(bone.name) # finger_02, finger_03
|
|
chain += 1
|
|
|
|
if len(bone_definition) != len(METARIG_NAMES):
|
|
raise Exception("internal problem, expected %d bones" % len(METARIG_NAMES))
|
|
|
|
return bone_definition
|
|
|
|
|
|
def main(obj, bone_definition, base_names):
|
|
|
|
# *** EDITMODE
|
|
|
|
# get assosiated data
|
|
arm, orig_pbone, orig_ebone = get_bone_data(obj, bone_definition[0])
|
|
|
|
obj.animation_data_create() # needed if its a new armature with no keys
|
|
|
|
arm.layer[0] = arm.layer[8] = True
|
|
|
|
children = orig_pbone.children_recursive
|
|
tot_len = reduce(lambda f, pbone: f + pbone.bone.length, children, orig_pbone.bone.length)
|
|
|
|
# FIXME, the line below is far too arbitrary
|
|
base_name = base_names[bone_definition[0]].rsplit(".", 2)[0]
|
|
|
|
# first make a new bone at the location of the finger
|
|
#control_ebone = arm.edit_bones.new(base_name)
|
|
control_ebone = copy_bone_simple(arm, bone_definition[0], base_name + get_side_name(base_names[bone_definition[0]]), parent=True)
|
|
control_bone_name = control_ebone.name # we dont know if we get the name requested
|
|
|
|
control_ebone.connected = orig_ebone.connected
|
|
control_ebone.parent = orig_ebone.parent
|
|
control_ebone.length = tot_len
|
|
|
|
# now add bones inbetween this and its children recursively
|
|
|
|
# switching modes so store names only!
|
|
children = [pbone.name for pbone in children]
|
|
|
|
# set an alternate layer for driver bones
|
|
other_layer = empty_layer[:]
|
|
other_layer[8] = True
|
|
|
|
|
|
driver_bone_pairs = []
|
|
|
|
for child_bone_name in children:
|
|
child_ebone = arm.edit_bones[child_bone_name]
|
|
|
|
# finger.02 --> finger_driver.02
|
|
driver_bone_name = child_bone_name.split('.')
|
|
driver_bone_name = driver_bone_name[0] + "_driver." + ".".join(driver_bone_name[1:])
|
|
|
|
driver_ebone = copy_bone_simple(arm, child_ebone.name, driver_bone_name)
|
|
driver_ebone.length *= 0.5
|
|
driver_ebone.layer = other_layer
|
|
|
|
# Insert driver_ebone in the chain without connected parents
|
|
driver_ebone.connected = False
|
|
driver_ebone.parent = child_ebone.parent
|
|
|
|
child_ebone.connected = False
|
|
child_ebone.parent = driver_ebone
|
|
|
|
# Add the drivers to these when in posemode.
|
|
driver_bone_pairs.append((child_bone_name, driver_bone_name))
|
|
|
|
del control_ebone
|
|
|
|
|
|
# *** POSEMODE
|
|
bpy.ops.object.mode_set(mode='OBJECT')
|
|
|
|
|
|
orig_pbone = obj.pose.bones[bone_definition[0]]
|
|
control_pbone = obj.pose.bones[control_bone_name]
|
|
|
|
|
|
# only allow Y scale
|
|
control_pbone.lock_scale = (True, False, True)
|
|
|
|
control_pbone["bend_ratio"] = 0.4
|
|
prop = rna_idprop_ui_prop_get(control_pbone, "bend_ratio", create=True)
|
|
prop["soft_min"] = 0.0
|
|
prop["soft_max"] = 1.0
|
|
|
|
con = orig_pbone.constraints.new('COPY_LOCATION')
|
|
con.target = obj
|
|
con.subtarget = control_bone_name
|
|
|
|
con = orig_pbone.constraints.new('COPY_ROTATION')
|
|
con.target = obj
|
|
con.subtarget = control_bone_name
|
|
|
|
|
|
|
|
# setup child drivers on each new smaller bone added. assume 2 for now.
|
|
|
|
# drives the bones
|
|
controller_path = control_pbone.path_to_id() # 'pose.bones["%s"]' % control_bone_name
|
|
|
|
i = 0
|
|
for child_bone_name, driver_bone_name in driver_bone_pairs:
|
|
|
|
# XXX - todo, any number
|
|
if i == 2:
|
|
break
|
|
|
|
driver_pbone = obj.pose.bones[driver_bone_name]
|
|
|
|
driver_pbone.rotation_mode = 'YZX'
|
|
fcurve_driver = driver_pbone.driver_add("rotation_euler", 0)
|
|
|
|
#obj.driver_add('pose.bones["%s"].scale', 1)
|
|
#obj.animation_data.drivers[-1] # XXX, WATCH THIS
|
|
driver = fcurve_driver.driver
|
|
|
|
# scale target
|
|
tar = driver.targets.new()
|
|
tar.name = "scale"
|
|
tar.id_type = 'OBJECT'
|
|
tar.id = obj
|
|
tar.rna_path = controller_path + '.scale[1]'
|
|
|
|
# bend target
|
|
tar = driver.targets.new()
|
|
tar.name = "br"
|
|
tar.id_type = 'OBJECT'
|
|
tar.id = obj
|
|
tar.rna_path = controller_path + '["bend_ratio"]'
|
|
|
|
# XXX - todo, any number
|
|
if i == 0:
|
|
driver.expression = '(-scale+1.0)*pi*2.0*(1.0-br)'
|
|
elif i == 1:
|
|
driver.expression = '(-scale+1.0)*pi*2.0*br'
|
|
|
|
child_pbone = obj.pose.bones[child_bone_name]
|
|
|
|
# only allow X rotation
|
|
driver_pbone.lock_rotation = child_pbone.lock_rotation = (False, True, True)
|
|
|
|
i += 1
|
|
|
|
# no blending the result of this
|
|
return None
|