blender/tests/gtests/blenlib/BLI_expr_pylike_eval_test.cc
Alexander Gavrilov fc1f5bded4 Depsgraph: fix false positive time dependencies for simple drivers.
The dependency graph has to know whether a driver must be re-evaluated
every frame due to a dependency on the current frame number. For python
drivers it was using a heuristic based on searching for certain sub-
strings in the expression, notably including '('.

When the expression is actually evaluated using Python, this can't be
easily improved; however if the Simple Expression evaluator is used,
this check can be done precisely by accessing the parsed data.

Differential Revision: https://developer.blender.org/D6624
2020-01-24 20:48:02 +03:00

340 lines
9.1 KiB
C++

/* Apache License, Version 2.0 */
#include "testing/testing.h"
#include <string.h>
extern "C" {
#include "BLI_expr_pylike_eval.h"
#include "BLI_math.h"
};
#define TRUE_VAL 1.0
#define FALSE_VAL 0.0
static void expr_pylike_parse_fail_test(const char *str)
{
ExprPyLike_Parsed *expr = BLI_expr_pylike_parse(str, NULL, 0);
EXPECT_FALSE(BLI_expr_pylike_is_valid(expr));
BLI_expr_pylike_free(expr);
}
static void expr_pylike_const_test(const char *str, double value, bool force_const)
{
ExprPyLike_Parsed *expr = BLI_expr_pylike_parse(str, NULL, 0);
if (force_const) {
EXPECT_TRUE(BLI_expr_pylike_is_constant(expr));
}
else {
EXPECT_TRUE(BLI_expr_pylike_is_valid(expr));
EXPECT_FALSE(BLI_expr_pylike_is_constant(expr));
}
double result;
eExprPyLike_EvalStatus status = BLI_expr_pylike_eval(expr, NULL, 0, &result);
EXPECT_EQ(status, EXPR_PYLIKE_SUCCESS);
EXPECT_EQ(result, value);
BLI_expr_pylike_free(expr);
}
static ExprPyLike_Parsed *parse_for_eval(const char *str, bool nonconst)
{
const char *names[1] = {"x"};
ExprPyLike_Parsed *expr = BLI_expr_pylike_parse(str, names, ARRAY_SIZE(names));
EXPECT_TRUE(BLI_expr_pylike_is_valid(expr));
if (nonconst) {
EXPECT_FALSE(BLI_expr_pylike_is_constant(expr));
}
return expr;
}
static void verify_eval_result(ExprPyLike_Parsed *expr, double x, double value)
{
double result;
eExprPyLike_EvalStatus status = BLI_expr_pylike_eval(expr, &x, 1, &result);
EXPECT_EQ(status, EXPR_PYLIKE_SUCCESS);
EXPECT_EQ(result, value);
}
static void expr_pylike_eval_test(const char *str, double x, double value)
{
ExprPyLike_Parsed *expr = parse_for_eval(str, true);
verify_eval_result(expr, x, value);
BLI_expr_pylike_free(expr);
}
static void expr_pylike_error_test(const char *str, double x, eExprPyLike_EvalStatus error)
