blender/intern/cycles/render/buffers.cpp
Lukas Stockner 43b374e8c5 Cycles: Implement denoising option for reducing noise in the rendered image
This commit contains the first part of the new Cycles denoising option,
which filters the resulting image using information gathered during rendering
to get rid of noise while preserving visual features as well as possible.

To use the option, enable it in the render layer options. The default settings
fit a wide range of scenes, but the user can tweak individual settings to
control the tradeoff between a noise-free image, image details, and calculation
time.

Note that the denoiser may still change in the future and that some features
are not implemented yet. The most important missing feature is animation
denoising, which uses information from multiple frames at once to produce a
flicker-free and smoother result. These features will be added in the future.

Finally, thanks to all the people who supported this project:

- Google (through the GSoC) and Theory Studios for sponsoring the development
- The authors of the papers I used for implementing the denoiser (more details
  on them will be included in the technical docs)
- The other Cycles devs for feedback on the code, especially Sergey for
  mentoring the GSoC project and Brecht for the code review!
- And of course the users who helped with testing, reported bugs and things
  that could and/or should work better!
2017-05-07 14:40:58 +02:00

484 lines
11 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdlib.h>
#include "render/buffers.h"
#include "device/device.h"
#include "util/util_debug.h"
#include "util/util_foreach.h"
#include "util/util_hash.h"
#include "util/util_image.h"
#include "util/util_math.h"
#include "util/util_opengl.h"
#include "util/util_time.h"
#include "util/util_types.h"
CCL_NAMESPACE_BEGIN
/* Buffer Params */
BufferParams::BufferParams()
{
width = 0;
height = 0;
full_x = 0;
full_y = 0;
full_width = 0;
full_height = 0;
denoising_data_pass = false;
denoising_clean_pass = false;
Pass::add(PASS_COMBINED, passes);
}
void BufferParams::get_offset_stride(int& offset, int& stride)
{
offset = -(full_x + full_y*width);
stride = width;
}
bool BufferParams::modified(const BufferParams& params)
{
return !(full_x == params.full_x
&& full_y == params.full_y
&& width == params.width
&& height == params.height
&& full_width == params.full_width
&& full_height == params.full_height
&& Pass::equals(passes, params.passes));
}
int BufferParams::get_passes_size()
{
int size = 0;
for(size_t i = 0; i < passes.size(); i++)
size += passes[i].components;
if(denoising_data_pass) {
size += DENOISING_PASS_SIZE_BASE;
if(denoising_clean_pass) size += DENOISING_PASS_SIZE_CLEAN;
}
return align_up(size, 4);
}
int BufferParams::get_denoising_offset()
{
int offset = 0;
for(size_t i = 0; i < passes.size(); i++)
offset += passes[i].components;
return offset;
}
/* Render Buffer Task */
RenderTile::RenderTile()
{
x = 0;
y = 0;
w = 0;
h = 0;
sample = 0;
start_sample = 0;
num_samples = 0;
resolution = 0;
offset = 0;
stride = 0;
buffer = 0;
rng_state = 0;
buffers = NULL;
}
/* Render Buffers */
RenderBuffers::RenderBuffers(Device *device_)
{
device = device_;
}
RenderBuffers::~RenderBuffers()
{
device_free();
}
void RenderBuffers::device_free()
{
if(buffer.device_pointer) {
device->mem_free(buffer);
buffer.clear();
}
if(rng_state.device_pointer) {
device->mem_free(rng_state);
rng_state.clear();
}
}
void RenderBuffers::reset(Device *device, BufferParams& params_)
{
params = params_;
/* free existing buffers */
device_free();
/* allocate buffer */
buffer.resize(params.width*params.height*params.get_passes_size());
