blender/release/scripts/blender2cal3d.py
Willian Padovani Germano a6d077bae2 Scripts:
- tiny updates for better behavior, unix line endings, cvs Id tags;
- Updated DX7 exporter (thanks to author Ben Omari who's also working on a DX8 one);
- added sysinfo script;

Interface (scripts):

- changed behavior for which win is chosen for script guis:
    Now there's a smarter order, guis will use either:
    - Scripts win
    - Buttons win (if not a script from groups Wizards or Utils)
    - Text win
    - Closest bigger area
- Added a button to the scripts header so that it's faster to return to the buttons win (this can be made general), if that was the previous win used.
2004-06-10 03:27:46 +00:00

985 lines
33 KiB
Python

#!BPY
"""
Name: 'Cal3D v0.5'
Blender: 232
Group: 'Export'
Tip: 'Export armature/bone data to the Cal3D library.'
"""
# $Id$
#
# blender2cal3D.py version 0.5
# Copyright (C) 2003 Jean-Baptiste LAMY -- jiba@tuxfamily.org
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
# This script is a Blender 2.28 => Cal3D 0.7/0.8 converter.
# (See http://blender.org and http://cal3d.sourceforge.net)
#
# Grab the latest version here :
# http://oomadness.tuxfamily.org/en/blender2cal3d
# HOW TO USE :
# 1 - load the script in Blender's text editor
# 2 - modify the parameters below (e.g. the file name)
# 3 - type M-P (meta/alt + P) and wait until script execution is finished
# ADVICES :
# - Use only locrot keys in Blender's action
# - Do not put "." in action or bone names, and do not start these names by a figure
# - Objects whose names start by "_" are not exported (hidden object)
# - All your armature's bones must be connected to another bone (except for the root
# bone). Contrary to Blender, Cal3D doesn't support "floating" bones.
# - Only Linux has been tested
# BUGS / TODO :
# - Animation names ARE LOST when exporting (this is due to Blender Python API and cannot
# be fixed until the API change). See parameters for how to rename your animations
# - Rotation, translation, or stretch (size changing) of Blender object is still quite
# bugged, so AVOID MOVING / ROTATING / RESIZE OBJECTS (either mesh or armature) !
# Instead, edit the object (with tab), select all points / bones (with "a"),
# and move / rotate / resize them.
# - Material color is not supported yet
# - Cal3D springs (for clothes and hair) are not supported yet
# - Optimization tips : almost all the time is spent on scene.makeCurrent(), called for
# updating the IPO curve's values. Updating a single IPO and not the whole scene
# would speed up a lot.
# Questions and comments are welcome at jiba@tuxfamily.org
# Parameters :
# The directory where the data are saved.
# blender2cal3d.py will create all files in this directory,
# including a .cfg file.
# WARNING: As Cal3D stores model in directory and not in a single file,
# you MUST avoid putting other file in this directory !
# Please give an empty directory (or an unexistant one).
# Files may be deleted from this directoty !
SAVE_TO_DIR = "cal3d"
# Use this dictionary to rename animations, as their name is lost at the exportation.
RENAME_ANIMATIONS = {
# "OldName" : "NewName",
}
# True (=1) to export for the Soya 3D engine (http://oomadness.tuxfamily.org/en/soya).
# (=> rotate meshes and skeletons so as X is right, Y is top and -Z is front)
EXPORT_FOR_SOYA = 0
# Enables LODs computation. LODs computation is quite slow, and the algo is surely
# not optimal :-(
LODS = 0
# See also BASE_MATRIX below, if you want to rotate/scale/translate the model at
# the exportation.
#########################################################################################
# Code starts here.
# The script should be quite re-useable for writing another Blender animation exporter.
# Most of the hell of it is to deal with Blender's head-tail-roll bone's definition.
import sys, os, os.path, struct, math, string
import Blender
# HACK -- it seems that some Blender versions don't define sys.argv,
# which may crash Python if a warning occurs.
if not hasattr(sys, "argv"): sys.argv = ["???"]
