blender/intern/cycles/kernel/svm/svm_closure.h
Brecht Van Lommel 9a1c1f132d Cycles OSL: most closure code is now shared between OSL and SVM. Also fix
transmission pass and filter glossy option.

The BSDF closure class is now more similar to the SVM closures, and includes
some flags and labels that are needed to properly categorize the BSDF's for
render passes. Phong closure is gone for the moment, needs to be adapated to
the new structure still.
2012-10-20 12:18:00 +00:00

475 lines
13 KiB
C

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
CCL_NAMESPACE_BEGIN
/* Closure Nodes */
__device void svm_node_glossy_setup(ShaderData *sd, ShaderClosure *sc, int type, float eta, float roughness, bool refract)
{
if(type == CLOSURE_BSDF_REFRACTION_ID) {
if(refract) {
sc->data0 = eta;
sd->flag |= bsdf_refraction_setup(sc);
}
else
sd->flag |= bsdf_reflection_setup(sc);
}
else if(type == CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID) {
sc->data0 = roughness;
sc->data1 = eta;
if(refract)
sd->flag |= bsdf_microfacet_beckmann_refraction_setup(sc);
else
sd->flag |= bsdf_microfacet_beckmann_setup(sc);
}
else {
sc->data0 = roughness;
sc->data1 = eta;
if(refract)
sd->flag |= bsdf_microfacet_ggx_refraction_setup(sc);
else
sd->flag |= bsdf_microfacet_ggx_setup(sc);
}
}
__device_inline ShaderClosure *svm_node_closure_get(ShaderData *sd)
{
#ifdef __MULTI_CLOSURE__
ShaderClosure *sc = &sd->closure[sd->num_closure];
if(sd->num_closure < MAX_CLOSURE)
sd->num_closure++;
return sc;
#else
return &sd->closure;
#endif
}
__device_inline void svm_node_closure_set_mix_weight(ShaderClosure *sc, float mix_weight)
{
#ifdef __MULTI_CLOSURE__
sc->weight *= mix_weight;
sc->sample_weight = fabsf(average(sc->weight));
#endif
}
__device void svm_node_closure_bsdf(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node, float randb, int path_flag, int *offset)
{
uint type, param1_offset, param2_offset;
#ifdef __MULTI_CLOSURE__
uint mix_weight_offset;
decode_node_uchar4(node.y, &type, &param1_offset, &param2_offset, &mix_weight_offset);
float mix_weight = (stack_valid(mix_weight_offset)? stack_load_float(stack, mix_weight_offset): 1.0f);
/* note we read this extra node before weight check, so offset is added */
uint4 data_node = read_node(kg, offset);
if(mix_weight == 0.0f)
return;
float3 N = stack_valid(data_node.y)? stack_load_float3(stack, data_node.y): sd->N;
#else
decode_node_uchar4(node.y, &type, &param1_offset, &param2_offset, NULL);
float mix_weight = 1.0f;
uint4 data_node = read_node(kg, offset);
float3 N = stack_valid(data_node.y)? stack_load_float3(stack, data_node.y): sd->N;
#endif
float param1 = (stack_valid(param1_offset))? stack_load_float(stack, param1_offset): __int_as_float(node.z);
float param2 = (stack_valid(param2_offset))? stack_load_float(stack, param2_offset): __int_as_float(node.w);
switch(type) {
case CLOSURE_BSDF_DIFFUSE_ID: {
ShaderClosure *sc = svm_node_closure_get(sd);
sc->N = N;
svm_node_closure_set_mix_weight(sc, mix_weight);
float roughness = param1;
if(roughness == 0.0f) {
sd->flag |= bsdf_diffuse_setup(sc);
}
else {
sc->data0 = roughness;