device->mem_alloc("render_buffer", buffer, MEM_READ_WRITE);
device->mem_zero(buffer);
/* allocate rng state */
rng_state.resize(params.width, params.height);
device->mem_alloc("rng_state", rng_state, MEM_READ_WRITE);
}
bool RenderBuffers::copy_from_device(Device *from_device)
{
if(!buffer.device_pointer)
return false;
if(!from_device) {
from_device = device;
}
from_device->mem_copy_from(buffer, 0, params.width, params.height, params.get_passes_size()*sizeof(float));
return true;
}
bool RenderBuffers::get_denoising_pass_rect(int offset, float exposure, int sample, int components, float *pixels)
{
float scale = 1.0f/sample;
if(offset == DENOISING_PASS_COLOR) {
scale *= exposure;
}
else if(offset == DENOISING_PASS_COLOR_VAR) {
scale *= exposure*exposure;
}
offset += params.get_denoising_offset();
float *in = (float*)buffer.data_pointer + offset;
int pass_stride = params.get_passes_size();
int size = params.width*params.height;
if(components == 1) {
for(int i = 0; i < size; i++, in += pass_stride, pixels++) {
pixels[0] = in[0]*scale;
}
}
else if(components == 3) {
for(int i = 0; i < size; i++, in += pass_stride, pixels += 3) {
pixels[0] = in[0]*scale;
pixels[1] = in[1]*scale;
pixels[2] = in[2]*scale;
}
}
else {
return false;
}
return true;
}
bool RenderBuffers::get_pass_rect(PassType type, float exposure, int sample, int components, float *pixels)
{
int pass_offset = 0;
for(size_t j = 0; j < params.passes.size(); j++) {
Pass& pass = params.passes[j];
if(pass.type != type) {
pass_offset += pass.components;
continue;
}
float *in = (float*)buffer.data_pointer + pass_offset;
int pass_stride = params.get_passes_size();
float scale = (pass.filter)? 1.0f/(float)sample: 1.0f;
float scale_exposure = (pass.exposure)? scale*exposure: scale;
int size = params.width*params.height;
if(components == 1) {
assert(pass.components == components);
/* scalar */
if(type == PASS_DEPTH) {
for(int i = 0; i < size; i++, in += pass_stride, pixels++) {
float f = *in;
pixels[0] = (f == 0.0f)? 1e10f: f*scale_exposure;
}
}
else if(type == PASS_MIST) {
for(int i = 0; i < size; i++, in += pass_stride, pixels++) {
float f = *in;
pixels[0] = saturate(f*scale_exposure);
}
}
#ifdef WITH_CYCLES_DEBUG
else if(type == PASS_BVH_TRAVERSED_NODES ||
type == PASS_BVH_TRAVERSED_INSTANCES ||
type == PASS_BVH_INTERSECTIONS ||
type == PASS_RAY_BOUNCES)
{
for(int i = 0; i < size; i++, in += pass_stride, pixels++) {
float f = *in;
pixels[0] = f*scale;
}
}
#endif
else {
for(int i = 0; i < size; i++, in += pass_stride, pixels++) {
float f = *in;
pixels[0] = f*scale_exposure;
}
}
}
else if(components == 3) {
assert(pass.components == 4);
/* RGBA */
if(type == PASS_SHADOW) {
for(int i = 0; i < size; i++, in += pass_stride, pixels += 3) {
float4 f = make_float4(in[0], in[1], in[2], in[3]);
float invw = (f.w > 0.0f)? 1.0f/f.w: 1.0f;
pixels[0] = f.x*invw;
pixels[1] = f.y*invw;
pixels[2] = f.z*invw;
}
}
else if(pass.divide_type != PASS_NONE) {
/* RGB lighting passes that need to divide out color */
pass_offset = 0;
for(size_t k = 0; k < params.passes.size(); k++) {
Pass& color_pass = params.passes[k];
if(color_pass.type == pass.divide_type)
break;
pass_offset += color_pass.components;
}
float *in_divide = (float*)buffer.data_pointer + pass_offset;
for(int i = 0; i < size; i++, in += pass_stride, in_divide += pass_stride, pixels += 3) {
float3 f = make_float3(in[0], in[1], in[2]);
float3 f_divide = make_float3(in_divide[0], in_divide[1], in_divide[2]);
f = safe_divide_even_color(f*exposure, f_divide);
pixels[0] = f.x;
pixels[1] = f.y;
pixels[2] = f.z;
}
}
else {
/* RGB/vector */
for(int i = 0; i < size; i++, in += pass_stride, pixels += 3) {
