blender/intern/cycles/kernel/bvh/qbvh_volume_all.h
Sergey Sharybin 6ea54fe9ff Cycles: Switch to reformulated Pluecker ray/triangle intersection
The intention of this commit it to address issues mentioned in the
reports T43865,T50164 and T50452.

The code is based on Embree code with some extra vectorization
to speed up single ray to single triangle intersection.

Unfortunately, such a fix is not coming for free. There is some
slowdown for AVX2 processors, mainly due to different vectorization
code, which caused different number of instructions to be executed
and different instructions-per-cycle counters. But on another hand
this commit makes pre-AVX2 platforms such as AVX and SSE4.1 a bit
faster. The prerformance goes as following:

              2.78c AVX2   2.78c AVX   Patch AVX2         Patch AVX
BMW            05:21.09     06:05.34    05:32.97 (+3.5%)   05:34.97 (-8.5%)
Classroom      16:55.36     18:24.51    17:10.41 (+1.4%)   17:15.87 (-6.3%)
Fishy Cat      08:08.49     08:36.26    08:09.19 (+0.2%)   08:12.25 (-4.7%
Koro           11:22.54     11:45.24    11:13.25 (-1.5%)   11:43.81 (-0.3%)
Barcelone      14:18.32     16:09.46    14:15.20 (-0.4%)   14:25.15 (-10.8%)

On GPU the performance is about 1.5-2% slower in my tests on GTX1080
but afraid we can't do much as a part of this chaneg here and
consider it a price to pay for more proper intersection check.

Made in collaboration with Maxym Dmytrychenko, big thanks to him!

Reviewers: brecht, juicyfruit, lukasstockner97, dingto

Differential Revision: https://developer.blender.org/D1574
2017-03-28 17:26:47 +02:00

