blender/intern/cycles/device/device_multi.cpp
Lukas Stockner 43b374e8c5 Cycles: Implement denoising option for reducing noise in the rendered image
This commit contains the first part of the new Cycles denoising option,
which filters the resulting image using information gathered during rendering
to get rid of noise while preserving visual features as well as possible.

To use the option, enable it in the render layer options. The default settings
fit a wide range of scenes, but the user can tweak individual settings to
control the tradeoff between a noise-free image, image details, and calculation
time.

Note that the denoiser may still change in the future and that some features
are not implemented yet. The most important missing feature is animation
denoising, which uses information from multiple frames at once to produce a
flicker-free and smoother result. These features will be added in the future.

Finally, thanks to all the people who supported this project:

- Google (through the GSoC) and Theory Studios for sponsoring the development
- The authors of the papers I used for implementing the denoiser (more details
  on them will be included in the technical docs)
- The other Cycles devs for feedback on the code, especially Sergey for
  mentoring the GSoC project and Brecht for the code review!
- And of course the users who helped with testing, reported bugs and things
  that could and/or should work better!
2017-05-07 14:40:58 +02:00

417 lines
10 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdlib.h>
#include <sstream>
#include "device/device.h"
#include "device/device_intern.h"
#include "device/device_network.h"
#include "render/buffers.h"
#include "util/util_foreach.h"
#include "util/util_list.h"
#include "util/util_logging.h"
#include "util/util_map.h"
#include "util/util_time.h"
CCL_NAMESPACE_BEGIN
class MultiDevice : public Device
{
public:
struct SubDevice {
explicit SubDevice(Device *device_)
: device(device_) {}
Device *device;
map<device_ptr, device_ptr> ptr_map;
};
list<SubDevice> devices;
device_ptr unique_ptr;
MultiDevice(DeviceInfo& info, Stats &stats, bool background_)
: Device(info, stats, background_), unique_ptr(1)
{
Device *device;
foreach(DeviceInfo& subinfo, info.multi_devices) {
device = Device::create(subinfo, sub_stats_, background);
devices.push_back(SubDevice(device));
}
#ifdef WITH_NETWORK
/* try to add network devices */
ServerDiscovery discovery(true);
time_sleep(1.0);
vector<string> servers = discovery.get_server_list();
foreach(string& server, servers) {
device = device_network_create(info, stats, server.c_str());
if(device)
devices.push_back(SubDevice(device));
}
#endif
}
~MultiDevice()
{
foreach(SubDevice& sub, devices)
delete sub.device;
}
const string& error_message()
{
foreach(SubDevice& sub, devices) {
if(sub.device->error_message() != "") {
if(error_msg == "")
error_msg = sub.device->error_message();
break;
}
}
return error_msg;
}
virtual bool show_samples() const
{
if(devices.size() > 1) {
return false;
}
return devices.front().device->show_samples();
}
bool load_kernels(const DeviceRequestedFeatures& requested_features)
{
foreach(SubDevice& sub, devices)
if(!sub.device->load_kernels(requested_features))
return false;
return true;
}
void mem_alloc(const char *name, device_memory& mem, MemoryType type)
{
foreach(SubDevice& sub, devices) {
mem.device_pointer = 0;
sub.device->mem_alloc(name, mem, type);