sd->flag |= bsdf_oren_nayar_setup(sc);
}
break;
}
case CLOSURE_BSDF_TRANSLUCENT_ID: {
ShaderClosure *sc = svm_node_closure_get(sd);
sc->N = N;
svm_node_closure_set_mix_weight(sc, mix_weight);
sd->flag |= bsdf_translucent_setup(sc);
break;
}
case CLOSURE_BSDF_TRANSPARENT_ID: {
ShaderClosure *sc = svm_node_closure_get(sd);
sc->N = N;
svm_node_closure_set_mix_weight(sc, mix_weight);
sd->flag |= bsdf_transparent_setup(sc);
break;
}
case CLOSURE_BSDF_REFLECTION_ID:
case CLOSURE_BSDF_MICROFACET_GGX_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_ID: {
#ifdef __CAUSTICS_TRICKS__
if(kernel_data.integrator.no_caustics && (path_flag & PATH_RAY_DIFFUSE))
break;
#endif
ShaderClosure *sc = svm_node_closure_get(sd);
sc->N = N;
sc->data0 = param1;
svm_node_closure_set_mix_weight(sc, mix_weight);
/* setup bsdf */
if(type == CLOSURE_BSDF_REFLECTION_ID)
sd->flag |= bsdf_reflection_setup(sc);
else if(type == CLOSURE_BSDF_MICROFACET_BECKMANN_ID)
sd->flag |= bsdf_microfacet_beckmann_setup(sc);
else
sd->flag |= bsdf_microfacet_ggx_setup(sc);
break;
}
case CLOSURE_BSDF_REFRACTION_ID:
case CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID: {
#ifdef __CAUSTICS_TRICKS__
if(kernel_data.integrator.no_caustics && (path_flag & PATH_RAY_DIFFUSE))
break;
#endif
/* index of refraction */
float eta = fmaxf(param2, 1.0f + 1e-5f);
eta = (sd->flag & SD_BACKFACING)? 1.0f/eta: eta;
/* fresnel */
float cosNO = dot(N, sd->I);
float fresnel = fresnel_dielectric_cos(cosNO, eta);
float roughness = param1;
#ifdef __MULTI_CLOSURE__
/* reflection */
ShaderClosure *sc = svm_node_closure_get(sd);
sc->N = N;
float3 weight = sc->weight;
float sample_weight = sc->sample_weight;
svm_node_closure_set_mix_weight(sc, mix_weight*fresnel);
svm_node_glossy_setup(sd, sc, type, eta, roughness, false);
/* refraction */
sc = svm_node_closure_get(sd);
sc->N = N;
sc->weight = weight;
sc->sample_weight = sample_weight;
svm_node_closure_set_mix_weight(sc, mix_weight*(1.0f - fresnel));
svm_node_glossy_setup(sd, sc, type, eta, roughness, true);
#else
ShaderClosure *sc = svm_node_closure_get(sd);
sc->N = N;
bool refract = (randb > fresnel);
svm_node_closure_set_mix_weight(sc, mix_weight);
svm_node_glossy_setup(sd, sc, type, eta, roughness, refract);
#endif
break;
}
#ifdef __DPDU__
case CLOSURE_BSDF_WARD_ID: {
#ifdef __CAUSTICS_TRICKS__
if(kernel_data.integrator.no_caustics && (path_flag & PATH_RAY_DIFFUSE))
break;
#endif
ShaderClosure *sc = svm_node_closure_get(sd);
sc->N = N;
sc->T = stack_load_float3(stack, data_node.z);
svm_node_closure_set_mix_weight(sc, mix_weight);
sc->data0 = param1;
sc->data1 = param2;
sd->flag |= bsdf_ward_setup(sc);
break;
}
#endif
case CLOSURE_BSDF_ASHIKHMIN_VELVET_ID: {
ShaderClosure *sc = svm_node_closure_get(sd);
sc->N = N;
svm_node_closure_set_mix_weight(sc, mix_weight);
/* sigma */
sc->data0 = clamp(param1, 0.0f, 1.0f);
sd->flag |= bsdf_ashikhmin_velvet_setup(sc);
break;
}
default:
break;
}
}
__device void svm_node_closure_volume(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node, int path_flag)
{
uint type, param1_offset, param2_offset;
#ifdef __MULTI_CLOSURE__
uint mix_weight_offset;
