blender/intern/cycles/bvh/bvh.cpp
Patrick Mours a2b52dc571 Cycles: add Optix device backend
This uses hardware-accelerated raytracing on NVIDIA RTX graphics cards.

It is still currently experimental. Most features are supported, but a few
are still missing like baking, branched path tracing and using CPU memory.
https://wiki.blender.org/wiki/Reference/Release_Notes/2.81/Cycles#NVIDIA_RTX

For building with Optix support, the Optix SDK must be installed. See here for
build instructions:
https://wiki.blender.org/wiki/Building_Blender/CUDA

Differential Revision: https://developer.blender.org/D5363
2019-09-13 11:50:11 +02:00

581 lines
18 KiB
C++

/*
* Adapted from code copyright 2009-2010 NVIDIA Corporation
* Modifications Copyright 2011, Blender Foundation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "bvh/bvh.h"
#include "render/mesh.h"
#include "render/object.h"
#include "bvh/bvh2.h"
#include "bvh/bvh4.h"
#include "bvh/bvh8.h"
#include "bvh/bvh_build.h"
#include "bvh/bvh_node.h"
#ifdef WITH_OPTIX
# include "bvh/bvh_optix.h"
#endif
#ifdef WITH_EMBREE
# include "bvh/bvh_embree.h"
#endif
#include "util/util_foreach.h"
#include "util/util_logging.h"
#include "util/util_progress.h"
CCL_NAMESPACE_BEGIN
/* BVH Parameters. */
const char *bvh_layout_name(BVHLayout layout)
{
switch (layout) {
case BVH_LAYOUT_BVH2:
return "BVH2";
case BVH_LAYOUT_BVH4:
return "BVH4";
case BVH_LAYOUT_BVH8:
return "BVH8";
case BVH_LAYOUT_NONE:
return "NONE";
case BVH_LAYOUT_EMBREE:
return "EMBREE";
case BVH_LAYOUT_OPTIX:
return "OPTIX";
case BVH_LAYOUT_ALL:
return "ALL";
}
LOG(DFATAL) << "Unsupported BVH layout was passed.";
return "";
}
BVHLayout BVHParams::best_bvh_layout(BVHLayout requested_layout, BVHLayoutMask supported_layouts)
{
const BVHLayoutMask requested_layout_mask = (BVHLayoutMask)requested_layout;
/* Check whether requested layout is supported, if so -- no need to do
* any extra computation.
*/
if (supported_layouts & requested_layout_mask) {
return requested_layout;
}
/* Some bit magic to get widest supported BVH layout. */
/* This is a mask of supported BVH layouts which are narrower than the
* requested one.
*/
BVHLayoutMask allowed_layouts_mask = (supported_layouts & (requested_layout_mask - 1));
/* If the requested layout is not supported, choose from the supported layouts instead. */
if (allowed_layouts_mask == 0) {
allowed_layouts_mask = supported_layouts;
}
/* We get widest from allowed ones and convert mask to actual layout. */
const BVHLayoutMask widest_allowed_layout_mask = __bsr(allowed_layouts_mask);
return (BVHLayout)(1 << widest_allowed_layout_mask);
}
/* Pack Utility */
BVHStackEntry::BVHStackEntry(const BVHNode *n, int i) : node(n), idx(i)
{
}
int BVHStackEntry::encodeIdx() const
{
return (node->is_leaf()) ? ~idx : idx;
}
/* BVH */
BVH::BVH(const BVHParams &params_, const vector<Mesh *> &meshes_, const vector<Object *> &objects_)
: params(params_), meshes(meshes_), objects(objects_)
{
}
BVH *BVH::create(const BVHParams &params,
const vector<Mesh *> &meshes,
const vector<Object *> &objects)
{
switch (params.bvh_layout) {
case BVH_LAYOUT_BVH2:
return new BVH2(params, meshes, objects);
case BVH_LAYOUT_BVH4:
return new BVH4(params, meshes, objects);
case BVH_LAYOUT_BVH8:
return new BVH8(params, meshes, objects);