sub.ptr_map[unique_ptr] = mem.device_pointer;
}
mem.device_pointer = unique_ptr++;
stats.mem_alloc(mem.device_size);
}
void mem_copy_to(device_memory& mem)
{
device_ptr tmp = mem.device_pointer;
foreach(SubDevice& sub, devices) {
mem.device_pointer = sub.ptr_map[tmp];
sub.device->mem_copy_to(mem);
}
mem.device_pointer = tmp;
}
void mem_copy_from(device_memory& mem, int y, int w, int h, int elem)
{
device_ptr tmp = mem.device_pointer;
int i = 0, sub_h = h/devices.size();
foreach(SubDevice& sub, devices) {
int sy = y + i*sub_h;
int sh = (i == (int)devices.size() - 1)? h - sub_h*i: sub_h;
mem.device_pointer = sub.ptr_map[tmp];
sub.device->mem_copy_from(mem, sy, w, sh, elem);
i++;
}
mem.device_pointer = tmp;
}
void mem_zero(device_memory& mem)
{
device_ptr tmp = mem.device_pointer;
foreach(SubDevice& sub, devices) {
mem.device_pointer = sub.ptr_map[tmp];
sub.device->mem_zero(mem);
}
mem.device_pointer = tmp;
}
void mem_free(device_memory& mem)
{
device_ptr tmp = mem.device_pointer;
stats.mem_free(mem.device_size);
foreach(SubDevice& sub, devices) {
mem.device_pointer = sub.ptr_map[tmp];
sub.device->mem_free(mem);
sub.ptr_map.erase(sub.ptr_map.find(tmp));
}
mem.device_pointer = 0;
}
void const_copy_to(const char *name, void *host, size_t size)
{
foreach(SubDevice& sub, devices)
sub.device->const_copy_to(name, host, size);
}
void tex_alloc(const char *name,
device_memory& mem,
InterpolationType
interpolation,
ExtensionType extension)
{
VLOG(1) << "Texture allocate: " << name << ", "
<< string_human_readable_number(mem.memory_size()) << " bytes. ("
<< string_human_readable_size(mem.memory_size()) << ")";
foreach(SubDevice& sub, devices) {
mem.device_pointer = 0;
sub.device->tex_alloc(name, mem, interpolation, extension);
sub.ptr_map[unique_ptr] = mem.device_pointer;
}
mem.device_pointer = unique_ptr++;
stats.mem_alloc(mem.device_size);
}
void tex_free(device_memory& mem)
{
device_ptr tmp = mem.device_pointer;
stats.mem_free(mem.device_size);
foreach(SubDevice& sub, devices) {
mem.device_pointer = sub.ptr_map[tmp];
sub.device->tex_free(mem);
sub.ptr_map.erase(sub.ptr_map.find(tmp));
}
mem.device_pointer = 0;
}
void pixels_alloc(device_memory& mem)
{
foreach(SubDevice& sub, devices) {
mem.device_pointer = 0;
sub.device->pixels_alloc(mem);
sub.ptr_map[unique_ptr] = mem.device_pointer;
}
mem.device_pointer = unique_ptr++;
}
void pixels_free(device_memory& mem)
{
device_ptr tmp = mem.device_pointer;
foreach(SubDevice& sub, devices) {
mem.device_pointer = sub.ptr_map[tmp];
sub.device->pixels_free(mem);
sub.ptr_map.erase(sub.ptr_map.find(tmp));
}
mem.device_pointer = 0;
}
void pixels_copy_from(device_memory& mem, int y, int w, int h)
{
device_ptr tmp = mem.device_pointer;
int i = 0, sub_h = h/devices.size();
foreach(SubDevice& sub, devices) {
int sy = y + i*sub_h;
int sh = (i == (int)devices.size() - 1)? h - sub_h*i: sub_h;
mem.device_pointer = sub.ptr_map[tmp];
sub.device->pixels_copy_from(mem, sy, w, sh);
i++;
}
mem.device_pointer = tmp;
}
void draw_pixels(device_memory& rgba, int y, int w, int h, int dx, int dy, int width, int height, bool transparent,
const DeviceDrawParams &draw_params)
{
device_ptr tmp = rgba.device_pointer;
int i = 0, sub_h = h/devices.size();
int sub_height = height/devices.size();
foreach(SubDevice& sub, devices) {
int sy = y + i*sub_h;
int sh = (i == (int)devices.size() - 1)? h - sub_h*i: sub_h;
int sheight = (i == (int)devices.size() - 1)? height - sub_height*i: sub_height;