# Math stuff
def quaternion2matrix(q):
xx = q[0] * q[0]
yy = q[1] * q[1]
zz = q[2] * q[2]
xy = q[0] * q[1]
xz = q[0] * q[2]
yz = q[1] * q[2]
wx = q[3] * q[0]
wy = q[3] * q[1]
wz = q[3] * q[2]
return [[1.0 - 2.0 * (yy + zz), 2.0 * (xy + wz), 2.0 * (xz - wy), 0.0],
[ 2.0 * (xy - wz), 1.0 - 2.0 * (xx + zz), 2.0 * (yz + wx), 0.0],
[ 2.0 * (xz + wy), 2.0 * (yz - wx), 1.0 - 2.0 * (xx + yy), 0.0],
[0.0 , 0.0 , 0.0 , 1.0]]
def matrix2quaternion(m):
s = math.sqrt(abs(m[0][0] + m[1][1] + m[2][2] + m[3][3]))
if s == 0.0:
x = abs(m[2][1] - m[1][2])
y = abs(m[0][2] - m[2][0])
z = abs(m[1][0] - m[0][1])
if (x >= y) and (x >= z): return 1.0, 0.0, 0.0, 0.0
elif (y >= x) and (y >= z): return 0.0, 1.0, 0.0, 0.0
else: return 0.0, 0.0, 1.0, 0.0
return quaternion_normalize([
-(m[2][1] - m[1][2]) / (2.0 * s),
-(m[0][2] - m[2][0]) / (2.0 * s),
-(m[1][0] - m[0][1]) / (2.0 * s),
0.5 * s,
])
def quaternion_normalize(q):
l = math.sqrt(q[0] * q[0] + q[1] * q[1] + q[2] * q[2] + q[3] * q[3])
return q[0] / l, q[1] / l, q[2] / l, q[3] / l
def quaternion_multiply(q1, q2):
r = [
q2[3] * q1[0] + q2[0] * q1[3] + q2[1] * q1[2] - q2[2] * q1[1],
q2[3] * q1[1] + q2[1] * q1[3] + q2[2] * q1[0] - q2[0] * q1[2],
q2[3] * q1[2] + q2[2] * q1[3] + q2[0] * q1[1] - q2[1] * q1[0],
q2[3] * q1[3] - q2[0] * q1[0] - q2[1] * q1[1] - q2[2] * q1[2],
]
d = math.sqrt(r[0] * r[0] + r[1] * r[1] + r[2] * r[2] + r[3] * r[3])
r[0] /= d
r[1] /= d
r[2] /= d
r[3] /= d
return r
def matrix_translate(m, v):
m[3][0] += v[0]
m[3][1] += v[1]
m[3][2] += v[2]
return m
def matrix_multiply(b, a):
return [ [
a[0][0] * b[0][0] + a[0][1] * b[1][0] + a[0][2] * b[2][0],
a[0][0] * b[0][1] + a[0][1] * b[1][1] + a[0][2] * b[2][1],
a[0][0] * b[0][2] + a[0][1] * b[1][2] + a[0][2] * b[2][2],
0.0,
], [
a[1][0] * b[0][0] + a[1][1] * b[1][0] + a[1][2] * b[2][0],
a[1][0] * b[0][1] + a[1][1] * b[1][1] + a[1][2] * b[2][1],
a[1][0] * b[0][2] + a[1][1] * b[1][2] + a[1][2] * b[2][2],
0.0,
], [
a[2][0] * b[0][0] + a[2][1] * b[1][0] + a[2][2] * b[2][0],
a[2][0] * b[0][1] + a[2][1] * b[1][1] + a[2][2] * b[2][1],
a[2][0] * b[0][2] + a[2][1] * b[1][2] + a[2][2] * b[2][2],
0.0,
], [
a[3][0] * b[0][0] + a[3][1] * b[1][0] + a[3][2] * b[2][0] + b[3][0],
a[3][0] * b[0][1] + a[3][1] * b[1][1] + a[3][2] * b[2][1] + b[3][1],
a[3][0] * b[0][2] + a[3][1] * b[1][2] + a[3][2] * b[2][2] + b[3][2],
1.0,
] ]
def matrix_invert(m):
det = (m[0][0] * (m[1][1] * m[2][2] - m[2][1] * m[1][2])
- m[1][0] * (m[0][1] * m[2][2] - m[2][1] * m[0][2])
+ m[2][0] * (m[0][1] * m[1][2] - m[1][1] * m[0][2]))
if det == 0.0: return None
det = 1.0 / det
r = [ [
det * (m[1][1] * m[2][2] - m[2][1] * m[1][2]),
- det * (m[0][1] * m[2][2] - m[2][1] * m[0][2]),
det * (m[0][1] * m[1][2] - m[1][1] * m[0][2]),
0.0,
], [
- det * (m[1][0] * m[2][2] - m[2][0] * m[1][2]),