case BVH_LAYOUT_EMBREE:
#ifdef WITH_EMBREE
return new BVHEmbree(params, meshes, objects);
#else
break;
#endif
case BVH_LAYOUT_OPTIX:
#ifdef WITH_OPTIX
return new BVHOptiX(params, meshes, objects);
#else
break;
#endif
case BVH_LAYOUT_NONE:
case BVH_LAYOUT_ALL:
break;
}
LOG(DFATAL) << "Requested unsupported BVH layout.";
return NULL;
}
/* Building */
void BVH::build(Progress &progress, Stats *)
{
progress.set_substatus("Building BVH");
/* build nodes */
BVHBuild bvh_build(objects,
pack.prim_type,
pack.prim_index,
pack.prim_object,
pack.prim_time,
params,
progress);
BVHNode *bvh2_root = bvh_build.run();
if (progress.get_cancel()) {
if (bvh2_root != NULL) {
bvh2_root->deleteSubtree();
}
return;
}
/* BVH builder returns tree in a binary mode (with two children per inner
* node. Need to adopt that for a wider BVH implementations. */
BVHNode *root = widen_children_nodes(bvh2_root);
if (root != bvh2_root) {
bvh2_root->deleteSubtree();
}
if (progress.get_cancel()) {
if (root != NULL) {
root->deleteSubtree();
}
return;
}
/* pack triangles */
progress.set_substatus("Packing BVH triangles and strands");
pack_primitives();
if (progress.get_cancel()) {
root->deleteSubtree();
return;
}
/* pack nodes */
progress.set_substatus("Packing BVH nodes");
pack_nodes(root);
/* free build nodes */
root->deleteSubtree();
}
/* Refitting */
void BVH::refit(Progress &progress)
{
progress.set_substatus("Packing BVH primitives");
pack_primitives();
if (progress.get_cancel())
return;
progress.set_substatus("Refitting BVH nodes");
refit_nodes();
}
void BVH::refit_primitives(int start, int end, BoundBox &bbox, uint &visibility)
{
/* Refit range of primitives. */
for (int prim = start; prim < end; prim++) {
int pidx = pack.prim_index[prim];
int tob = pack.prim_object[prim];
Object *ob = objects[tob];
if (pidx == -1) {
/* Object instance. */
bbox.grow(ob->bounds);
}
else {
/* Primitives. */
const Mesh *mesh = ob->mesh;
if (pack.prim_type[prim] & PRIMITIVE_ALL_CURVE) {
/* Curves. */
int str_offset = (params.top_level) ? mesh->curve_offset : 0;
Mesh::Curve curve = mesh->get_curve(pidx - str_offset);
int k = PRIMITIVE_UNPACK_SEGMENT(pack.prim_type[prim]);
curve.bounds_grow(k, &mesh->curve_keys[0], &mesh->curve_radius[0], bbox);
visibility |= PATH_RAY_CURVE;
/* Motion curves. */
if (mesh->use_motion_blur) {
Attribute *attr = mesh->curve_attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
if (attr) {
size_t mesh_size = mesh->curve_keys.size();
size_t steps = mesh->motion_steps - 1;
float3 *key_steps = attr->data_float3();
for (size_t i = 0; i < steps; i++)
curve.bounds_grow(k, key_steps + i * mesh_size, &mesh->curve_radius[0], bbox);
}
}
}
else {
/* Triangles. */
int tri_offset = (params.top_level) ? mesh->tri_offset : 0;
Mesh::Triangle triangle = mesh->get_triangle(pidx - tri_offset);
const float3 *vpos = &mesh->verts[0];
triangle.bounds_grow(vpos, bbox);
/* Motion triangles. */
if (mesh->use_motion_blur) {
Attribute *attr = mesh->attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
if (attr) {
size_t mesh_size = mesh->verts.size();
size_t steps = mesh->motion_steps - 1;
float3 *vert_steps = attr->data_float3();
for (size_t i = 0; i < steps; i++)
triangle.bounds_grow(vert_steps + i * mesh_size, bbox);
}
}
}
}
visibility |= ob->visibility_for_tracing();
}
}