442 lines
14 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* This is a template BVH traversal function for volumes, where
* various features can be enabled/disabled. This way we can compile optimized
* versions for each case without new features slowing things down.
*
* BVH_INSTANCING: object instancing
* BVH_MOTION: motion blur rendering
*
*/
#if BVH_FEATURE(BVH_HAIR)
# define NODE_INTERSECT qbvh_node_intersect
#else
# define NODE_INTERSECT qbvh_aligned_node_intersect
#endif
ccl_device uint BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
const Ray *ray,
Intersection *isect_array,
const uint max_hits,
const uint visibility)
{
/* TODO(sergey):
* - Test if pushing distance on the stack helps.
* - Likely and unlikely for if() statements.
* - Test restrict attribute for pointers.
*/
/* Traversal stack in CUDA thread-local memory. */
QBVHStackItem traversal_stack[BVH_QSTACK_SIZE];
traversal_stack[0].addr = ENTRYPOINT_SENTINEL;
/* Traversal variables in registers. */
int stack_ptr = 0;
int node_addr = kernel_data.bvh.root;
/* Ray parameters in registers. */
const float tmax = ray->t;
float3 P = ray->P;
float3 dir = bvh_clamp_direction(ray->D);
float3 idir = bvh_inverse_direction(dir);
int object = OBJECT_NONE;
float isect_t = tmax;
#if BVH_FEATURE(BVH_MOTION)
Transform ob_itfm;
#endif
uint num_hits = 0;
isect_array->t = tmax;
#ifndef __KERNEL_SSE41__
if(!isfinite(P.x)) {
return 0;
}
#endif
#if BVH_FEATURE(BVH_INSTANCING)
int num_hits_in_instance = 0;
#endif
ssef tnear(0.0f), tfar(isect_t);
#if BVH_FEATURE(BVH_HAIR)
sse3f dir4(ssef(dir.x), ssef(dir.y), ssef(dir.z));
#endif
sse3f idir4(ssef(idir.x), ssef(idir.y), ssef(idir.z));
#ifdef __KERNEL_AVX2__
float3 P_idir = P*idir;
sse3f P_idir4(P_idir.x, P_idir.y, P_idir.z);
#endif
#if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__)
sse3f org4(ssef(P.x), ssef(P.y), ssef(P.z));
#endif
/* Offsets to select the side that becomes the lower or upper bound. */
int near_x, near_y, near_z;
int far_x, far_y, far_z;
qbvh_near_far_idx_calc(idir,
&near_x, &near_y, &near_z,
&far_x, &far_y, &far_z);
/* Traversal loop. */
do {
do {
/* Traverse internal nodes. */
while(node_addr >= 0 && node_addr != ENTRYPOINT_SENTINEL) {
float4 inodes = kernel_tex_fetch(__bvh_nodes, node_addr+0);
#ifdef __VISIBILITY_FLAG__
if((__float_as_uint(inodes.x) & visibility) == 0) {
/* Pop. */
node_addr = traversal_stack[stack_ptr].addr;
--stack_ptr;
continue;
}
#endif
ssef dist;
int child_mask = NODE_INTERSECT(kg,
tnear,
tfar,
#ifdef __KERNEL_AVX2__
P_idir4,
#endif
#if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__)
org4,
#endif
#if BVH_FEATURE(BVH_HAIR)
dir4,
#endif
idir4,
near_x, near_y, near_z,
far_x, far_y, far_z,
node_addr,
&dist);
if(child_mask != 0) {
float4 cnodes;
#if BVH_FEATURE(BVH_HAIR)
if(__float_as_uint(inodes.x) & PATH_RAY_NODE_UNALIGNED) {
cnodes = kernel_tex_fetch(__bvh_nodes, node_addr+13);
}
else
#endif
{
cnodes = kernel_tex_fetch(__bvh_nodes, node_addr+7);
}
/* One child is hit, continue with that child. */
int r = __bscf(child_mask);
if(child_mask == 0) {
node_addr = __float_as_int(cnodes[r]);
continue;
}
/* Two children are hit, push far child, and continue with
* closer child.
*/
int c0 = __float_as_int(cnodes[r]);
float d0 = ((float*)&dist)[r];
r = __bscf(child_mask);
int c1 = __float_as_int(cnodes[r]);
float d1 = ((float*)&dist)[r];
if(child_mask == 0) {
if(d1 < d0) {
node_addr = c1;
++stack_ptr;
kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
traversal_stack[stack_ptr].addr = c0;
traversal_stack[stack_ptr].dist = d0;
continue;
}
else {
node_addr = c0;
++stack_ptr;
kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
traversal_stack[stack_ptr].addr = c1;
