blender/intern/cycles/kernel/kernel_random.h
Brecht Van Lommel de9dffc61e Cycles: initial subsurface multiple scattering support. It's not working as
well as I would like, but it works, just add a subsurface scattering node and
you can use it like any other BSDF.

It is using fully raytraced sampling compatible with progressive rendering
and other more advanced rendering algorithms we might used in the future, and
it uses no extra memory so it's suitable for complex scenes.

Disadvantage is that it can be quite noisy and slow. Two limitations that will
be solved are that it does not work with bump mapping yet, and that the falloff
function used is a simple cubic function, it's not using the real BSSRDF
falloff function yet.

The node has a color input, along with a scattering radius for each RGB color
channel along with an overall scale factor for the radii.

There is also no GPU support yet, will test if I can get that working later.

Node Documentation:
http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Nodes/Shaders#BSSRDF

Implementation notes:
http://wiki.blender.org/index.php/Dev:2.6/Source/Render/Cycles/Subsurface_Scattering
2013-04-01 20:26:52 +00:00

219 lines
5.6 KiB
C

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
CCL_NAMESPACE_BEGIN
typedef uint RNG;
#ifdef __SOBOL__
/* skip initial numbers that are not as well distributed, especially the
* first sequence is just 0 everywhere, which can be problematic for e.g.
* path termination */
#define SOBOL_SKIP 64
/* High Dimensional Sobol */
/* van der corput radical inverse */
__device uint van_der_corput(uint bits)
{
bits = (bits << 16) | (bits >> 16);
bits = ((bits & 0x00ff00ff) << 8) | ((bits & 0xff00ff00) >> 8);
bits = ((bits & 0x0f0f0f0f) << 4) | ((bits & 0xf0f0f0f0) >> 4);
bits = ((bits & 0x33333333) << 2) | ((bits & 0xcccccccc) >> 2);
bits = ((bits & 0x55555555) << 1) | ((bits & 0xaaaaaaaa) >> 1);
return bits;
}
/* sobol radical inverse */
__device uint sobol(uint i)
{
uint r = 0;
for(uint v = 1U << 31; i; i >>= 1, v ^= v >> 1)
if(i & 1)
r ^= v;
return r;
}
/* inverse of sobol radical inverse */
__device uint sobol_inverse(uint i)
{
const uint msb = 1U << 31;
uint r = 0;
for(uint v = 1; i; i <<= 1, v ^= v << 1)
if(i & msb)
r ^= v;
return r;
}
/* multidimensional sobol with generator matrices
* dimension 0 and 1 are equal to van_der_corput() and sobol() respectively */
__device uint sobol_dimension(KernelGlobals *kg, int index, int dimension)
{
uint result = 0;
uint i = index;
for(uint j = 0; i; i >>= 1, j++)
if(i & 1)
result ^= kernel_tex_fetch(__sobol_directions, 32*dimension + j);
return result;
}
/* lookup index and x/y coordinate, assumes m is a power of two */
__device uint sobol_lookup(const uint m, const uint frame, const uint ex, const uint ey, uint *x, uint *y)
{
/* shift is constant per frame */
const uint shift = frame << (m << 1);
const uint sobol_shift = sobol(shift);
/* van der Corput is its own inverse */
const uint lower = van_der_corput(ex << (32 - m));
/* need to compensate for ey difference and shift */
const uint sobol_lower = sobol(lower);
const uint mask = ~-(1 << m) << (32 - m); /* only m upper bits */
const uint delta = ((ey << (32 - m)) ^ sobol_lower ^ sobol_shift) & mask;
/* only use m upper bits for the index (m is a power of two) */
const uint sobol_result = delta | (delta >> m);
const uint upper = sobol_inverse(sobol_result);
const uint index = shift | upper | lower;
*x = van_der_corput(index);
*y = sobol_shift ^ sobol_result ^ sobol_lower;
return index;
}
__device_inline float path_rng(KernelGlobals *kg, RNG *rng, int sample, int dimension)
{
#ifdef __SOBOL_FULL_SCREEN__
uint result = sobol_dimension(kg, *rng, dimension);
float r = (float)result * (1.0f/(float)0xFFFFFFFF);
return r;
#else
/* compute sobol sequence value using direction vectors */
uint result = sobol_dimension(kg, sample + SOBOL_SKIP, dimension);
float r = (float)result * (1.0f/(float)0xFFFFFFFF);
/* Cranly-Patterson rotation using rng seed */
float shift;
if(dimension & 1)
shift = (*rng >> 16)/((float)0xFFFF);
else
shift = (*rng & 0xFFFF)/((float)0xFFFF);
return r + shift - floorf(r + shift);
#endif
}
__device_inline void path_rng_init(KernelGlobals *kg, __global uint *rng_state, int sample, RNG *rng, int x, int y, float *fx, float *fy)
{
#ifdef __SOBOL_FULL_SCREEN__
uint px, py;
uint bits = 16; /* limits us to 65536x65536 and 65536 samples */
uint size = 1 << bits;
uint frame = sample;
*rng = sobol_lookup(bits, frame, x, y, &px, &py);
*rng ^= kernel_data.integrator.seed;
if(sample == 0) {
*fx = 0.5f;
*fy = 0.5f;
}
else {
*fx = size * (float)px * (1.0f/(float)0xFFFFFFFF) - x;
*fy = size * (float)py * (1.0f/(float)0xFFFFFFFF) - y;
}
#else
*rng = *rng_state;
*rng ^= kernel_data.integrator.seed;
if(sample == 0) {
*fx = 0.5f;
*fy = 0.5f;
}
else {
*fx = path_rng(kg, rng, sample, PRNG_FILTER_U);
*fy = path_rng(kg, rng, sample, PRNG_FILTER_V);
}
#endif
}
__device void path_rng_end(KernelGlobals *kg, __global uint *rng_state, RNG rng)
{
/* nothing to do */
}
#else
/* Linear Congruential Generator */
__device float path_rng(KernelGlobals *kg, RNG *rng, int sample, int dimension)
{
/* implicit mod 2^32 */
*rng = (1103515245*(*rng) + 12345);
return (float)*rng * (1.0f/(float)0xFFFFFFFF);
}
__device void path_rng_init(KernelGlobals *kg, __global uint *rng_state, int sample, RNG *rng, int x, int y, float *fx, float *fy)
{
/* load state */
*rng = *rng_state;
*rng ^= kernel_data.integrator.seed;
if(sample == 0) {
*fx = 0.5f;
*fy = 0.5f;
}
else {
*fx = path_rng(kg, rng, sample, PRNG_FILTER_U);
*fy = path_rng(kg, rng, sample, PRNG_FILTER_V);
}
}
__device void path_rng_end(KernelGlobals *kg, __global uint *rng_state, RNG rng)
{
/* store state for next sample */
*rng_state = rng;
}
#endif
__device float lcg_step(uint *rng)
{
/* implicit mod 2^32 */
*rng = (1103515245*(*rng) + 12345);
return (float)*rng * (1.0f/(float)0xFFFFFFFF);
}
__device uint lcg_init(float seed)
{
uint rng = __float_as_int(seed);
lcg_step(&rng);
return rng;
}
CCL_NAMESPACE_END