/* Triangles */
void BVH::pack_triangle(int idx, float4 tri_verts[3])
{
int tob = pack.prim_object[idx];
assert(tob >= 0 && tob < objects.size());
const Mesh *mesh = objects[tob]->mesh;
int tidx = pack.prim_index[idx];
Mesh::Triangle t = mesh->get_triangle(tidx);
const float3 *vpos = &mesh->verts[0];
float3 v0 = vpos[t.v[0]];
float3 v1 = vpos[t.v[1]];
float3 v2 = vpos[t.v[2]];
tri_verts[0] = float3_to_float4(v0);
tri_verts[1] = float3_to_float4(v1);
tri_verts[2] = float3_to_float4(v2);
}
void BVH::pack_primitives()
{
const size_t tidx_size = pack.prim_index.size();
size_t num_prim_triangles = 0;
/* Count number of triangles primitives in BVH. */
for (unsigned int i = 0; i < tidx_size; i++) {
if ((pack.prim_index[i] != -1)) {
if ((pack.prim_type[i] & PRIMITIVE_ALL_TRIANGLE) != 0) {
++num_prim_triangles;
}
}
}
/* Reserve size for arrays. */
pack.prim_tri_index.clear();
pack.prim_tri_index.resize(tidx_size);
pack.prim_tri_verts.clear();
pack.prim_tri_verts.resize(num_prim_triangles * 3);
pack.prim_visibility.clear();
pack.prim_visibility.resize(tidx_size);
/* Fill in all the arrays. */
size_t prim_triangle_index = 0;
for (unsigned int i = 0; i < tidx_size; i++) {
if (pack.prim_index[i] != -1) {
int tob = pack.prim_object[i];
Object *ob = objects[tob];
if ((pack.prim_type[i] & PRIMITIVE_ALL_TRIANGLE) != 0) {
pack_triangle(i, (float4 *)&pack.prim_tri_verts[3 * prim_triangle_index]);
pack.prim_tri_index[i] = 3 * prim_triangle_index;
++prim_triangle_index;
}
else {
pack.prim_tri_index[i] = -1;
}
pack.prim_visibility[i] = ob->visibility_for_tracing();
if (pack.prim_type[i] & PRIMITIVE_ALL_CURVE) {
pack.prim_visibility[i] |= PATH_RAY_CURVE;
}
}
else {
pack.prim_tri_index[i] = -1;
pack.prim_visibility[i] = 0;
}
}
}
/* Pack Instances */
void BVH::pack_instances(size_t nodes_size, size_t leaf_nodes_size)
{
/* The BVH's for instances are built separately, but for traversal all
* BVH's are stored in global arrays. This function merges them into the
* top level BVH, adjusting indexes and offsets where appropriate.
*/
const bool use_qbvh = (params.bvh_layout == BVH_LAYOUT_BVH4);
const bool use_obvh = (params.bvh_layout == BVH_LAYOUT_BVH8);
/* Adjust primitive index to point to the triangle in the global array, for
* meshes with transform applied and already in the top level BVH.
*/
for (size_t i = 0; i < pack.prim_index.size(); i++)
if (pack.prim_index[i] != -1) {
if (pack.prim_type[i] & PRIMITIVE_ALL_CURVE)
pack.prim_index[i] += objects[pack.prim_object[i]]->mesh->curve_offset;
else
pack.prim_index[i] += objects[pack.prim_object[i]]->mesh->tri_offset;
}
/* track offsets of instanced BVH data in global array */
size_t prim_offset = pack.prim_index.size();
size_t nodes_offset = nodes_size;
size_t nodes_leaf_offset = leaf_nodes_size;
/* clear array that gives the node indexes for instanced objects */
pack.object_node.clear();
/* reserve */
size_t prim_index_size = pack.prim_index.size();
size_t prim_tri_verts_size = pack.prim_tri_verts.size();
size_t pack_prim_index_offset = prim_index_size;
size_t pack_prim_tri_verts_offset = prim_tri_verts_size;
size_t pack_nodes_offset = nodes_size;
size_t pack_leaf_nodes_offset = leaf_nodes_size;
size_t object_offset = 0;
foreach (Mesh *mesh, meshes) {
BVH *bvh = mesh->bvh;
if (mesh->need_build_bvh(params.bvh_layout)) {
