blender/release/scripts/modules/rigify/finger_curl.py
Campbell Barton 20fd05abc1 manually sync rigify with render branch
fixes [#22231] Rigify Script Error When Generate From Human(Meta-Rig)
2010-05-03 19:12:11 +00:00

379 lines
12 KiB
Python

# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
# <pep8 compliant>
import bpy
from rigify import RigifyError
from rigify_utils import copy_bone_simple, get_side_name
from rna_prop_ui import rna_idprop_ui_prop_get
METARIG_NAMES = "finger_01", "finger_02", "finger_03"
def metarig_template():
# generated by rigify.write_meta_rig
bpy.ops.object.mode_set(mode='EDIT')
obj = bpy.context.active_object
arm = obj.data
bone = arm.edit_bones.new('finger.01')
bone.head[:] = 0.0000, 0.0000, 0.0000
bone.tail[:] = 0.0353, -0.0184, -0.0053
bone.roll = -2.8722
bone.connected = False
bone = arm.edit_bones.new('finger.02')
bone.head[:] = 0.0353, -0.0184, -0.0053
bone.tail[:] = 0.0702, -0.0364, -0.0146
bone.roll = -2.7099
bone.connected = True
bone.parent = arm.edit_bones['finger.01']
bone = arm.edit_bones.new('finger.03')
bone.head[:] = 0.0702, -0.0364, -0.0146
bone.tail[:] = 0.0903, -0.0461, -0.0298
bone.roll = -2.1709
bone.connected = True
bone.parent = arm.edit_bones['finger.02']
bpy.ops.object.mode_set(mode='OBJECT')
pbone = obj.pose.bones['finger.01']
pbone['type'] = 'finger_curl'
def metarig_definition(obj, orig_bone_name):
'''
The bone given is the first in a chain
Expects a chain with at least 1 child of the same base name.
eg.
finger_01 -> finger_02
'''
orig_bone = obj.data.bones[orig_bone_name]
bone_definition = [orig_bone.name]
bone_definition.extend([child.name for child in orig_bone.children_recursive_basename])
if len(bone_definition) < 2:
raise RigifyError("expected the chain to have at least 1 child from bone '%s' without the same base name" % orig_bone_name)
return bone_definition
def deform(obj, definitions, base_names, options):
""" Creates the deform rig.
"""
bpy.ops.object.mode_set(mode='EDIT')
three_digits = True if len(definitions) > 2 else False
# Create base digit bones: two bones, each half of the base digit.
f1a = copy_bone_simple(obj.data, definitions[0], "DEF-%s.01" % base_names[definitions[0]], parent=True)
f1b = copy_bone_simple(obj.data, definitions[0], "DEF-%s.02" % base_names[definitions[0]], parent=True)