decode_node_uchar4(node.y, &type, &param1_offset, &param2_offset, &mix_weight_offset);
float mix_weight = (stack_valid(mix_weight_offset)? stack_load_float(stack, mix_weight_offset): 1.0f);
if(mix_weight == 0.0f)
return;
#else
decode_node_uchar4(node.y, &type, &param1_offset, &param2_offset, NULL);
float mix_weight = 1.0f;
#endif
float param1 = (stack_valid(param1_offset))? stack_load_float(stack, param1_offset): __int_as_float(node.z);
//float param2 = (stack_valid(param2_offset))? stack_load_float(stack, param2_offset): __int_as_float(node.w);
switch(type) {
case CLOSURE_VOLUME_TRANSPARENT_ID: {
ShaderClosure *sc = svm_node_closure_get(sd);
svm_node_closure_set_mix_weight(sc, mix_weight);
float density = param1;
sd->flag |= volume_transparent_setup(sc, density);
break;
}
case CLOSURE_VOLUME_ISOTROPIC_ID: {
ShaderClosure *sc = svm_node_closure_get(sd);
svm_node_closure_set_mix_weight(sc, mix_weight);
float density = param1;
sd->flag |= volume_isotropic_setup(sc, density);
break;
}
default:
break;
}
}
__device void svm_node_closure_emission(ShaderData *sd, float *stack, uint4 node)
{
#ifdef __MULTI_CLOSURE__
uint mix_weight_offset = node.y;
if(stack_valid(mix_weight_offset)) {
float mix_weight = stack_load_float(stack, mix_weight_offset);
if(mix_weight == 0.0f)
return;
ShaderClosure *sc = svm_node_closure_get(sd);
sc->weight *= mix_weight;
sc->type = CLOSURE_EMISSION_ID;
}
else {
ShaderClosure *sc = svm_node_closure_get(sd);
sc->type = CLOSURE_EMISSION_ID;
}
#else
ShaderClosure *sc = &sd->closure;
sc->type = CLOSURE_EMISSION_ID;
#endif
sd->flag |= SD_EMISSION;
}
__device void svm_node_closure_background(ShaderData *sd, float *stack, uint4 node)
{
#ifdef __MULTI_CLOSURE__
uint mix_weight_offset = node.y;
if(stack_valid(mix_weight_offset)) {
float mix_weight = stack_load_float(stack, mix_weight_offset);
if(mix_weight == 0.0f)
return;
ShaderClosure *sc = svm_node_closure_get(sd);
sc->weight *= mix_weight;
sc->type = CLOSURE_BACKGROUND_ID;
}
else {
ShaderClosure *sc = svm_node_closure_get(sd);
sc->type = CLOSURE_BACKGROUND_ID;
}
#else
ShaderClosure *sc = &sd->closure;
sc->type = CLOSURE_BACKGROUND_ID;
#endif
}
__device void svm_node_closure_holdout(ShaderData *sd, float *stack, uint4 node)
{
#ifdef __MULTI_CLOSURE__
uint mix_weight_offset = node.y;
if(stack_valid(mix_weight_offset)) {
float mix_weight = stack_load_float(stack, mix_weight_offset);
if(mix_weight == 0.0f)
return;
ShaderClosure *sc = svm_node_closure_get(sd);
sc->weight = make_float3(mix_weight, mix_weight, mix_weight);
sc->type = CLOSURE_HOLDOUT_ID;
}
else {
ShaderClosure *sc = svm_node_closure_get(sd);
sc->weight = make_float3(1.0f, 1.0f, 1.0f);
sc->type = CLOSURE_HOLDOUT_ID;
}
#else
ShaderClosure *sc = &sd->closure;
sc->type = CLOSURE_HOLDOUT_ID;
#endif
sd->flag |= SD_HOLDOUT;
}
/* Closure Nodes */
__device_inline void svm_node_closure_store_weight(ShaderData *sd, float3 weight)
{
#ifdef __MULTI_CLOSURE__
sd->closure[sd->num_closure].weight = weight;
#else
sd->closure.weight = weight;
#endif
}
__device void svm_node_closure_set_weight(ShaderData *sd, uint r, uint g, uint b)
{