{
ExprPyLike_Parsed *expr = parse_for_eval(str, false);
double result;
eExprPyLike_EvalStatus status = BLI_expr_pylike_eval(expr, &x, 1, &result);
EXPECT_EQ(status, error);
BLI_expr_pylike_free(expr);
}
#define TEST_PARSE_FAIL(name, str) \
TEST(expr_pylike, ParseFail_##name) \
{ \
expr_pylike_parse_fail_test(str); \
}
TEST_PARSE_FAIL(Empty, "")
TEST_PARSE_FAIL(ConstHex, "0x0")
TEST_PARSE_FAIL(ConstOctal, "01")
TEST_PARSE_FAIL(Tail, "0 0")
TEST_PARSE_FAIL(ConstFloatExp, "0.5e+")
TEST_PARSE_FAIL(BadId, "Pi")
TEST_PARSE_FAIL(BadArgCount0, "sqrt")
TEST_PARSE_FAIL(BadArgCount1, "sqrt()")
TEST_PARSE_FAIL(BadArgCount2, "sqrt(1,2)")
TEST_PARSE_FAIL(BadArgCount3, "pi()")
TEST_PARSE_FAIL(BadArgCount4, "max()")
TEST_PARSE_FAIL(BadArgCount5, "min()")
TEST_PARSE_FAIL(Truncated1, "(1+2")
TEST_PARSE_FAIL(Truncated2, "1 if 2")
TEST_PARSE_FAIL(Truncated3, "1 if 2 else")
TEST_PARSE_FAIL(Truncated4, "1 < 2 <")
TEST_PARSE_FAIL(Truncated5, "1 +")
TEST_PARSE_FAIL(Truncated6, "1 *")
TEST_PARSE_FAIL(Truncated7, "1 and")
TEST_PARSE_FAIL(Truncated8, "1 or")
TEST_PARSE_FAIL(Truncated9, "sqrt(1")
TEST_PARSE_FAIL(Truncated10, "fmod(1,")
/* Constant expression with working constant folding */
#define TEST_CONST(name, str, value) \
TEST(expr_pylike, Const_##name) \
{ \
expr_pylike_const_test(str, value, true); \
}
/* Constant expression but constant folding is not supported */
#define TEST_RESULT(name, str, value) \
TEST(expr_pylike, Result_##name) \
{ \
expr_pylike_const_test(str, value, false); \
}
/* Expression with an argument */
#define TEST_EVAL(name, str, x, value) \
TEST(expr_pylike, Eval_##name) \
{ \
expr_pylike_eval_test(str, x, value); \
}
TEST_CONST(Zero, "0", 0.0)
TEST_CONST(Zero2, "00", 0.0)
TEST_CONST(One, "1", 1.0)
TEST_CONST(OneF, "1.0", 1.0)
TEST_CONST(OneF2, "1.", 1.0)
TEST_CONST(OneE, "1e0", 1.0)
TEST_CONST(TenE, "1.e+1", 10.0)
TEST_CONST(Half, ".5", 0.5)
TEST_CONST(Pi, "pi", M_PI)
TEST_CONST(True, "True", TRUE_VAL)
TEST_CONST(False, "False", FALSE_VAL)
TEST_CONST(Sqrt, "sqrt(4)", 2.0)
TEST_EVAL(Sqrt, "sqrt(x)", 4.0, 2.0)
TEST_CONST(FMod, "fmod(3.5, 2)", 1.5)
TEST_EVAL(FMod, "fmod(x, 2)", 3.5, 1.5)
TEST_CONST(Pow, "pow(4, 0.5)", 2.0)
TEST_EVAL(Pow, "pow(4, x)", 0.5, 2.0)
TEST_RESULT(Min1, "min(3,1,2)", 1.0)
TEST_RESULT(Max1, "max(3,1,2)", 3.0)
TEST_RESULT(Min2, "min(1,2,3)", 1.0)
TEST_RESULT(Max2, "max(1,2,3)", 3.0)
TEST_RESULT(Min3, "min(2,3,1)", 1.0)