det * (m[0][0] * m[2][2] - m[2][0] * m[0][2]),
- det * (m[0][0] * m[1][2] - m[1][0] * m[0][2]),
0.0
], [
det * (m[1][0] * m[2][1] - m[2][0] * m[1][1]),
- det * (m[0][0] * m[2][1] - m[2][0] * m[0][1]),
det * (m[0][0] * m[1][1] - m[1][0] * m[0][1]),
0.0,
] ]
r.append([
-(m[3][0] * r[0][0] + m[3][1] * r[1][0] + m[3][2] * r[2][0]),
-(m[3][0] * r[0][1] + m[3][1] * r[1][1] + m[3][2] * r[2][1]),
-(m[3][0] * r[0][2] + m[3][1] * r[1][2] + m[3][2] * r[2][2]),
1.0,
])
return r
def matrix_rotate_x(angle):
cos = math.cos(angle)
sin = math.sin(angle)
return [
[1.0, 0.0, 0.0, 0.0],
[0.0, cos, sin, 0.0],
[0.0, -sin, cos, 0.0],
[0.0, 0.0, 0.0, 1.0],
]
def matrix_rotate_y(angle):
cos = math.cos(angle)
sin = math.sin(angle)
return [
[cos, 0.0, -sin, 0.0],
[0.0, 1.0, 0.0, 0.0],
[sin, 0.0, cos, 0.0],
[0.0, 0.0, 0.0, 1.0],
]
def matrix_rotate_z(angle):
cos = math.cos(angle)
sin = math.sin(angle)
return [
[ cos, sin, 0.0, 0.0],
[-sin, cos, 0.0, 0.0],
[ 0.0, 0.0, 1.0, 0.0],
[ 0.0, 0.0, 0.0, 1.0],
]
def matrix_rotate(axis, angle):
vx = axis[0]
vy = axis[1]
vz = axis[2]
vx2 = vx * vx
vy2 = vy * vy
vz2 = vz * vz
cos = math.cos(angle)
sin = math.sin(angle)
co1 = 1.0 - cos
return [
[vx2 * co1 + cos, vx * vy * co1 + vz * sin, vz * vx * co1 - vy * sin, 0.0],
[vx * vy * co1 - vz * sin, vy2 * co1 + cos, vy * vz * co1 + vx * sin, 0.0],
[vz * vx * co1 + vy * sin, vy * vz * co1 - vx * sin, vz2 * co1 + cos, 0.0],
[0.0, 0.0, 0.0, 1.0],
]
def matrix_scale(fx, fy, fz):
return [
[ fx, 0.0, 0.0, 0.0],
[0.0, fy, 0.0, 0.0],
[0.0, 0.0, fz, 0.0],
[0.0, 0.0, 0.0, 1.0],
]
def point_by_matrix(p, m):
return [p[0] * m[0][0] + p[1] * m[1][0] + p[2] * m[2][0] + m[3][0],
p[0] * m[0][1] + p[1] * m[1][1] + p[2] * m[2][1] + m[3][1],
p[0] * m[0][2] + p[1] * m[1][2] + p[2] * m[2][2] + m[3][2]]
def point_distance(p1, p2):
return math.sqrt((p2[0] - p1[0]) ** 2 + (p2[1] - p1[1]) ** 2 + (p2[2] - p1[2]) ** 2)
def vector_by_matrix(p, m):
return [p[0] * m[0][0] + p[1] * m[1][0] + p[2] * m[2][0],
p[0] * m[0][1] + p[1] * m[1][1] + p[2] * m[2][1],
p[0] * m[0][2] + p[1] * m[1][2] + p[2] * m[2][2]]
def vector_length(v):
return math.sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2])
def vector_normalize(v):
l = math.sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2])
return v[0] / l, v[1] / l, v[2] / l
def vector_dotproduct(v1, v2):
return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2]
def vector_crossproduct(v1, v2):
return [
v1[1] * v2[2] - v1[2] * v2[1],
v1[2] * v2[0] - v1[0] * v2[2],
v1[0] * v2[1] - v1[1] * v2[0],
]
def vector_angle(v1, v2):
s = vector_length(v1) * vector_length(v2)
f = vector_dotproduct(v1, v2) / s
if f >= 1.0: return 0.0
if f <= -1.0: return math.pi / 2.0
return math.atan(-f / math.sqrt(1.0 - f * f)) + math.pi / 2.0
def blender_bone2matrix(head, tail, roll):
