blender/release/scripts/freestyle/style_modules/ChainingIterators.py
2012-12-11 23:05:04 +00:00

732 lines
23 KiB
Python

#
# Filename : ChainingIterators.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Chaining Iterators to be used with chaining operators
#
#############################################################################
#
# Copyright (C) : Please refer to the COPYRIGHT file distributed
# with this source distribution.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
#############################################################################
from freestyle_init import *
## the natural chaining iterator
## It follows the edges of same nature following the topology of
## objects with preseance on silhouettes, then borders,
## then suggestive contours, then everything else. It doesn't chain the same ViewEdge twice
## You can specify whether to stay in the selection or not.
class pyChainSilhouetteIterator(ChainingIterator):
def __init__(self, stayInSelection=1):
ChainingIterator.__init__(self, stayInSelection, 1,None,1)
def getExactTypeName(self):
return "pyChainSilhouetteIterator"
def init(self):
pass
def traverse(self, iter):
winner = None
it = AdjacencyIterator(iter)
tvertex = self.getVertex()
if type(tvertex) is TVertex:
mateVE = tvertex.mate(self.getCurrentEdge())
while(it.isEnd() == 0):
ve = it.getObject()
if(ve.getId() == mateVE.getId() ):
winner = ve
break
it.increment()
else:
## case of NonTVertex
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
for i in range(len(natures)):
currentNature = self.getCurrentEdge().getNature()
if(natures[i] & currentNature):
count=0
while(it.isEnd() == 0):
visitNext = 0
oNature = it.getObject().getNature()
if(oNature & natures[i] != 0):
if(natures[i] != oNature):
for j in range(i):
if(natures[j] & oNature != 0):
visitNext = 1
break
if(visitNext != 0):
break
count = count+1
winner = it.getObject()
it.increment()
if(count != 1):
winner = None
break
return winner
## the natural chaining iterator
## It follows the edges of same nature on the same
## objects with preseance on silhouettes, then borders,
## then suggestive contours, then everything else. It doesn't chain the same ViewEdge twice
## You can specify whether to stay in the selection or not.
## You can specify whether to chain iterate over edges that were
## already visited or not.
class pyChainSilhouetteGenericIterator(ChainingIterator):
def __init__(self, stayInSelection=1, stayInUnvisited=1):
ChainingIterator.__init__(self, stayInSelection, stayInUnvisited,None,1)
def getExactTypeName(self):
return "pyChainSilhouetteGenericIterator"
def init(self):
pass
def traverse(self, iter):
winner = None
it = AdjacencyIterator(iter)
tvertex = self.getVertex()
if type(tvertex) is TVertex:
mateVE = tvertex.mate(self.getCurrentEdge())
while(it.isEnd() == 0):
ve = it.getObject()
if(ve.getId() == mateVE.getId() ):
winner = ve
break
it.increment()
else:
## case of NonTVertex
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
for i in range(len(natures)):
currentNature = self.getCurrentEdge().getNature()
if(natures[i] & currentNature):
count=0
while(it.isEnd() == 0):
visitNext = 0
oNature = it.getObject().getNature()
ve = it.getObject()
if(ve.getId() == self.getCurrentEdge().getId()):
it.increment()
continue
if(oNature & natures[i] != 0):
if(natures[i] != oNature):
for j in range(i):
if(natures[j] & oNature != 0):
visitNext = 1
break
if(visitNext != 0):
break
count = count+1
winner = ve
it.increment()
if(count != 1):
winner = None
break
return winner
class pyExternalContourChainingIterator(ChainingIterator):
def __init__(self):
ChainingIterator.__init__(self, 0, 1,None,1)
self._isExternalContour = ExternalContourUP1D()
def getExactTypeName(self):
return "pyExternalContourIterator"
def init(self):
self._nEdges = 0
self._isInSelection = 1
def checkViewEdge(self, ve, orientation):
if(orientation != 0):
vertex = ve.B()
else:
vertex = ve.A()
it = AdjacencyIterator(vertex,1,1)
while(it.isEnd() == 0):
ave = it.getObject()
if(self._isExternalContour(ave)):
return 1
it.increment()
print("pyExternlContourChainingIterator : didn't find next edge")
return 0
def traverse(self, iter):
winner = None
it = AdjacencyIterator(iter)
while(it.isEnd() == 0):
ve = it.getObject()