float3 weight = make_float3(__int_as_float(r), __int_as_float(g), __int_as_float(b));
svm_node_closure_store_weight(sd, weight);
}
__device void svm_node_emission_set_weight_total(KernelGlobals *kg, ShaderData *sd, uint r, uint g, uint b)
{
float3 weight = make_float3(__int_as_float(r), __int_as_float(g), __int_as_float(b));
if(sd->object != ~0)
weight /= object_surface_area(kg, sd->object);
svm_node_closure_store_weight(sd, weight);
}
__device void svm_node_closure_weight(ShaderData *sd, float *stack, uint weight_offset)
{
float3 weight = stack_load_float3(stack, weight_offset);
svm_node_closure_store_weight(sd, weight);
}
__device void svm_node_emission_weight(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node)
{
uint color_offset = node.y;
uint strength_offset = node.z;
uint total_power = node.w;
float strength = stack_load_float(stack, strength_offset);
float3 weight = stack_load_float3(stack, color_offset)*strength;
if(total_power && sd->object != ~0)
weight /= object_surface_area(kg, sd->object);
svm_node_closure_store_weight(sd, weight);
}
__device void svm_node_mix_closure(ShaderData *sd, float *stack,
uint4 node, int *offset, float *randb)
{
#ifdef __MULTI_CLOSURE__
/* fetch weight from blend input, previous mix closures,
* and write to stack to be used by closure nodes later */
uint weight_offset, in_weight_offset, weight1_offset, weight2_offset;
decode_node_uchar4(node.y, &weight_offset, &in_weight_offset, &weight1_offset, &weight2_offset);
float weight = stack_load_float(stack, weight_offset);
float in_weight = (stack_valid(in_weight_offset))? stack_load_float(stack, in_weight_offset): 1.0f;
if(stack_valid(weight1_offset))
stack_store_float(stack, weight1_offset, in_weight*(1.0f - weight));
if(stack_valid(weight2_offset))
stack_store_float(stack, weight2_offset, in_weight*weight);
#else
/* pick a closure and make the random number uniform over 0..1 again.
* closure 1 starts on the next node, for closure 2 the start is at an
* offset from the current node, so we jump */
uint weight_offset = node.y;
uint node_jump = node.z;
float weight = stack_load_float(stack, weight_offset);
weight = clamp(weight, 0.0f, 1.0f);
if(*randb < weight) {
*offset += node_jump;
*randb = *randb/weight;
}
else
*randb = (*randb - weight)/(1.0f - weight);
#endif
}
__device void svm_node_add_closure(ShaderData *sd, float *stack, uint unused,
uint node_jump, int *offset, float *randb, float *closure_weight)
{
#ifdef __MULTI_CLOSURE__
/* nothing to do, handled in compiler */
#else
/* pick one of the two closures with probability 0.5. sampling quality
* is not going to be great, for that we'd need to evaluate the weights
* of the two closures being added */
float weight = 0.5f;
if(*randb < weight) {
*offset += node_jump;
*randb = *randb/weight;
}
else
*randb = (*randb - weight)/(1.0f - weight);
*closure_weight *= 2.0f;
#endif
}
/* (Bump) normal */
__device void svm_node_set_normal(KernelGlobals *kg, ShaderData *sd, float *stack, uint in_direction, uint out_normal)
{
float3 normal = stack_load_float3(stack, in_direction);
sd->N = normal;
stack_store_float3(stack, out_normal, normal);
}
CCL_NAMESPACE_END