prim_index_size += bvh->pack.prim_index.size();
prim_tri_verts_size += bvh->pack.prim_tri_verts.size();
nodes_size += bvh->pack.nodes.size();
leaf_nodes_size += bvh->pack.leaf_nodes.size();
}
}
pack.prim_index.resize(prim_index_size);
pack.prim_type.resize(prim_index_size);
pack.prim_object.resize(prim_index_size);
pack.prim_visibility.resize(prim_index_size);
pack.prim_tri_verts.resize(prim_tri_verts_size);
pack.prim_tri_index.resize(prim_index_size);
pack.nodes.resize(nodes_size);
pack.leaf_nodes.resize(leaf_nodes_size);
pack.object_node.resize(objects.size());
if (params.num_motion_curve_steps > 0 || params.num_motion_triangle_steps > 0) {
pack.prim_time.resize(prim_index_size);
}
int *pack_prim_index = (pack.prim_index.size()) ? &pack.prim_index[0] : NULL;
int *pack_prim_type = (pack.prim_type.size()) ? &pack.prim_type[0] : NULL;
int *pack_prim_object = (pack.prim_object.size()) ? &pack.prim_object[0] : NULL;
uint *pack_prim_visibility = (pack.prim_visibility.size()) ? &pack.prim_visibility[0] : NULL;
float4 *pack_prim_tri_verts = (pack.prim_tri_verts.size()) ? &pack.prim_tri_verts[0] : NULL;
uint *pack_prim_tri_index = (pack.prim_tri_index.size()) ? &pack.prim_tri_index[0] : NULL;
int4 *pack_nodes = (pack.nodes.size()) ? &pack.nodes[0] : NULL;
int4 *pack_leaf_nodes = (pack.leaf_nodes.size()) ? &pack.leaf_nodes[0] : NULL;
float2 *pack_prim_time = (pack.prim_time.size()) ? &pack.prim_time[0] : NULL;
map<Mesh *, int> mesh_map;
/* merge */
foreach (Object *ob, objects) {
Mesh *mesh = ob->mesh;
/* We assume that if mesh doesn't need own BVH it was already included
* into a top-level BVH and no packing here is needed.
*/
if (!mesh->need_build_bvh(params.bvh_layout)) {
pack.object_node[object_offset++] = 0;
continue;
}
/* if mesh already added once, don't add it again, but used set
* node offset for this object */
map<Mesh *, int>::iterator it = mesh_map.find(mesh);
if (mesh_map.find(mesh) != mesh_map.end()) {
int noffset = it->second;
pack.object_node[object_offset++] = noffset;
continue;
}
BVH *bvh = mesh->bvh;
int noffset = nodes_offset;
int noffset_leaf = nodes_leaf_offset;
int mesh_tri_offset = mesh->tri_offset;
int mesh_curve_offset = mesh->curve_offset;
/* fill in node indexes for instances */
if (bvh->pack.root_index == -1)
pack.object_node[object_offset++] = -noffset_leaf - 1;
else
pack.object_node[object_offset++] = noffset;
mesh_map[mesh] = pack.object_node[object_offset - 1];
/* merge primitive, object and triangle indexes */
if (bvh->pack.prim_index.size()) {
size_t bvh_prim_index_size = bvh->pack.prim_index.size();
int *bvh_prim_index = &bvh->pack.prim_index[0];
int *bvh_prim_type = &bvh->pack.prim_type[0];
uint *bvh_prim_visibility = &bvh->pack.prim_visibility[0];
uint *bvh_prim_tri_index = &bvh->pack.prim_tri_index[0];
float2 *bvh_prim_time = bvh->pack.prim_time.size() ? &bvh->pack.prim_time[0] : NULL;
for (size_t i = 0; i < bvh_prim_index_size; i++) {
if (bvh->pack.prim_type[i] & PRIMITIVE_ALL_CURVE) {
pack_prim_index[pack_prim_index_offset] = bvh_prim_index[i] + mesh_curve_offset;
pack_prim_tri_index[pack_prim_index_offset] = -1;
}
else {
pack_prim_index[pack_prim_index_offset] = bvh_prim_index[i] + mesh_tri_offset;
pack_prim_tri_index[pack_prim_index_offset] = bvh_prim_tri_index[i] +