traversal_stack[stack_ptr].dist = d1;
continue;
}
}
/* Here starts the slow path for 3 or 4 hit children. We push
* all nodes onto the stack to sort them there.
*/
++stack_ptr;
kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
traversal_stack[stack_ptr].addr = c1;
traversal_stack[stack_ptr].dist = d1;
++stack_ptr;
kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
traversal_stack[stack_ptr].addr = c0;
traversal_stack[stack_ptr].dist = d0;
/* Three children are hit, push all onto stack and sort 3
* stack items, continue with closest child.
*/
r = __bscf(child_mask);
int c2 = __float_as_int(cnodes[r]);
float d2 = ((float*)&dist)[r];
if(child_mask == 0) {
++stack_ptr;
kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
traversal_stack[stack_ptr].addr = c2;
traversal_stack[stack_ptr].dist = d2;
qbvh_stack_sort(&traversal_stack[stack_ptr],
&traversal_stack[stack_ptr - 1],
&traversal_stack[stack_ptr - 2]);
node_addr = traversal_stack[stack_ptr].addr;
--stack_ptr;
continue;
}
/* Four children are hit, push all onto stack and sort 4
* stack items, continue with closest child.
*/
r = __bscf(child_mask);
int c3 = __float_as_int(cnodes[r]);
float d3 = ((float*)&dist)[r];
++stack_ptr;
kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
traversal_stack[stack_ptr].addr = c3;
traversal_stack[stack_ptr].dist = d3;
++stack_ptr;
kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
traversal_stack[stack_ptr].addr = c2;
traversal_stack[stack_ptr].dist = d2;
qbvh_stack_sort(&traversal_stack[stack_ptr],
&traversal_stack[stack_ptr - 1],
&traversal_stack[stack_ptr - 2],
&traversal_stack[stack_ptr - 3]);
}
node_addr = traversal_stack[stack_ptr].addr;
--stack_ptr;
}
/* If node is leaf, fetch triangle list. */
if(node_addr < 0) {
float4 leaf = kernel_tex_fetch(__bvh_leaf_nodes, (-node_addr-1));
if((__float_as_uint(leaf.z) & visibility) == 0) {
/* Pop. */
node_addr = traversal_stack[stack_ptr].addr;
--stack_ptr;
continue;
}
int prim_addr = __float_as_int(leaf.x);
#if BVH_FEATURE(BVH_INSTANCING)
if(prim_addr >= 0) {
#endif
int prim_addr2 = __float_as_int(leaf.y);
const uint type = __float_as_int(leaf.w);
const uint p_type = type & PRIMITIVE_ALL;
bool hit;
/* Pop. */
node_addr = traversal_stack[stack_ptr].addr;
--stack_ptr;
/* Primitive intersection. */
switch(p_type) {
case PRIMITIVE_TRIANGLE: {
for(; prim_addr < prim_addr2; prim_addr++) {
kernel_assert(kernel_tex_fetch(__prim_type, prim_addr) == type);
/* Only primitives from volume object. */
uint tri_object = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, prim_addr): object;
int object_flag = kernel_tex_fetch(__object_flag, tri_object);
if((object_flag & SD_OBJECT_HAS_VOLUME) == 0) {
continue;
}
/* Intersect ray against primitive. */
hit = triangle_intersect(kg, isect_array, P, dir, visibility, object, prim_addr);
if(hit) {
/* Move on to next entry in intersections array. */
isect_array++;
num_hits++;
#if BVH_FEATURE(BVH_INSTANCING)
num_hits_in_instance++;
#endif
isect_array->t = isect_t;
if(num_hits == max_hits) {
#if BVH_FEATURE(BVH_INSTANCING)
# if BVH_FEATURE(BVH_MOTION)
float t_fac = 1.0f / len(transform_direction(&ob_itfm, dir));
# else
Transform itfm = object_fetch_transform(kg, object, OBJECT_INVERSE_TRANSFORM);
float t_fac = 1.0f / len(transform_direction(&itfm, dir));
# endif
for(int i = 0; i < num_hits_in_instance; i++) {
(isect_array-i-1)->t *= t_fac;
}
#endif /* BVH_FEATURE(BVH_INSTANCING) */
return num_hits;
}
}
}
break;
}
#if BVH_FEATURE(BVH_MOTION)
case PRIMITIVE_MOTION_TRIANGLE: {
for(; prim_addr < prim_addr2; prim_addr++) {
kernel_assert(kernel_tex_fetch(__prim_type, prim_addr) == type);
/* Only primitives from volume object. */
