forked from bartvdbraak/blender
209a2ede2c
#ifdef HAVE_CONFIG_H #include <config.h> #endif added to these files. Kent -- mein@cs.umn.edu
375 lines
11 KiB
C++
375 lines
11 KiB
C++
/**
|
|
* Apply a constraint to a position or rotation value
|
|
*
|
|
* $Id$
|
|
*
|
|
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version. The Blender
|
|
* Foundation also sells licenses for use in proprietary software under
|
|
* the Blender License. See http://www.blender.org/BL/ for information
|
|
* about this.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
|
* All rights reserved.
|
|
*
|
|
* The Original Code is: all of this file.
|
|
*
|
|
* Contributor(s): none yet.
|
|
*
|
|
* ***** END GPL/BL DUAL LICENSE BLOCK *****
|
|
*/
|
|
|
|
#include "SCA_IActuator.h"
|
|
#include "KX_ConstraintActuator.h"
|
|
#include "SCA_IObject.h"
|
|
#include "MT_Point3.h"
|
|
#include "MT_Matrix3x3.h"
|
|
#include "KX_GameObject.h"
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* Native functions */
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
KX_ConstraintActuator::KX_ConstraintActuator(SCA_IObject *gameobj,
|
|
int dampTime,
|
|
float minBound,
|
|
float maxBound,
|
|
int locrotxyz,
|
|
PyTypeObject* T)
|
|
: SCA_IActuator(gameobj, T)
|
|
{
|
|
m_dampTime = dampTime;
|
|
m_locrot = locrotxyz;
|
|
/* The units of bounds are determined by the type of constraint. To */
|
|
/* make the constraint application easier and more transparent later on, */
|
|
/* I think converting the bounds to the applicable domain makes more */
|
|
/* sense. */
|
|
switch (m_locrot) {
|
|
case KX_ACT_CONSTRAINT_LOCX:
|
|
case KX_ACT_CONSTRAINT_LOCY:
|
|
case KX_ACT_CONSTRAINT_LOCZ:
|
|
m_minimumBound = minBound;
|
|
m_maximumBound = maxBound;
|
|
break;
|
|
case KX_ACT_CONSTRAINT_ROTX:
|
|
case KX_ACT_CONSTRAINT_ROTY:
|
|
case KX_ACT_CONSTRAINT_ROTZ:
|
|
/* The user interface asks for degrees, we are radian. */
|
|
m_minimumBound = MT_radians(minBound);
|
|
m_maximumBound = MT_radians(maxBound);
|
|
break;
|
|
default:
|
|
; /* error */
|
|
}
|
|
|
|
} /* End of constructor */
|
|
|
|
KX_ConstraintActuator::~KX_ConstraintActuator()
|
|
{
|
|
// there's nothing to be done here, really....
|
|
} /* end of destructor */
|
|
|
|
bool KX_ConstraintActuator::Update(double curtime,double deltatime)
|
|
{
|
|
|
|
bool result = false;
|
|
bool bNegativeEvent = IsNegativeEvent();
|
|
RemoveAllEvents();
|
|
|
|
if (bNegativeEvent)
|
|
return false; // do nothing on negative events
|
|
|
|
/* Constraint clamps the values to the specified range, with a sort of */
|
|
/* low-pass filtered time response, if the damp time is unequal to 0. */
|
|
|
|
/* Having to retrieve location/rotation and setting it afterwards may not */
|
|
/* be efficient enough... Somthing to look at later. */
|
|
KX_GameObject *parent = (KX_GameObject*) GetParent();
|
|
MT_Point3 position = parent->NodeGetWorldPosition();
|
|
MT_Matrix3x3 rotation = parent->NodeGetWorldOrientation();
|
|
// MT_Vector3 eulerrot = rotation.getEuler();
|
|
|
|
switch (m_locrot) {
|
|
case KX_ACT_CONSTRAINT_LOCX:
|
|
Clamp(position[0], m_minimumBound, m_maximumBound);
|
|
break;
|
|
case KX_ACT_CONSTRAINT_LOCY:
|
|
Clamp(position[1], m_minimumBound, m_maximumBound);
|
|
break;
|
|
case KX_ACT_CONSTRAINT_LOCZ:
|
|
Clamp(position[2], m_minimumBound, m_maximumBound);
|
|
break;
|
|
|
|
// case KX_ACT_CONSTRAINT_ROTX:
|
|
// /* The angles are Euler angles (I think that's what they are called) */
|
|
// /* but we need to convert from/to the MT_Matrix3x3. */
|
|
// Clamp(eulerrot[0], m_minimumBound, m_maximumBound);
|
|
// break;
|
|
// case KX_ACT_CONSTRAINT_ROTY:
|
|
// Clamp(eulerrot[1], m_minimumBound, m_maximumBound);
|
|
// break;
|
|
// case KX_ACT_CONSTRAINT_ROTZ:
|
|
// Clamp(eulerrot[2], m_minimumBound, m_maximumBound);
|
|
// break;
|
|
// default:
|
|
// ; /* error */
|
|
}
|
|
|
|