if(self._isExternalContour(ve)):
if (ve.getTimeStamp() == GetTimeStampCF()):
winner = ve
it.increment()
self._nEdges = self._nEdges+1
if(winner == None):
orient = 1
it = AdjacencyIterator(iter)
while(it.isEnd() == 0):
ve = it.getObject()
if(it.isIncoming() != 0):
orient = 0
good = self.checkViewEdge(ve,orient)
if(good != 0):
winner = ve
it.increment()
return winner
## the natural chaining iterator
## with a sketchy multiple touch
class pySketchyChainSilhouetteIterator(ChainingIterator):
def __init__(self, nRounds=3,stayInSelection=1):
ChainingIterator.__init__(self, stayInSelection, 0,None,1)
self._timeStamp = GetTimeStampCF()+nRounds
self._nRounds = nRounds
def getExactTypeName(self):
return "pySketchyChainSilhouetteIterator"
def init(self):
self._timeStamp = GetTimeStampCF()+self._nRounds
def traverse(self, iter):
winner = None
it = AdjacencyIterator(iter)
tvertex = self.getVertex()
if type(tvertex) is TVertex:
mateVE = tvertex.mate(self.getCurrentEdge())
while(it.isEnd() == 0):
ve = it.getObject()
if(ve.getId() == mateVE.getId() ):
winner = ve
break
it.increment()
else:
## case of NonTVertex
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
for i in range(len(natures)):
currentNature = self.getCurrentEdge().getNature()
if(natures[i] & currentNature):
count=0
while(it.isEnd() == 0):
visitNext = 0
oNature = it.getObject().getNature()
ve = it.getObject()
if(ve.getId() == self.getCurrentEdge().getId()):
it.increment()
continue
if(oNature & natures[i] != 0):
if(natures[i] != oNature):
for j in range(i):
if(natures[j] & oNature != 0):
visitNext = 1
break
if(visitNext != 0):
break
count = count+1
winner = ve
it.increment()
if(count != 1):
winner = None
break
if(winner == None):
winner = self.getCurrentEdge()
if(winner.getChainingTimeStamp() == self._timeStamp):
winner = None
return winner
# Chaining iterator designed for sketchy style.
# can chain several times the same ViewEdge
# in order to produce multiple strokes per ViewEdge.
class pySketchyChainingIterator(ChainingIterator):
def __init__(self, nRounds=3, stayInSelection=1):
ChainingIterator.__init__(self, stayInSelection, 0,None,1)
self._timeStamp = GetTimeStampCF()+nRounds
self._nRounds = nRounds
def getExactTypeName(self):
return "pySketchyChainingIterator"
def init(self):
self._timeStamp = GetTimeStampCF()+self._nRounds
def traverse(self, iter):
winner = None
it = AdjacencyIterator(iter)
while(it.isEnd() == 0):
ve = it.getObject()
if(ve.getId() == self.getCurrentEdge().getId()):
it.increment()
continue
winner = ve
it.increment()
if(winner == None):
winner = self.getCurrentEdge()
if(winner.getChainingTimeStamp() == self._timeStamp):
return None
return winner
## Chaining iterator that fills small occlusions
## percent
## The max length of the occluded part
## expressed in % of the total chain length
class pyFillOcclusionsRelativeChainingIterator(ChainingIterator):
def __init__(self, percent):
ChainingIterator.__init__(self, 0, 1,None,1)
self._length = 0
self._percent = float(percent)
def getExactTypeName(self):
return "pyFillOcclusionsChainingIterator"
def init(self):
# each time we're evaluating a chain length
# we try to do it once. Thus we reinit
# the chain length here:
self._length = 0
def traverse(self, iter):
winner = None
winnerOrientation = 0
print(self.getCurrentEdge().getId().getFirst(), self.getCurrentEdge().getId().getSecond())
it = AdjacencyIterator(iter)
tvertex = self.getVertex()
if type(tvertex) is TVertex:
mateVE = tvertex.mate(self.getCurrentEdge())
while(it.isEnd() == 0):
ve = it.getObject()
if(ve.getId() == mateVE.getId() ):
winner = ve
if(it.isIncoming() == 0):
winnerOrientation = 1
else:
winnerOrientation = 0
break
it.increment()
else:
## case of NonTVertex
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
for nat in natures:
if(self.getCurrentEdge().getNature() & nat != 0):
count=0
while(it.isEnd() == 0):
ve = it.getObject()
if(ve.getNature() & nat != 0):
count = count+1
winner = ve
if(it.isIncoming() == 0):
winnerOrientation = 1
else:
winnerOrientation = 0
it.increment()
if(count != 1):
winner = None
break
if(winner != None):
# check whether this edge was part of the selection
if(winner.getTimeStamp() != GetTimeStampCF()):
#print("---", winner.getId().getFirst(), winner.getId().getSecond())