int sdy = dy + i*sub_height;
/* adjust math for w/width */
rgba.device_pointer = sub.ptr_map[tmp];
sub.device->draw_pixels(rgba, sy, w, sh, dx, sdy, width, sheight, transparent, draw_params);
i++;
}
rgba.device_pointer = tmp;
}
void map_tile(Device *sub_device, RenderTile& tile)
{
foreach(SubDevice& sub, devices) {
if(sub.device == sub_device) {
if(tile.buffer) tile.buffer = sub.ptr_map[tile.buffer];
if(tile.rng_state) tile.rng_state = sub.ptr_map[tile.rng_state];
}
}
}
int device_number(Device *sub_device)
{
int i = 0;
foreach(SubDevice& sub, devices) {
if(sub.device == sub_device)
return i;
i++;
}
return -1;
}
void map_neighbor_tiles(Device *sub_device, RenderTile *tiles)
{
for(int i = 0; i < 9; i++) {
if(!tiles[i].buffers) {
continue;
}
/* If the tile was rendered on another device, copy its memory to
* to the current device now, for the duration of the denoising task.
* Note that this temporarily modifies the RenderBuffers and calls
* the device, so this function is not thread safe. */
if(tiles[i].buffers->device != sub_device) {
device_vector<float> &mem = tiles[i].buffers->buffer;
tiles[i].buffers->copy_from_device();
device_ptr original_ptr = mem.device_pointer;
mem.device_pointer = 0;
sub_device->mem_alloc("Temporary memory for neighboring tile", mem, MEM_READ_WRITE);
sub_device->mem_copy_to(mem);
tiles[i].buffer = mem.device_pointer;
mem.device_pointer = original_ptr;
}
}
}
void unmap_neighbor_tiles(Device * sub_device, RenderTile * tiles)
{
for(int i = 0; i < 9; i++) {
if(!tiles[i].buffers) {
continue;
}
if(tiles[i].buffers->device != sub_device) {
device_vector<float> &mem = tiles[i].buffers->buffer;
device_ptr original_ptr = mem.device_pointer;
mem.device_pointer = tiles[i].buffer;
/* Copy denoised tile to the host. */
if(i == 4) {
tiles[i].buffers->copy_from_device(sub_device);
}
size_t mem_size = mem.device_size;
sub_device->mem_free(mem);
mem.device_pointer = original_ptr;
mem.device_size = mem_size;
/* Copy denoised tile to the original device. */
if(i == 4) {
tiles[i].buffers->device->mem_copy_to(mem);
}
}
}
}
int get_split_task_count(DeviceTask& task)
{
int total_tasks = 0;
list<DeviceTask> tasks;
task.split(tasks, devices.size());
foreach(SubDevice& sub, devices) {
if(!tasks.empty()) {
DeviceTask subtask = tasks.front();
tasks.pop_front();
total_tasks += sub.device->get_split_task_count(subtask);
}
}
return total_tasks;
}
void task_add(DeviceTask& task)
{
list<DeviceTask> tasks;
task.split(tasks, devices.size());
foreach(SubDevice& sub, devices) {
if(!tasks.empty()) {
DeviceTask subtask = tasks.front();
tasks.pop_front();
if(task.buffer) subtask.buffer = sub.ptr_map[task.buffer];
if(task.rgba_byte) subtask.rgba_byte = sub.ptr_map[task.rgba_byte];
if(task.rgba_half) subtask.rgba_half = sub.ptr_map[task.rgba_half];
if(task.shader_input) subtask.shader_input = sub.ptr_map[task.shader_input];
if(task.shader_output) subtask.shader_output = sub.ptr_map[task.shader_output];
if(task.shader_output_luma) subtask.shader_output_luma = sub.ptr_map[task.shader_output_luma];
sub.device->task_add(subtask);
}
}
}
void task_wait()
{
foreach(SubDevice& sub, devices)
sub.device->task_wait();
}
void task_cancel()
{
foreach(SubDevice& sub, devices)
sub.device->task_cancel();
}
protected:
Stats sub_stats_;
};
Device *device_multi_create(DeviceInfo& info, Stats &stats, bool background)
{
return new MultiDevice(info, stats, background);
}
CCL_NAMESPACE_END