# Convert bone rest state (defined by bone.head, bone.tail and bone.roll)
# to a matrix (the more standard notation).
# Taken from blenkernel/intern/armature.c in Blender source.
# See also DNA_armature_types.h:47.
target = [0.0, 1.0, 0.0]
delta = [tail[0] - head[0], tail[1] - head[1], tail[2] - head[2]]
nor = vector_normalize(delta)
axis = vector_crossproduct(target, nor)
if vector_dotproduct(axis, axis) > 0.0000000000001:
axis = vector_normalize(axis)
theta = math.acos(vector_dotproduct(target, nor))
bMatrix = matrix_rotate(axis, theta)
else:
if vector_crossproduct(target, nor) > 0.0: updown = 1.0
else: updown = -1.0
# Quoted from Blender source : "I think this should work ..."
bMatrix = [
[updown, 0.0, 0.0, 0.0],
[0.0, updown, 0.0, 0.0],
[0.0, 0.0, 1.0, 0.0],
[0.0, 0.0, 0.0, 1.0],
]
rMatrix = matrix_rotate(nor, roll)
return matrix_multiply(rMatrix, bMatrix)
# Hack for having the model rotated right.
# Put in BASE_MATRIX your own rotation if you need some.
if EXPORT_FOR_SOYA:
BASE_MATRIX = matrix_rotate_x(-math.pi / 2.0)
else:
BASE_MATRIX = None
# Cal3D data structures
CAL3D_VERSION = 700
NEXT_MATERIAL_ID = 0
class Material:
def __init__(self, map_filename = None):
self.ambient_r = 255
self.ambient_g = 255
self.ambient_b = 255
self.ambient_a = 255
self.diffuse_r = 255
self.diffuse_g = 255
self.diffuse_b = 255
self.diffuse_a = 255
self.specular_r = 255
self.specular_g = 255
self.specular_b = 255
self.specular_a = 255
self.shininess = 1.0
if map_filename: self.maps_filenames = [map_filename]
else: self.maps_filenames = []
MATERIALS[map_filename] = self
global NEXT_MATERIAL_ID
self.id = NEXT_MATERIAL_ID
NEXT_MATERIAL_ID += 1
def to_cal3d(self):
s = "CRF\0" + struct.pack("iBBBBBBBBBBBBfi", CAL3D_VERSION, self.ambient_r, self.ambient_g, self.ambient_b, self.ambient_a, self.diffuse_r, self.diffuse_g, self.diffuse_b, self.diffuse_a, self.specular_r, self.specular_g, self.specular_b, self.specular_a, self.shininess, len(self.maps_filenames))
for map_filename in self.maps_filenames:
s += struct.pack("i", len(map_filename) + 1)
s += map_filename + "\0"
return s
MATERIALS = {}
class Mesh:
def __init__(self, name):
self.name = name
self.submeshes = []
self.next_submesh_id = 0
def to_cal3d(self):
s = "CMF\0" + struct.pack("ii", CAL3D_VERSION, len(self.submeshes))
s += "".join(map(SubMesh.to_cal3d, self.submeshes))
return s
class SubMesh:
def __init__(self, mesh, material):
self.material = material
self.vertices = []
self.faces = []
self.nb_lodsteps = 0
self.springs = []
self.next_vertex_id = 0
self.mesh = mesh
self.id = mesh.next_submesh_id
mesh.next_submesh_id += 1
mesh.submeshes.append(self)
def compute_lods(self):
"""Computes LODs info for Cal3D (there's no Blender related stuff here)."""
print "Start LODs computation..."
vertex2faces = {}
for face in self.faces:
for vertex in (face.vertex1, face.vertex2, face.vertex3):
l = vertex2faces.get(vertex)
if not l: vertex2faces[vertex] = [face]
else: l.append(face)
couple_treated = {}
couple_collapse_factor = []
for face in self.faces:
for a, b in ((face.vertex1, face.vertex2), (face.vertex1, face.vertex3), (face.vertex2, face.vertex3)):
a = a.cloned_from or a
b = b.cloned_from or b
if a.id > b.id: a, b = b, a
if not couple_treated.has_key((a, b)):
# The collapse factor is simply the distance between the 2 points :-(
# This should be improved !!
if vector_dotproduct(a.normal, b.normal) < 0.9: continue
couple_collapse_factor.append((point_distance(a.loc, b.loc), a, b))
couple_treated[a, b] = 1
couple_collapse_factor.sort()
collapsed = {}
new_vertices = []
new_faces = []
for factor, v1, v2 in couple_collapse_factor:
# Determines if v1 collapses to v2 or v2 to v1.
# We choose to keep the vertex which is on the smaller number of faces, since
# this one has more chance of being in an extrimity of the body.
# Though heuristic, this rule yields very good results in practice.
if len(vertex2faces[v1]) < len(vertex2faces[v2]): v2, v1 = v1, v2
elif len(vertex2faces[v1]) == len(vertex2faces[v2]):
if collapsed.get(v1, 0): v2, v1 = v1, v2 # v1 already collapsed, try v2
if (not collapsed.get(v1, 0)) and (not collapsed.get(v2, 0)):
collapsed[v1] = 1
collapsed[v2] = 1
# Check if v2 is already colapsed
while v2.collapse_to: v2 = v2.collapse_to
common_faces = filter(vertex2faces[v1].__contains__, vertex2faces[v2])
v1.collapse_to = v2
v1.face_collapse_count = len(common_faces)
for clone in v1.clones:
# Find the clone of v2 that correspond to this clone of v1
possibles = []
for face in vertex2faces[clone]:
possibles.append(face.vertex1)
possibles.append(face.vertex2)
possibles.append(face.vertex3)
clone.collapse_to = v2
for vertex in v2.clones:
if vertex in possibles:
clone.collapse_to = vertex
break
clone.face_collapse_count = 0
new_vertices.append(clone)
# HACK -- all faces get collapsed with v1 (and no faces are collapsed with v1's
# clones). This is why we add v1 in new_vertices after v1's clones.
# This hack has no other incidence that consuming a little few memory for the
# extra faces if some v1's clone are collapsed but v1 is not.
new_vertices.append(v1)
self.nb_lodsteps += 1 + len(v1.clones)
new_faces.extend(common_faces)
for face in common_faces:
face.can_collapse = 1
# Updates vertex2faces
vertex2faces[face.vertex1].remove(face)
vertex2faces[face.vertex2].remove(face)
vertex2faces[face.vertex3].remove(face)
vertex2faces[v2].extend(vertex2faces[v1])
new_vertices.extend(filter(lambda vertex: not vertex.collapse_to, self.vertices))
new_vertices.reverse() # Cal3D want LODed vertices at the end
for i in range(len(new_vertices)): new_vertices[i].id = i
self.vertices = new_vertices
new_faces.extend(filter(lambda face: not face.can_collapse, self.faces))
new_faces.reverse() # Cal3D want LODed faces at the end
self.faces = new_faces
print "LODs computed : %s vertices can be removed (from a total of %s)." % (self.nb_lodsteps, len(self.vertices))
def rename_vertices(self, new_vertices):
"""Rename (change ID) of all vertices, such as self.vertices == new_vertices."""
for i in range(len(new_vertices)): new_vertices[i].id = i
self.vertices = new_vertices
def to_cal3d(self):
s = struct.pack("iiiiii", self.material.id, len(self.vertices), len(self.faces), self.nb_lodsteps, len(self.springs), len(self.material.maps_filenames))
s += "".join(map(Vertex.to_cal3d, self.vertices))
s += "".join(map(Spring.to_cal3d, self.springs))
s += "".join(map(Face .to_cal3d, self.faces))
return s
class Vertex:
def __init__(self, submesh, loc, normal):
self.loc = loc
self.normal = normal
self.collapse_to = None
self.face_collapse_count = 0
self.maps = []
self.influences = []
self.weight = None
self.cloned_from = None
self.clones = []
self.submesh = submesh
self.id = submesh.next_vertex_id
submesh.next_vertex_id += 1
submesh.vertices.append(self)
def to_cal3d(self):
if self.collapse_to: collapse_id = self.collapse_to.id
else: collapse_id = -1
s = struct.pack("ffffffii", self.loc[0], self.loc[1], self.loc[2], self.normal[0], self.normal[1], self.normal[2], collapse_id, self.face_collapse_count)
s += "".join(map(Map.to_cal3d, self.maps))
s += struct.pack("i", len(self.influences))
s += "".join(map(Influence.to_cal3d, self.influences))
if not self.weight is None: s += struct.pack("f", len(self.weight))
return s
class Map:
def __init__(self, u, v):
self.u = u
self.v = v
def to_cal3d(self):
return struct.pack("ff", self.u, self.v)
class Influence:
def __init__(self, bone, weight):
self.bone = bone
self.weight = weight
def to_cal3d(self):
return struct.pack("if", self.bone.id, self.weight)
class Spring:
def __init__(self, vertex1, vertex2):
self.vertex1 = vertex1
self.vertex2 = vertex2
self.spring_coefficient = 0.0
self.idlelength = 0.0
def to_cal3d(self):
return struct.pack("iiff", self.vertex1.id, self.vertex2.id, self.spring_coefficient, self.idlelength)
class Face:
def __init__(self, submesh, vertex1, vertex2, vertex3):
self.vertex1 = vertex1
self.vertex2 = vertex2
self.vertex3 = vertex3
self.can_collapse = 0
self.submesh = submesh
submesh.faces.append(self)
def to_cal3d(self):
return struct.pack("iii", self.vertex1.id, self.vertex2.id, self.vertex3.id)
class Skeleton:
def __init__(self):
self.bones = []
self.next_bone_id = 0
def to_cal3d(self):
s = "CSF\0" + struct.pack("ii", CAL3D_VERSION, len(self.bones))
s += "".join(map(Bone.to_cal3d, self.bones))
return s
BONES = {}
class Bone:
def __init__(self, skeleton, parent, name, loc, rot):
self.parent = parent
self.name = name
self.loc = loc
self.rot = rot
self.children = []
self.matrix = matrix_translate(quaternion2matrix(rot), loc)
if parent:
self.matrix = matrix_multiply(parent.matrix, self.matrix)
parent.children.append(self)