float3 f = make_float3(in[0], in[1], in[2]);
pixels[0] = f.x*scale_exposure;
pixels[1] = f.y*scale_exposure;
pixels[2] = f.z*scale_exposure;
}
}
}
else if(components == 4) {
assert(pass.components == components);
/* RGBA */
if(type == PASS_SHADOW) {
for(int i = 0; i < size; i++, in += pass_stride, pixels += 4) {
float4 f = make_float4(in[0], in[1], in[2], in[3]);
float invw = (f.w > 0.0f)? 1.0f/f.w: 1.0f;
pixels[0] = f.x*invw;
pixels[1] = f.y*invw;
pixels[2] = f.z*invw;
pixels[3] = 1.0f;
}
}
else if(type == PASS_MOTION) {
/* need to normalize by number of samples accumulated for motion */
pass_offset = 0;
for(size_t k = 0; k < params.passes.size(); k++) {
Pass& color_pass = params.passes[k];
if(color_pass.type == PASS_MOTION_WEIGHT)
break;
pass_offset += color_pass.components;
}
float *in_weight = (float*)buffer.data_pointer + pass_offset;
for(int i = 0; i < size; i++, in += pass_stride, in_weight += pass_stride, pixels += 4) {
float4 f = make_float4(in[0], in[1], in[2], in[3]);
float w = in_weight[0];
float invw = (w > 0.0f)? 1.0f/w: 0.0f;
pixels[0] = f.x*invw;
pixels[1] = f.y*invw;
pixels[2] = f.z*invw;
pixels[3] = f.w*invw;
}
}
else {
for(int i = 0; i < size; i++, in += pass_stride, pixels += 4) {
float4 f = make_float4(in[0], in[1], in[2], in[3]);
pixels[0] = f.x*scale_exposure;
pixels[1] = f.y*scale_exposure;
pixels[2] = f.z*scale_exposure;
/* clamp since alpha might be > 1.0 due to russian roulette */
pixels[3] = saturate(f.w*scale);
}
}
}
return true;
}
return false;
}
/* Display Buffer */
DisplayBuffer::DisplayBuffer(Device *device_, bool linear)
{
device = device_;
draw_width = 0;
draw_height = 0;
transparent = true; /* todo: determine from background */
half_float = linear;
}
DisplayBuffer::~DisplayBuffer()
{
device_free();
}
void DisplayBuffer::device_free()
{
if(rgba_byte.device_pointer) {
device->pixels_free(rgba_byte);
rgba_byte.clear();
}
if(rgba_half.device_pointer) {
device->pixels_free(rgba_half);
rgba_half.clear();
}
}
void DisplayBuffer::reset(Device *device, BufferParams& params_)
{
draw_width = 0;
draw_height = 0;
params = params_;
/* free existing buffers */
device_free();
/* allocate display pixels */
if(half_float) {
rgba_half.resize(params.width, params.height);
device->pixels_alloc(rgba_half);
}
else {
rgba_byte.resize(params.width, params.height);
device->pixels_alloc(rgba_byte);
}
}
void DisplayBuffer::draw_set(int width, int height)
{
assert(width <= params.width && height <= params.height);
draw_width = width;
draw_height = height;
}
void DisplayBuffer::draw(Device *device, const DeviceDrawParams& draw_params)
{
if(draw_width != 0 && draw_height != 0) {
device_memory& rgba = rgba_data();
device->draw_pixels(rgba, 0, draw_width, draw_height, params.full_x, params.full_y, params.width, params.height, transparent, draw_params);
}
}
bool DisplayBuffer::draw_ready()
{
return (draw_width != 0 && draw_height != 0);
}
void DisplayBuffer::write(Device *device, const string& filename)
{
int w = draw_width;
int h = draw_height;
if(w == 0 || h == 0)
return;
if(half_float)
return;
/* read buffer from device */
device_memory& rgba = rgba_data();
device->pixels_copy_from(rgba, 0, w, h);
/* write image */
ImageOutput *out = ImageOutput::create(filename);
ImageSpec spec(w, h, 4, TypeDesc::UINT8);
int scanlinesize = w*4*sizeof(uchar);
out->open(filename, spec);
/* conversion for different top/bottom convention */
out->write_image(TypeDesc::UINT8,
(uchar*)rgba.data_pointer + (h-1)*scanlinesize,
AutoStride,
-scanlinesize,
AutoStride);
out->close();
delete out;
}
device_memory& DisplayBuffer::rgba_data()
{
if(half_float)
return rgba_half;
else
return rgba_byte;
}
CCL_NAMESPACE_END