# if not, let's check whether it's short enough with
# respect to the chain made without staying in the selection
#------------------------------------------------------------
# Did we compute the prospective chain length already ?
if(self._length == 0):
#if not, let's do it
_it = pyChainSilhouetteGenericIterator(0,0)
_it.setBegin(winner)
_it.setCurrentEdge(winner)
_it.setOrientation(winnerOrientation)
_it.init()
while(_it.isEnd() == 0):
ve = _it.getObject()
#print("--------", ve.getId().getFirst(), ve.getId().getSecond())
self._length = self._length + ve.getLength2D()
_it.increment()
if(_it.isBegin() != 0):
break;
_it.setBegin(winner)
_it.setCurrentEdge(winner)
_it.setOrientation(winnerOrientation)
if(_it.isBegin() == 0):
_it.decrement()
while ((_it.isEnd() == 0) and (_it.isBegin() == 0)):
ve = _it.getObject()
#print("--------", ve.getId().getFirst(), ve.getId().getSecond())
self._length = self._length + ve.getLength2D()
_it.decrement()
# let's do the comparison:
# nw let's compute the length of this connex non selected part:
connexl = 0
_cit = pyChainSilhouetteGenericIterator(0,0)
_cit.setBegin(winner)
_cit.setCurrentEdge(winner)
_cit.setOrientation(winnerOrientation)
_cit.init()
while((_cit.isEnd() == 0) and (_cit.getObject().getTimeStamp() != GetTimeStampCF())):
ve = _cit.getObject()
#print("-------- --------", ve.getId().getFirst(), ve.getId().getSecond())
connexl = connexl + ve.getLength2D()
_cit.increment()
if(connexl > self._percent * self._length):
winner = None
return winner
## Chaining iterator that fills small occlusions
## size
## The max length of the occluded part
## expressed in pixels
class pyFillOcclusionsAbsoluteChainingIterator(ChainingIterator):
def __init__(self, length):
ChainingIterator.__init__(self, 0, 1,None,1)
self._length = float(length)
def getExactTypeName(self):
return "pySmallFillOcclusionsChainingIterator"
def init(self):
pass
def traverse(self, iter):
winner = None
winnerOrientation = 0
#print(self.getCurrentEdge().getId().getFirst(), self.getCurrentEdge().getId().getSecond())
it = AdjacencyIterator(iter)
tvertex = self.getVertex()
if type(tvertex) is TVertex:
mateVE = tvertex.mate(self.getCurrentEdge())
while(it.isEnd() == 0):
ve = it.getObject()
if(ve.getId() == mateVE.getId() ):
winner = ve
if(it.isIncoming() == 0):
winnerOrientation = 1
else:
winnerOrientation = 0
break
it.increment()
else:
## case of NonTVertex
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
for nat in natures:
if(self.getCurrentEdge().getNature() & nat != 0):
count=0
while(it.isEnd() == 0):
ve = it.getObject()
if(ve.getNature() & nat != 0):
count = count+1
winner = ve
if(it.isIncoming() == 0):
winnerOrientation = 1
else:
winnerOrientation = 0
it.increment()
if(count != 1):
winner = None
break
if(winner != None):
# check whether this edge was part of the selection
if(winner.getTimeStamp() != GetTimeStampCF()):
#print("---", winner.getId().getFirst(), winner.getId().getSecond())
# nw let's compute the length of this connex non selected part:
connexl = 0
_cit = pyChainSilhouetteGenericIterator(0,0)
_cit.setBegin(winner)
_cit.setCurrentEdge(winner)
_cit.setOrientation(winnerOrientation)
_cit.init()
while((_cit.isEnd() == 0) and (_cit.getObject().getTimeStamp() != GetTimeStampCF())):
ve = _cit.getObject()
#print("-------- --------", ve.getId().getFirst(), ve.getId().getSecond())
connexl = connexl + ve.getLength2D()
_cit.increment()
if(connexl > self._length):
winner = None
return winner
## Chaining iterator that fills small occlusions
## percent
## The max length of the occluded part
## expressed in % of the total chain length
class pyFillOcclusionsAbsoluteAndRelativeChainingIterator(ChainingIterator):
def __init__(self, percent, l):
ChainingIterator.__init__(self, 0, 1,None,1)
self._length = 0
self._absLength = l
self._percent = float(percent)
def getExactTypeName(self):
return "pyFillOcclusionsChainingIterator"
def init(self):
# each time we're evaluating a chain length
# we try to do it once. Thus we reinit
# the chain length here:
self._length = 0
def traverse(self, iter):
winner = None
winnerOrientation = 0