f1a.connected = False
f1b.connected = False
f1b.parent = f1a
center = f1a.center
f1a.tail = center
f1b.head = center
# Create the other deform bones.
f2 = copy_bone_simple(obj.data, definitions[1], "DEF-%s" % base_names[definitions[1]], parent=True)
if three_digits:
f3 = copy_bone_simple(obj.data, definitions[2], "DEF-%s" % base_names[definitions[2]], parent=True)
# Store names before leaving edit mode
f1a_name = f1a.name
f1b_name = f1b.name
f2_name = f2.name
if three_digits:
f3_name = f3.name
# Leave edit mode
bpy.ops.object.mode_set(mode='OBJECT')
# Get the pose bones
f1a = obj.pose.bones[f1a_name]
f1b = obj.pose.bones[f1b_name]
f2 = obj.pose.bones[f2_name]
if three_digits:
f3 = obj.pose.bones[f3_name]
# Constrain the base digit's bones
con = f1a.constraints.new('DAMPED_TRACK')
con.name = "trackto"
con.target = obj
con.subtarget = definitions[1]
con = f1a.constraints.new('COPY_SCALE')
con.name = "copy_scale"
con.target = obj
con.subtarget = definitions[0]
con = f1b.constraints.new('COPY_ROTATION')
con.name = "copy_rot"
con.target = obj
con.subtarget = definitions[0]
# Constrain the other digit's bones
con = f2.constraints.new('COPY_TRANSFORMS')
con.name = "copy_transforms"
con.target = obj
con.subtarget = definitions[1]
if three_digits:
con = f3.constraints.new('COPY_TRANSFORMS')
con.name = "copy_transforms"
con.target = obj
con.subtarget = definitions[2]
def main(obj, bone_definition, base_names, options):
# *** EDITMODE
bpy.ops.object.mode_set(mode='EDIT')
three_digits = True if len(bone_definition) > 2 else False
# get assosiated data
arm = obj.data
bb = obj.data.bones
eb = obj.data.edit_bones
pb = obj.pose.bones
org_f1 = bone_definition[0] # Original finger bone 01
org_f2 = bone_definition[1] # Original finger bone 02
if three_digits:
org_f3 = bone_definition[2] # Original finger bone 03
# Check options
if "bend_ratio" in options:
bend_ratio = options["bend_ratio"]
else:
bend_ratio = 0.4
yes = [1, 1.0, True, "True", "true", "Yes", "yes"]
make_hinge = False
if ("hinge" in options) and (eb[org_f1].parent is not None):
if options["hinge"] in yes:
make_hinge = True
# Needed if its a new armature with no keys
obj.animation_data_create()
# Create the control bone
base_name = base_names[bone_definition[0]].split(".", 1)[0]
if three_digits:
tot_len = eb[org_f1].length + eb[org_f2].length + eb[org_f3].length
else:
tot_len = eb[org_f1].length + eb[org_f2].length
control = copy_bone_simple(arm, bone_definition[0], base_name + get_side_name(base_names[bone_definition[0]]), parent=True).name
eb[control].connected = eb[org_f1].connected
eb[control].parent = eb[org_f1].parent
eb[control].length = tot_len
# Create secondary control bones
f1 = copy_bone_simple(arm, bone_definition[0], base_names[bone_definition[0]]).name
f2 = copy_bone_simple(arm, bone_definition[1], base_names[bone_definition[1]]).name
if three_digits:
f3 = copy_bone_simple(arm, bone_definition[2], base_names[bone_definition[2]]).name
# Create driver bones
df1 = copy_bone_simple(arm, bone_definition[0], "MCH-" + base_names[bone_definition[0]]).name
eb[df1].length /= 2
df2 = copy_bone_simple(arm, bone_definition[1], "MCH-" + base_names[bone_definition[1]]).name
eb[df2].length /= 2
if three_digits:
df3 = copy_bone_simple(arm, bone_definition[2], "MCH-" + base_names[bone_definition[2]]).name
eb[df3].length /= 2
# Set parents of the bones, interleaving the driver bones with the secondary control bones
if three_digits:
eb[f3].connected = False
eb[df3].connected = False
eb[f2].connected = False
eb[df2].connected = False
eb[f1].connected = False
eb[df1].connected = eb[org_f1].connected
if three_digits:
eb[f3].parent = eb[df3]
eb[df3].parent = eb[f2]
eb[f2].parent = eb[df2]
eb[df2].parent = eb[f1]
eb[f1].parent = eb[df1]
eb[df1].parent = eb[org_f1].parent
# Set up bones for hinge
if make_hinge:
socket = copy_bone_simple(arm, org_f1, "MCH-socket_"+control, parent=True).name