pack_prim_tri_verts_offset;
}
pack_prim_type[pack_prim_index_offset] = bvh_prim_type[i];
pack_prim_visibility[pack_prim_index_offset] = bvh_prim_visibility[i];
pack_prim_object[pack_prim_index_offset] = 0; // unused for instances
if (bvh_prim_time != NULL) {
pack_prim_time[pack_prim_index_offset] = bvh_prim_time[i];
}
pack_prim_index_offset++;
}
}
/* Merge triangle vertices data. */
if (bvh->pack.prim_tri_verts.size()) {
const size_t prim_tri_size = bvh->pack.prim_tri_verts.size();
memcpy(pack_prim_tri_verts + pack_prim_tri_verts_offset,
&bvh->pack.prim_tri_verts[0],
prim_tri_size * sizeof(float4));
pack_prim_tri_verts_offset += prim_tri_size;
}
/* merge nodes */
if (bvh->pack.leaf_nodes.size()) {
int4 *leaf_nodes_offset = &bvh->pack.leaf_nodes[0];
size_t leaf_nodes_offset_size = bvh->pack.leaf_nodes.size();
for (size_t i = 0, j = 0; i < leaf_nodes_offset_size; i += BVH_NODE_LEAF_SIZE, j++) {
int4 data = leaf_nodes_offset[i];
data.x += prim_offset;
data.y += prim_offset;
pack_leaf_nodes[pack_leaf_nodes_offset] = data;
for (int j = 1; j < BVH_NODE_LEAF_SIZE; ++j) {
pack_leaf_nodes[pack_leaf_nodes_offset + j] = leaf_nodes_offset[i + j];
}
pack_leaf_nodes_offset += BVH_NODE_LEAF_SIZE;
}
}
if (bvh->pack.nodes.size()) {
int4 *bvh_nodes = &bvh->pack.nodes[0];
size_t bvh_nodes_size = bvh->pack.nodes.size();
for (size_t i = 0, j = 0; i < bvh_nodes_size; j++) {
size_t nsize, nsize_bbox;
if (bvh_nodes[i].x & PATH_RAY_NODE_UNALIGNED) {
if (use_obvh) {
nsize = BVH_UNALIGNED_ONODE_SIZE;
nsize_bbox = BVH_UNALIGNED_ONODE_SIZE - 1;
}
else {
nsize = use_qbvh ? BVH_UNALIGNED_QNODE_SIZE : BVH_UNALIGNED_NODE_SIZE;
nsize_bbox = (use_qbvh) ? BVH_UNALIGNED_QNODE_SIZE - 1 : 0;
}
}
else {
if (use_obvh) {
nsize = BVH_ONODE_SIZE;
nsize_bbox = BVH_ONODE_SIZE - 1;
}
else {
nsize = (use_qbvh) ? BVH_QNODE_SIZE : BVH_NODE_SIZE;
nsize_bbox = (use_qbvh) ? BVH_QNODE_SIZE - 1 : 0;
}
}
memcpy(pack_nodes + pack_nodes_offset, bvh_nodes + i, nsize_bbox * sizeof(int4));
/* Modify offsets into arrays */
int4 data = bvh_nodes[i + nsize_bbox];
int4 data1 = bvh_nodes[i + nsize_bbox - 1];
if (use_obvh) {
data.z += (data.z < 0) ? -noffset_leaf : noffset;
data.w += (data.w < 0) ? -noffset_leaf : noffset;
data.x += (data.x < 0) ? -noffset_leaf : noffset;
data.y += (data.y < 0) ? -noffset_leaf : noffset;
data1.z += (data1.z < 0) ? -noffset_leaf : noffset;
data1.w += (data1.w < 0) ? -noffset_leaf : noffset;
data1.x += (data1.x < 0) ? -noffset_leaf : noffset;
data1.y += (data1.y < 0) ? -noffset_leaf : noffset;
}
else {
data.z += (data.z < 0) ? -noffset_leaf : noffset;
data.w += (data.w < 0) ? -noffset_leaf : noffset;
if (use_qbvh) {
data.x += (data.x < 0) ? -noffset_leaf : noffset;
data.y += (data.y < 0) ? -noffset_leaf : noffset;
}
}
pack_nodes[pack_nodes_offset + nsize_bbox] = data;
if (use_obvh) {
pack_nodes[pack_nodes_offset + nsize_bbox - 1] = data1;
}
/* Usually this copies nothing, but we better
* be prepared for possible node size extension.
*/
memcpy(&pack_nodes[pack_nodes_offset + nsize_bbox + 1],
&bvh_nodes[i + nsize_bbox + 1],
sizeof(int4) * (nsize - (nsize_bbox + 1)));
pack_nodes_offset += nsize;
i += nsize;
}
}
nodes_offset += bvh->pack.nodes.size();
nodes_leaf_offset += bvh->pack.leaf_nodes.size();
prim_offset += bvh->pack.prim_index.size();
}
}
CCL_NAMESPACE_END