print(self.getCurrentEdge().getId().getFirst(), self.getCurrentEdge().getId().getSecond())
it = AdjacencyIterator(iter)
tvertex = self.getVertex()
if type(tvertex) is TVertex:
mateVE = tvertex.mate(self.getCurrentEdge())
while(it.isEnd() == 0):
ve = it.getObject()
if(ve.getId() == mateVE.getId() ):
winner = ve
if(it.isIncoming() == 0):
winnerOrientation = 1
else:
winnerOrientation = 0
break
it.increment()
else:
## case of NonTVertex
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
for nat in natures:
if(self.getCurrentEdge().getNature() & nat != 0):
count=0
while(it.isEnd() == 0):
ve = it.getObject()
if(ve.getNature() & nat != 0):
count = count+1
winner = ve
if(it.isIncoming() == 0):
winnerOrientation = 1
else:
winnerOrientation = 0
it.increment()
if(count != 1):
winner = None
break
if(winner != None):
# check whether this edge was part of the selection
if(winner.getTimeStamp() != GetTimeStampCF()):
#print("---", winner.getId().getFirst(), winner.getId().getSecond())
# if not, let's check whether it's short enough with
# respect to the chain made without staying in the selection
#------------------------------------------------------------
# Did we compute the prospective chain length already ?
if(self._length == 0):
#if not, let's do it
_it = pyChainSilhouetteGenericIterator(0,0)
_it.setBegin(winner)
_it.setCurrentEdge(winner)
_it.setOrientation(winnerOrientation)
_it.init()
while(_it.isEnd() == 0):
ve = _it.getObject()
#print("--------", ve.getId().getFirst(), ve.getId().getSecond())
self._length = self._length + ve.getLength2D()
_it.increment()
if(_it.isBegin() != 0):
break;
_it.setBegin(winner)
_it.setCurrentEdge(winner)
_it.setOrientation(winnerOrientation)
if(_it.isBegin() == 0):
_it.decrement()
while ((_it.isEnd() == 0) and (_it.isBegin() == 0)):
ve = _it.getObject()
#print("--------", ve.getId().getFirst(), ve.getId().getSecond())
self._length = self._length + ve.getLength2D()
_it.decrement()
# let's do the comparison:
# nw let's compute the length of this connex non selected part:
connexl = 0
_cit = pyChainSilhouetteGenericIterator(0,0)
_cit.setBegin(winner)
_cit.setCurrentEdge(winner)
_cit.setOrientation(winnerOrientation)
_cit.init()
while((_cit.isEnd() == 0) and (_cit.getObject().getTimeStamp() != GetTimeStampCF())):
ve = _cit.getObject()
#print("-------- --------", ve.getId().getFirst(), ve.getId().getSecond())
connexl = connexl + ve.getLength2D()
_cit.increment()
if((connexl > self._percent * self._length) or (connexl > self._absLength)):
winner = None
return winner
## Chaining iterator that fills small occlusions without caring about the
## actual selection
## percent
## The max length of the occluded part
## expressed in % of the total chain length
class pyFillQi0AbsoluteAndRelativeChainingIterator(ChainingIterator):
def __init__(self, percent, l):
ChainingIterator.__init__(self, 0, 1,None,1)
self._length = 0
self._absLength = l
self._percent = float(percent)
def getExactTypeName(self):
return "pyFillOcclusionsChainingIterator"
def init(self):
# each time we're evaluating a chain length
# we try to do it once. Thus we reinit
# the chain length here:
self._length = 0
def traverse(self, iter):
winner = None
winnerOrientation = 0
print(self.getCurrentEdge().getId().getFirst(), self.getCurrentEdge().getId().getSecond())
it = AdjacencyIterator(iter)
tvertex = self.getVertex()
if type(tvertex) is TVertex:
mateVE = tvertex.mate(self.getCurrentEdge())
while(it.isEnd() == 0):
ve = it.getObject()
if(ve.getId() == mateVE.getId() ):
winner = ve
if(it.isIncoming() == 0):
winnerOrientation = 1
else:
winnerOrientation = 0
break
it.increment()
else:
## case of NonTVertex
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
for nat in natures:
if(self.getCurrentEdge().getNature() & nat != 0):
count=0
while(it.isEnd() == 0):
ve = it.getObject()
if(ve.getNature() & nat != 0):
count = count+1
winner = ve
if(it.isIncoming() == 0):
winnerOrientation = 1
else:
winnerOrientation = 0
it.increment()
if(count != 1):
winner = None
break
if(winner != None):
# check whether this edge was part of the selection
if(winner.qi() != 0):
#print("---", winner.getId().getFirst(), winner.getId().getSecond())