hinge = copy_bone_simple(arm, eb[org_f1].parent.name, "MCH-hinge_"+control).name
eb[control].connected = False
eb[control].parent = eb[hinge]
# Create the deform rig while we're still in edit mode
deform(obj, bone_definition, base_names, options)
# *** POSEMODE
bpy.ops.object.mode_set(mode='OBJECT')
# Set rotation modes and axis locks
pb[control].rotation_mode = obj.pose.bones[bone_definition[0]].rotation_mode
pb[control].lock_location = True, True, True
pb[control].lock_scale = True, False, True
pb[f1].rotation_mode = 'YZX'
pb[f2].rotation_mode = 'YZX'
if three_digits:
pb[f3].rotation_mode = 'YZX'
pb[f1].lock_location = True, True, True
pb[f2].lock_location = True, True, True
if three_digits:
pb[f3].lock_location = True, True, True
pb[df2].rotation_mode = 'YZX'
if three_digits:
pb[df3].rotation_mode = 'YZX'
# Add the bend_ratio property to the control bone
pb[control]["bend_ratio"] = bend_ratio
prop = rna_idprop_ui_prop_get(pb[control], "bend_ratio", create=True)
prop["soft_min"] = 0.0
prop["soft_max"] = 1.0
# Add hinge property to the control bone
if make_hinge:
pb[control]["hinge"] = 0.0
prop = rna_idprop_ui_prop_get(pb[control], "hinge", create=True)
prop["soft_min"] = 0.0
prop["soft_max"] = 1.0
# Constraints
con = pb[df1].constraints.new('COPY_LOCATION')
con.target = obj
con.subtarget = control
con = pb[df1].constraints.new('COPY_ROTATION')
con.target = obj
con.subtarget = control
con = pb[org_f1].constraints.new('COPY_TRANSFORMS')
con.target = obj
con.subtarget = f1
con = pb[org_f2].constraints.new('COPY_TRANSFORMS')
con.target = obj
con.subtarget = f2
if three_digits:
con = pb[org_f3].constraints.new('COPY_TRANSFORMS')
con.target = obj
con.subtarget = f3
if make_hinge:
con = pb[hinge].constraints.new('COPY_TRANSFORMS')
con.target = obj
con.subtarget = bb[org_f1].parent.name
hinge_driver_path = pb[control].path_from_id() + '["hinge"]'
fcurve = con.driver_add("influence")
driver = fcurve.driver
var = driver.variables.new()
driver.type = 'AVERAGE'
var.name = "var"
var.targets[0].id_type = 'OBJECT'
var.targets[0].id = obj
var.targets[0].data_path = hinge_driver_path
mod = fcurve.modifiers[0]
mod.poly_order = 1
mod.coefficients[0] = 1.0
mod.coefficients[1] = -1.0
con = pb[control].constraints.new('COPY_LOCATION')
con.target = obj
con.subtarget = socket
# Create the drivers for the driver bones (control bone scale rotates driver bones)
controller_path = pb[control].path_from_id() # 'pose.bones["%s"]' % control_bone_name
if three_digits:
finger_digits = [df2, df3]
else:
finger_digits = [df2]
i = 0
for bone in finger_digits:
# XXX - todo, any number
if i == 2:
break
pbone = pb[bone]
pbone.rotation_mode = 'YZX'
fcurve_driver = pbone.driver_add("rotation_euler", 0)
#obj.driver_add('pose.bones["%s"].scale', 1)
#obj.animation_data.drivers[-1] # XXX, WATCH THIS
driver = fcurve_driver.driver
# scale target
var = driver.variables.new()
var.name = "scale"
var.targets[0].id_type = 'OBJECT'
var.targets[0].id = obj
var.targets[0].data_path = controller_path + '.scale[1]'
# bend target
var = driver.variables.new()
var.name = "br"
var.targets[0].id_type = 'OBJECT'
var.targets[0].id = obj
var.targets[0].data_path = controller_path + '["bend_ratio"]'
# XXX - todo, any number
if three_digits:
if i == 0:
driver.expression = '(-scale+1.0)*pi*2.0*(1.0-br)'
elif i == 1:
driver.expression = '(-scale+1.0)*pi*2.0*br'
else:
driver.expression = driver.expression = '(-scale+1.0)*pi*2.0'
i += 1
# Last step setup layers
if "ex_layer" in options:
layer = [n==options["ex_layer"] for n in range(0,32)]
else:
layer = list(arm.bones[bone_definition[0]].layer)
#for bone_name in [f1, f2, f3]:
# arm.bones[bone_name].layer = layer
arm.bones[f1].layer = layer
arm.bones[f2].layer = layer
if three_digits:
arm.bones[f3].layer = layer
layer = list(arm.bones[bone_definition[0]].layer)
bb[control].layer = layer
# no blending the result of this
return None