TEST_RESULT(Max3, "max(2,3,1)", 3.0)
TEST_CONST(UnaryPlus, "+1", 1.0)
TEST_CONST(UnaryMinus, "-1", -1.0)
TEST_EVAL(UnaryMinus, "-x", 1.0, -1.0)
TEST_CONST(BinaryPlus, "1+2", 3.0)
TEST_EVAL(BinaryPlus, "x+2", 1, 3.0)
TEST_CONST(BinaryMinus, "1-2", -1.0)
TEST_EVAL(BinaryMinus, "1-x", 2, -1.0)
TEST_CONST(BinaryMul, "2*3", 6.0)
TEST_EVAL(BinaryMul, "x*3", 2, 6.0)
TEST_CONST(BinaryDiv, "3/2", 1.5)
TEST_EVAL(BinaryDiv, "3/x", 2, 1.5)
TEST_CONST(Arith1, "1 + -2 * 3", -5.0)
TEST_CONST(Arith2, "(1 + -2) * 3", -3.0)
TEST_CONST(Arith3, "-1 + 2 * 3", 5.0)
TEST_CONST(Arith4, "3 * (-2 + 1)", -3.0)
TEST_EVAL(Arith1, "1 + -x * 3", 2, -5.0)
TEST_CONST(Eq1, "1 == 1.0", TRUE_VAL)
TEST_CONST(Eq2, "1 == 2.0", FALSE_VAL)
TEST_CONST(Eq3, "True == 1", TRUE_VAL)
TEST_CONST(Eq4, "False == 0", TRUE_VAL)
TEST_EVAL(Eq1, "1 == x", 1.0, TRUE_VAL)
TEST_EVAL(Eq2, "1 == x", 2.0, FALSE_VAL)
TEST_CONST(NEq1, "1 != 1.0", FALSE_VAL)
TEST_CONST(NEq2, "1 != 2.0", TRUE_VAL)
TEST_EVAL(NEq1, "1 != x", 1.0, FALSE_VAL)
TEST_EVAL(NEq2, "1 != x", 2.0, TRUE_VAL)
TEST_CONST(Lt1, "1 < 1", FALSE_VAL)
TEST_CONST(Lt2, "1 < 2", TRUE_VAL)
TEST_CONST(Lt3, "2 < 1", FALSE_VAL)
TEST_CONST(Le1, "1 <= 1", TRUE_VAL)
TEST_CONST(Le2, "1 <= 2", TRUE_VAL)
TEST_CONST(Le3, "2 <= 1", FALSE_VAL)
TEST_CONST(Gt1, "1 > 1", FALSE_VAL)
TEST_CONST(Gt2, "1 > 2", FALSE_VAL)
TEST_CONST(Gt3, "2 > 1", TRUE_VAL)
TEST_CONST(Ge1, "1 >= 1", TRUE_VAL)
TEST_CONST(Ge2, "1 >= 2", FALSE_VAL)
TEST_CONST(Ge3, "2 >= 1", TRUE_VAL)
TEST_CONST(Cmp1, "3 == 1 + 2", TRUE_VAL)
TEST_EVAL(Cmp1, "3 == x + 2", 1, TRUE_VAL)
TEST_EVAL(Cmp1b, "3 == x + 2", 1.5, FALSE_VAL)
TEST_RESULT(CmpChain1, "1 < 2 < 3", TRUE_VAL)
TEST_RESULT(CmpChain2, "1 < 2 == 2", TRUE_VAL)
TEST_RESULT(CmpChain3, "1 < 2 > -1", TRUE_VAL)
TEST_RESULT(CmpChain4, "1 < 2 < 2 < 3", FALSE_VAL)
TEST_RESULT(CmpChain5, "1 < 2 <= 2 < 3", TRUE_VAL)
TEST_EVAL(CmpChain1a, "1 < x < 3", 2, TRUE_VAL)
TEST_EVAL(CmpChain1b, "1 < x < 3", 1, FALSE_VAL)
TEST_EVAL(CmpChain1c, "1 < x < 3", 3, FALSE_VAL)
TEST_CONST(Not1, "not 2", FALSE_VAL)
TEST_CONST(Not2, "not 0", TRUE_VAL)
TEST_CONST(Not3, "not not 2", TRUE_VAL)
TEST_EVAL(Not1, "not x", 2, FALSE_VAL)
TEST_EVAL(Not2, "not x", 0, TRUE_VAL)
TEST_RESULT(And1, "2 and 3", 3.0)
TEST_RESULT(And2, "0 and 3", 0.0)
TEST_RESULT(Or1, "2 or 3", 2.0)
TEST_RESULT(Or2, "0 or 3", 3.0)
TEST_RESULT(Bool1, "2 or 3 and 4", 2.0)
TEST_RESULT(Bool2, "not 2 or 3 and 4", 4.0)
TEST(expr_pylike, Eval_Ternary1)
{