uint tri_object = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, prim_addr): object;
int object_flag = kernel_tex_fetch(__object_flag, tri_object);
if((object_flag & SD_OBJECT_HAS_VOLUME) == 0) {
continue;
}
/* Intersect ray against primitive. */
hit = motion_triangle_intersect(kg, isect_array, P, dir, ray->time, visibility, object, prim_addr);
if(hit) {
/* Move on to next entry in intersections array. */
isect_array++;
num_hits++;
# if BVH_FEATURE(BVH_INSTANCING)
num_hits_in_instance++;
# endif
isect_array->t = isect_t;
if(num_hits == max_hits) {
# if BVH_FEATURE(BVH_INSTANCING)
# if BVH_FEATURE(BVH_MOTION)
float t_fac = 1.0f / len(transform_direction(&ob_itfm, dir));
# else
Transform itfm = object_fetch_transform(kg, object, OBJECT_INVERSE_TRANSFORM);
float t_fac = 1.0f / len(transform_direction(&itfm, dir));
# endif
for(int i = 0; i < num_hits_in_instance; i++) {
(isect_array-i-1)->t *= t_fac;
}
# endif /* BVH_FEATURE(BVH_INSTANCING) */
return num_hits;
}
}
}
break;
}
#endif
}
}
#if BVH_FEATURE(BVH_INSTANCING)
else {
/* Instance push. */
object = kernel_tex_fetch(__prim_object, -prim_addr-1);
int object_flag = kernel_tex_fetch(__object_flag, object);
if(object_flag & SD_OBJECT_HAS_VOLUME) {
# if BVH_FEATURE(BVH_MOTION)
isect_t = bvh_instance_motion_push(kg, object, ray, &P, &dir, &idir, isect_t, &ob_itfm);
# else
isect_t = bvh_instance_push(kg, object, ray, &P, &dir, &idir, isect_t);
# endif
qbvh_near_far_idx_calc(idir,
&near_x, &near_y, &near_z,
&far_x, &far_y, &far_z);
tfar = ssef(isect_t);
idir4 = sse3f(ssef(idir.x), ssef(idir.y), ssef(idir.z));
# if BVH_FEATURE(BVH_HAIR)
dir4 = sse3f(ssef(dir.x), ssef(dir.y), ssef(dir.z));
# endif
# ifdef __KERNEL_AVX2__
P_idir = P*idir;
P_idir4 = sse3f(P_idir.x, P_idir.y, P_idir.z);
# endif
# if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__)
org4 = sse3f(ssef(P.x), ssef(P.y), ssef(P.z));
# endif
num_hits_in_instance = 0;
isect_array->t = isect_t;
++stack_ptr;
kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
traversal_stack[stack_ptr].addr = ENTRYPOINT_SENTINEL;
node_addr = kernel_tex_fetch(__object_node, object);
}
else {
/* Pop. */
object = OBJECT_NONE;
node_addr = traversal_stack[stack_ptr].addr;
--stack_ptr;
}
}
}
#endif /* FEATURE(BVH_INSTANCING) */
} while(node_addr != ENTRYPOINT_SENTINEL);
#if BVH_FEATURE(BVH_INSTANCING)
if(stack_ptr >= 0) {
kernel_assert(object != OBJECT_NONE);
/* Instance pop. */
if(num_hits_in_instance) {
float t_fac;
# if BVH_FEATURE(BVH_MOTION)
bvh_instance_motion_pop_factor(kg, object, ray, &P, &dir, &idir, &t_fac, &ob_itfm);
# else
bvh_instance_pop_factor(kg, object, ray, &P, &dir, &idir, &t_fac);
# endif
/* Scale isect->t to adjust for instancing. */
for(int i = 0; i < num_hits_in_instance; i++) {
(isect_array-i-1)->t *= t_fac;
}
}
else {
# if BVH_FEATURE(BVH_MOTION)
bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, FLT_MAX, &ob_itfm);
# else
bvh_instance_pop(kg, object, ray, &P, &dir, &idir, FLT_MAX);
# endif
}
isect_t = tmax;
isect_array->t = isect_t;
qbvh_near_far_idx_calc(idir,
&near_x, &near_y, &near_z,
&far_x, &far_y, &far_z);
tfar = ssef(isect_t);
# if BVH_FEATURE(BVH_HAIR)
dir4 = sse3f(ssef(dir.x), ssef(dir.y), ssef(dir.z));
# endif
idir4 = sse3f(ssef(idir.x), ssef(idir.y), ssef(idir.z));
# ifdef __KERNEL_AVX2__
P_idir = P*idir;
P_idir4 = sse3f(P_idir.x, P_idir.y, P_idir.z);
# endif
# if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__)
org4 = sse3f(ssef(P.x), ssef(P.y), ssef(P.z));
# endif
object = OBJECT_NONE;
node_addr = traversal_stack[stack_ptr].addr;
--stack_ptr;
}
#endif /* FEATURE(BVH_INSTANCING) */
} while(node_addr != ENTRYPOINT_SENTINEL);
return num_hits;
}
#undef NODE_INTERSECT