# if not, let's check whether it's short enough with
# respect to the chain made without staying in the selection
#------------------------------------------------------------
# Did we compute the prospective chain length already ?
if(self._length == 0):
#if not, let's do it
_it = pyChainSilhouetteGenericIterator(0,0)
_it.setBegin(winner)
_it.setCurrentEdge(winner)
_it.setOrientation(winnerOrientation)
_it.init()
while(_it.isEnd() == 0):
ve = _it.getObject()
#print("--------", ve.getId().getFirst(), ve.getId().getSecond())
self._length = self._length + ve.getLength2D()
_it.increment()
if(_it.isBegin() != 0):
break;
_it.setBegin(winner)
_it.setCurrentEdge(winner)
_it.setOrientation(winnerOrientation)
if(_it.isBegin() == 0):
_it.decrement()
while ((_it.isEnd() == 0) and (_it.isBegin() == 0)):
ve = _it.getObject()
#print("--------", ve.getId().getFirst(), ve.getId().getSecond())
self._length = self._length + ve.getLength2D()
_it.decrement()
# let's do the comparison:
# nw let's compute the length of this connex non selected part:
connexl = 0
_cit = pyChainSilhouetteGenericIterator(0,0)
_cit.setBegin(winner)
_cit.setCurrentEdge(winner)
_cit.setOrientation(winnerOrientation)
_cit.init()
while((_cit.isEnd() == 0) and (_cit.getObject().qi() != 0)):
ve = _cit.getObject()
#print("-------- --------", ve.getId().getFirst(), ve.getId().getSecond())
connexl = connexl + ve.getLength2D()
_cit.increment()
if((connexl > self._percent * self._length) or (connexl > self._absLength)):
winner = None
return winner
## the natural chaining iterator
## It follows the edges of same nature on the same
## objects with preseance on silhouettes, then borders,
## then suggestive contours, then everything else. It doesn't chain the same ViewEdge twice
## You can specify whether to stay in the selection or not.
class pyNoIdChainSilhouetteIterator(ChainingIterator):
def __init__(self, stayInSelection=1):
ChainingIterator.__init__(self, stayInSelection, 1,None,1)
def getExactTypeName(self):
return "pyChainSilhouetteIterator"
def init(self):
pass
def traverse(self, iter):
winner = None
it = AdjacencyIterator(iter)
tvertex = self.getVertex()
if type(tvertex) is TVertex:
mateVE = tvertex.mate(self.getCurrentEdge())
while(it.isEnd() == 0):
ve = it.getObject()
feB = self.getCurrentEdge().fedgeB()
feA = ve.fedgeA()
vB = feB.vertexB()
vA = feA.vertexA()
if vA.getId().getFirst() == vB.getId().getFirst():
winner = ve
break
feA = self.getCurrentEdge().fedgeA()
feB = ve.fedgeB()
vB = feB.vertexB()
vA = feA.vertexA()
if vA.getId().getFirst() == vB.getId().getFirst():
winner = ve
break
feA = self.getCurrentEdge().fedgeB()
feB = ve.fedgeB()
vB = feB.vertexB()
vA = feA.vertexB()
if vA.getId().getFirst() == vB.getId().getFirst():
winner = ve
break
feA = self.getCurrentEdge().fedgeA()
feB = ve.fedgeA()
vB = feB.vertexA()
vA = feA.vertexA()
if vA.getId().getFirst() == vB.getId().getFirst():
winner = ve
break
it.increment()
else:
## case of NonTVertex
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
for i in range(len(natures)):
currentNature = self.getCurrentEdge().getNature()
if(natures[i] & currentNature):
count=0
while(it.isEnd() == 0):
visitNext = 0
oNature = it.getObject().getNature()
if(oNature & natures[i] != 0):
if(natures[i] != oNature):
for j in range(i):
if(natures[j] & oNature != 0):
visitNext = 1
break
if(visitNext != 0):
break
count = count+1
winner = it.getObject()
it.increment()
if(count != 1):
winner = None
break
return winner