ExprPyLike_Parsed *expr = parse_for_eval("x / 2 if x < 4 else x - 2 if x < 8 else x*2 - 12",
true);
for (int i = 0; i <= 10; i++) {
double x = i;
double v = (x < 4) ? (x / 2) : (x < 8) ? (x - 2) : (x * 2 - 12);
verify_eval_result(expr, x, v);
}
BLI_expr_pylike_free(expr);
}
TEST(expr_pylike, MultipleArgs)
{
const char *names[3] = {"x", "y", "x"};
double values[3] = {1.0, 2.0, 3.0};
ExprPyLike_Parsed *expr = BLI_expr_pylike_parse("x*10 + y", names, ARRAY_SIZE(names));
EXPECT_TRUE(BLI_expr_pylike_is_valid(expr));
double result;
eExprPyLike_EvalStatus status = BLI_expr_pylike_eval(expr, values, 3, &result);
EXPECT_EQ(status, EXPR_PYLIKE_SUCCESS);
EXPECT_EQ(result, 32.0);
BLI_expr_pylike_free(expr);
}
TEST(expr_pylike, UsingParam)
{
const char *names[3] = {"x", "y", "z"};
ExprPyLike_Parsed *expr = BLI_expr_pylike_parse("x + z", names, ARRAY_SIZE(names));
EXPECT_TRUE(BLI_expr_pylike_is_using_param(expr, 0));
EXPECT_FALSE(BLI_expr_pylike_is_using_param(expr, 1));
EXPECT_TRUE(BLI_expr_pylike_is_using_param(expr, 2));
BLI_expr_pylike_free(expr);
}
#define TEST_ERROR(name, str, x, code) \
TEST(expr_pylike, Error_##name) \
{ \
expr_pylike_error_test(str, x, code); \
}
TEST_ERROR(DivZero1, "0 / 0", 0.0, EXPR_PYLIKE_MATH_ERROR)
TEST_ERROR(DivZero2, "1 / 0", 0.0, EXPR_PYLIKE_DIV_BY_ZERO)
TEST_ERROR(DivZero3, "1 / x", 0.0, EXPR_PYLIKE_DIV_BY_ZERO)
TEST_ERROR(DivZero4, "1 / x", 1.0, EXPR_PYLIKE_SUCCESS)
TEST_ERROR(SqrtDomain1, "sqrt(-1)", 0.0, EXPR_PYLIKE_MATH_ERROR)
TEST_ERROR(SqrtDomain2, "sqrt(x)", -1.0, EXPR_PYLIKE_MATH_ERROR)
TEST_ERROR(SqrtDomain3, "sqrt(x)", 0.0, EXPR_PYLIKE_SUCCESS)
TEST_ERROR(PowDomain1, "pow(-1, 0.5)", 0.0, EXPR_PYLIKE_MATH_ERROR)
TEST_ERROR(PowDomain2, "pow(-1, x)", 0.5, EXPR_PYLIKE_MATH_ERROR)
TEST_ERROR(PowDomain3, "pow(-1, x)", 2.0, EXPR_PYLIKE_SUCCESS)
TEST_ERROR(Mixed1, "sqrt(x) + 1 / max(0, x)", -1.0, EXPR_PYLIKE_MATH_ERROR)
TEST_ERROR(Mixed2, "sqrt(x) + 1 / max(0, x)", 0.0, EXPR_PYLIKE_DIV_BY_ZERO)
TEST_ERROR(Mixed3, "sqrt(x) + 1 / max(0, x)", 1.0, EXPR_PYLIKE_SUCCESS)
TEST(expr_pylike, Error_Invalid)
{
ExprPyLike_Parsed *expr = BLI_expr_pylike_parse("", NULL, 0);
double result;
EXPECT_EQ(BLI_expr_pylike_eval(expr, NULL, 0, &result), EXPR_PYLIKE_INVALID);
BLI_expr_pylike_free(expr);
}
TEST(expr_pylike, Error_ArgumentCount)
{
ExprPyLike_Parsed *expr = parse_for_eval("x", false);
double result;
EXPECT_EQ(BLI_expr_pylike_eval(expr, NULL, 0, &result), EXPR_PYLIKE_FATAL_ERROR);
BLI_expr_pylike_free(expr);
}