# lloc and lrot are the bone => model space transformation (translation and rotation).
# They are probably specific to Cal3D.
m = matrix_invert(self.matrix)
self.lloc = m[3][0], m[3][1], m[3][2]
self.lrot = matrix2quaternion(m)
self.skeleton = skeleton
self.id = skeleton.next_bone_id
skeleton.next_bone_id += 1
skeleton.bones.append(self)
BONES[name] = self
def to_cal3d(self):
s = struct.pack("i", len(self.name) + 1) + self.name + "\0"
# We need to negate quaternion W value, but why ?
s += struct.pack("ffffffffffffff", self.loc[0], self.loc[1], self.loc[2], self.rot[0], self.rot[1], self.rot[2], -self.rot[3], self.lloc[0], self.lloc[1], self.lloc[2], self.lrot[0], self.lrot[1], self.lrot[2], -self.lrot[3])
if self.parent: s += struct.pack("i", self.parent.id)
else: s += struct.pack("i", -1)
s += struct.pack("i", len(self.children))
s += "".join(map(lambda bone: struct.pack("i", bone.id), self.children))
return s
class Animation:
def __init__(self, name, duration = 0.0):
self.name = name
self.duration = duration
self.tracks = {} # Map bone names to tracks
def to_cal3d(self):
s = "CAF\0" + struct.pack("ifi", CAL3D_VERSION, self.duration, len(self.tracks))
s += "".join(map(Track.to_cal3d, self.tracks.values()))
return s
class Track:
def __init__(self, animation, bone):
self.bone = bone
self.keyframes = []
self.animation = animation
animation.tracks[bone.name] = self
def to_cal3d(self):
s = struct.pack("ii", self.bone.id, len(self.keyframes))
s += "".join(map(KeyFrame.to_cal3d, self.keyframes))
return s
class KeyFrame:
def __init__(self, track, time, loc, rot):
self.time = time
self.loc = loc
self.rot = rot
self.track = track
track.keyframes.append(self)
def to_cal3d(self):
# We need to negate quaternion W value, but why ?
return struct.pack("ffffffff", self.time, self.loc[0], self.loc[1], self.loc[2], self.rot[0], self.rot[1], self.rot[2], -self.rot[3])
def export():
# Get the scene
scene = Blender.Scene.getCurrent()
# Export skeleton (=armature)
skeleton = Skeleton()
for obj in Blender.Object.Get():
data = obj.getData()
if type(data) is Blender.Types.ArmatureType:
matrix = obj.getMatrix()
if BASE_MATRIX: matrix = matrix_multiply(BASE_MATRIX, matrix)
def treat_bone(b, parent = None):
head = b.getHead()
tail = b.getTail()
# Turns the Blender's head-tail-roll notation into a quaternion
quat = matrix2quaternion(blender_bone2matrix(head, tail, b.getRoll()))
if parent:
# Compute the translation from the parent bone's head to the child
# bone's head, in the parent bone coordinate system.
# The translation is parent_tail - parent_head + child_head,
# but parent_tail and parent_head must be converted from the parent's parent
# system coordinate into the parent system coordinate.
parent_invert_transform = matrix_invert(quaternion2matrix(parent.rot))
parent_head = vector_by_matrix(parent.head, parent_invert_transform)
parent_tail = vector_by_matrix(parent.tail, parent_invert_transform)
bone = Bone(skeleton, parent, b.getName(), [parent_tail[0] - parent_head[0] + head[0], parent_tail[1] - parent_head[1] + head[1], parent_tail[2] - parent_head[2] + head[2]], quat)
else:
# Apply the armature's matrix to the root bones
head = point_by_matrix(head, matrix)
tail = point_by_matrix(tail, matrix)
quat = matrix2quaternion(matrix_multiply(matrix, quaternion2matrix(quat))) # Probably not optimal
# Here, the translation is simply the head vector
bone = Bone(skeleton, parent, b.getName(), head, quat)
bone.head = head
bone.tail = tail
for child in b.getChildren(): treat_bone(child, bone)
for b in data.getBones(): treat_bone(b)
# Only one armature / skeleton
break
# Export Mesh data
meshes = []
for obj in Blender.Object.Get():
data = obj.getData()
if (type(data) is Blender.Types.NMeshType) and data.faces:
mesh = Mesh(obj.name)
meshes.append(mesh)
matrix = obj.getMatrix()
if BASE_MATRIX: matrix = matrix_multiply(BASE_MATRIX, matrix)
faces = data.faces
while faces:
image = faces[0].image
image_filename = image and image.filename
material = MATERIALS.get(image_filename) or Material(image_filename)
# TODO add material color support here
submesh = SubMesh(mesh, material)
vertices = {}
for face in faces[:]:
if (face.image and face.image.filename) == image_filename:
faces.remove(face)
if not face.smooth:
p1 = face.v[0].co
p2 = face.v[1].co
p3 = face.v[2].co
normal = vector_normalize(vector_by_matrix(vector_crossproduct(
[p3[0] - p2[0], p3[1] - p2[1], p3[2] - p2[2]],
[p1[0] - p2[0], p1[1] - p2[1], p1[2] - p2[2]],
), matrix))
face_vertices = []
for i in range(len(face.v)):
vertex = vertices.get(face.v[i].index)
if not vertex:
coord = point_by_matrix (face.v[i].co, matrix)
if face.smooth: normal = vector_normalize(vector_by_matrix(face.v[i].no, matrix))
vertex = vertices[face.v[i].index] = Vertex(submesh, coord, normal)
influences = data.getVertexInfluences(face.v[i].index)
if not influences: print "Warning ! A vertex has no influence !"
# sum of influences is not always 1.0 in Blender ?!?!
sum = 0.0
for bone_name, weight in influences: sum += weight
for bone_name, weight in influences:
vertex.influences.append(Influence(BONES[bone_name], weight / sum))
elif not face.smooth:
# We cannot share vertex for non-smooth faces, since Cal3D does not
# support vertex sharing for 2 vertices with different normals.
# => we must clone the vertex.
old_vertex = vertex
vertex = Vertex(submesh, vertex.loc, normal)
vertex.cloned_from = old_vertex
vertex.influences = old_vertex.influences
old_vertex.clones.append(vertex)
if data.hasFaceUV():
uv = [face.uv[i][0], 1.0 - face.uv[i][1]]
if not vertex.maps: vertex.maps.append(Map(*uv))
elif (vertex.maps[0].u != uv[0]) or (vertex.maps[0].v != uv[1]):
# This vertex can be shared for Blender, but not for Cal3D !!!
# Cal3D does not support vertex sharing for 2 vertices with
# different UV texture coodinates.
# => we must clone the vertex.
for clone in vertex.clones:
if (clone.maps[0].u == uv[0]) and (clone.maps[0].v == uv[1]):
vertex = clone
break
else: # Not yet cloned...
old_vertex = vertex
vertex = Vertex(submesh, vertex.loc, vertex.normal)
vertex.cloned_from = old_vertex
vertex.influences = old_vertex.influences
vertex.maps.append(Map(*uv))
old_vertex.clones.append(vertex)
face_vertices.append(vertex)
# Split faces with more than 3 vertices
for i in range(1, len(face.v) - 1):
Face(submesh, face_vertices[0], face_vertices[i], face_vertices[i + 1])
# Computes LODs info
if LODS: submesh.compute_lods()
# Export animations
ANIMATIONS = {}
for ipo in Blender.Ipo.Get():
name = ipo.getName()
# Try to extract the animation name and the bone name from the IPO name.
# THIS MAY NOT WORK !!!
# The animation name extracted here is usually NOT the name of the action in Blender
splitted = name.split(".")
if len(splitted) == 2:
animation_name, bone_name = splitted
animation_name += ".000"
elif len(splitted) == 3:
animation_name, a, b = splitted
if a[0] in string.digits:
animation_name += "." + a
bone_name = b
elif b[0] in string.digits:
animation_name += "." + b
bone_name = a
else:
print "Un-analysable IPO name :", name
continue
else:
print "Un-analysable IPO name :", name
continue
animation = ANIMATIONS.get(animation_name)
if not animation:
animation = ANIMATIONS[animation_name] = Animation(animation_name)
bone = BONES[bone_name]
track = animation.tracks.get(bone_name)
if not track:
track = animation.tracks[bone_name] = Track(animation, bone)
track.finished = 0
nb_curve = ipo.getNcurves()
has_loc = nb_curve in (3, 7)
has_rot = nb_curve in (4, 7)
# TODO support size here
# Cal3D does not support it yet.
try: nb_bez_pts = ipo.getNBezPoints(0)
except TypeError:
print "No key frame for animation %s, bone %s, skipping..." % (animation_name, bone_name)
nb_bez_pts = 0
for bez in range(nb_bez_pts): # WARNING ! May not work if not loc !!!
time = ipo.getCurveBeztriple(0, bez)[3]
scene.currentFrame(int(time))
# Needed to update IPO's value, but probably not the best way for that...
scene.makeCurrent()
# Convert time units from Blender's frame (starting at 1) to second
# (using default FPS of 25)
time = (time - 1.0) / 25.0
if animation.duration < time: animation.duration = time
loc = bone.loc
rot = bone.rot
curves = ipo.getCurves()
print curves
curve_id = 0
while curve_id < len(curves):
curve_name = curves[curve_id].getName()
if curve_name == "LocX":
# Get the translation
# We need to blend the translation from the bone rest state (=bone.loc) with
# the translation due to IPO.
trans = vector_by_matrix((
ipo.getCurveCurval(curve_id),
ipo.getCurveCurval(curve_id + 1),
ipo.getCurveCurval(curve_id + 2),
), bone.matrix)
loc = [
bone.loc[0] + trans[0],
bone.loc[1] + trans[1],
bone.loc[2] + trans[2],
]
curve_id += 3
elif curve_name == "RotX":
# Get the rotation of the IPO
ipo_rot = [
ipo.getCurveCurval(curve_id),
ipo.getCurveCurval(curve_id + 1),
ipo.getCurveCurval(curve_id + 2),
ipo.getCurveCurval(curve_id + 3),
]
curve_id += 3 # XXX Strange !!!
# We need to blend the rotation from the bone rest state (=bone.rot) with
# ipo_rot.
rot = quaternion_multiply(ipo_rot, bone.rot)
else:
print "Unknown IPO curve : %s" % curve_name
break #Unknown curves
KeyFrame(track, time, loc, rot)
# Save all data
if not os.path.exists(SAVE_TO_DIR): os.makedirs(SAVE_TO_DIR)
else:
for file in os.listdir(SAVE_TO_DIR):
if file.endswith(".cfg") or file.endswith(".caf") or file.endswith(".cmf") or file.endswith(".csf") or file.endswith(".crf"):
os.unlink(os.path.join(SAVE_TO_DIR, file))
cfg = open(os.path.join(SAVE_TO_DIR, os.path.basename(SAVE_TO_DIR) + ".cfg"), "wb")
print >> cfg, "# Cal3D model exported from Blender with blender2cal3d.py"
print >> cfg
open(os.path.join(SAVE_TO_DIR, os.path.basename(SAVE_TO_DIR) + ".csf"), "wb").write(skeleton.to_cal3d())
print >> cfg, "skeleton=%s.csf" % os.path.basename(SAVE_TO_DIR)
print >> cfg
for animation in ANIMATIONS.values():
if animation.duration: # Cal3D does not support animation with only one state
animation.name = RENAME_ANIMATIONS.get(animation.name) or animation.name
open(os.path.join(SAVE_TO_DIR, animation.name + ".caf"), "wb").write(animation.to_cal3d())
print >> cfg, "animation=%s.caf" % animation.name
# Prints animation names and durations, in order to help identifying animation
# (since their name are lost).
print animation.name, "duration", animation.duration * 25.0 + 1.0
print >> cfg
for mesh in meshes:
if not mesh.name.startswith("_"):
open(os.path.join(SAVE_TO_DIR, mesh.name + ".cmf"), "wb").write(mesh.to_cal3d())
print >> cfg, "mesh=%s.cmf" % mesh.name
print >> cfg
materials = MATERIALS.values()
materials.sort(lambda a, b: cmp(a.id, b.id))
for material in materials:
if material.maps_filenames: filename = os.path.splitext(os.path.basename(material.maps_filenames[0]))[0]
else: filename = "plain"
open(os.path.join(SAVE_TO_DIR, filename + ".crf"), "wb").write(material.to_cal3d())
print >> cfg, "material=%s.crf" % filename
print >> cfg
print "Saved to", SAVE_TO_DIR
print "Done."
export()