/* Will be replaced by a filtered clamp. */
|
|
|
|
|
|
switch (m_locrot) {
|
|
case KX_ACT_CONSTRAINT_LOCX:
|
|
case KX_ACT_CONSTRAINT_LOCY:
|
|
case KX_ACT_CONSTRAINT_LOCZ:
|
|
parent->NodeSetLocalPosition(position);
|
|
break;
|
|
|
|
|
|
// case KX_ACT_CONSTRAINT_ROTX:
|
|
// case KX_ACT_CONSTRAINT_ROTY:
|
|
// case KX_ACT_CONSTRAINT_ROTZ:
|
|
// rotation.setEuler(eulerrot);
|
|
// parent->NodeSetLocalOrientation(rotation);
|
|
break;
|
|
|
|
default:
|
|
; /* error */
|
|
}
|
|
|
|
return false;
|
|
} /* end of KX_ConstraintActuator::Update(double curtime,double deltatime) */
|
|
|
|
void KX_ConstraintActuator::Clamp(MT_Scalar &var,
|
|
float min,
|
|
float max) {
|
|
if (var < min) {
|
|
var = min;
|
|
} else if (var > max) {
|
|
var = max;
|
|
}
|
|
}
|
|
|
|
|
|
bool KX_ConstraintActuator::IsValidMode(KX_ConstraintActuator::KX_CONSTRAINTTYPE m)
|
|
{
|
|
bool res = false;
|
|
|
|
if ( (m > KX_ACT_CONSTRAINT_NODEF) && (m < KX_ACT_CONSTRAINT_MAX)) {
|
|
res = true;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* Python functions */
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
/* Integration hooks ------------------------------------------------------- */
|
|
PyTypeObject KX_ConstraintActuator::Type = {
|
|
PyObject_HEAD_INIT(&PyType_Type)
|
|
0,
|
|
"KX_ConstraintActuator",
|
|
sizeof(KX_ConstraintActuator),
|
|
0,
|
|
PyDestructor,
|
|
0,
|
|
__getattr,
|
|
__setattr,
|
|
0, //&MyPyCompare,
|
|
__repr,
|
|
0, //&cvalue_as_number,
|
|
0,
|
|
0,
|
|
0,
|
|
0
|
|
};
|
|
|
|
PyParentObject KX_ConstraintActuator::Parents[] = {
|
|
&KX_ConstraintActuator::Type,
|
|
&SCA_IActuator::Type,
|
|
&SCA_ILogicBrick::Type,
|
|
&CValue::Type,
|
|
NULL
|
|
};
|
|
|
|
PyMethodDef KX_ConstraintActuator::Methods[] = {
|
|
{"setDamp", (PyCFunction) KX_ConstraintActuator::sPySetDamp, METH_VARARGS, SetDamp_doc},
|
|
{"getDamp", (PyCFunction) KX_ConstraintActuator::sPyGetDamp, METH_VARARGS, GetDamp_doc},
|
|
{"setMin", (PyCFunction) KX_ConstraintActuator::sPySetMin, METH_VARARGS, SetMin_doc},
|
|
{"getMin", (PyCFunction) KX_ConstraintActuator::sPyGetMin, METH_VARARGS, GetMin_doc},
|
|
{"setMax", (PyCFunction) KX_ConstraintActuator::sPySetMax, METH_VARARGS, SetMax_doc},
|
|
{"getMax", (PyCFunction) KX_ConstraintActuator::sPyGetMax, METH_VARARGS, GetMax_doc},
|
|
{"setLimit", (PyCFunction) KX_ConstraintActuator::sPySetLimit, METH_VARARGS, SetLimit_doc},
|
|
{"getLimit", (PyCFunction) KX_ConstraintActuator::sPyGetLimit, METH_VARARGS, GetLimit_doc},
|
|
{NULL,NULL} //Sentinel
|
|
};
|
|
|
|
PyObject* KX_ConstraintActuator::_getattr(char* attr) {
|
|
_getattr_up(SCA_IActuator);
|
|
}
|
|
|
|
/* 2. setDamp */
|
|
char KX_ConstraintActuator::SetDamp_doc[] =
|
|
"setDamp(duration)\n"
|
|
"\t- duration: integer\n"
|
|
"\tSets the time with which the constraint application is delayed.\n"
|
|
"\tIf the duration is negative, it is set to 0.\n";
|
|
PyObject* KX_ConstraintActuator::PySetDamp(PyObject* self,
|
|
PyObject* args,
|
|
PyObject* kwds) {
|
|
int dampArg;
|
|
if(!PyArg_ParseTuple(args, "i", &dampArg)) {
|
|
return NULL;
|
|
}
|
|
|
|
m_dampTime = dampArg;
|
|
if (m_dampTime < 0) m_dampTime = 0;
|
|
|
|
Py_Return;
|
|
}
|
|
/* 3. getDamp */
|
|
char KX_ConstraintActuator::GetDamp_doc[] =
|
|
"GetDamp()\n"
|
|
"\tReturns the damping time for application of the constraint.\n";
|
|
PyObject* KX_ConstraintActuator::PyGetDamp(PyObject* self,
|
|
PyObject* args,
|
|
PyObject* kwds){
|
|
return PyInt_FromLong(m_dampTime);
|
|
}
|
|
|
|
/* 4. setMin */
|
|
char KX_ConstraintActuator::SetMin_doc[] =
|
|
"setMin(lower_bound)\n"
|
|
"\t- lower_bound: float\n"
|
|
"\tSets the lower value of the interval to which the value\n"
|
|
"\tis clipped.\n";
|
|
PyObject* KX_ConstraintActuator::PySetMin(PyObject* self,
|
|
PyObject* args,
|
|
PyObject* kwds) {
|
|
float minArg;
|
|
if(!PyArg_ParseTuple(args, "f", &minArg)) {
|
|
return NULL;
|
|
}
|
|
|
|
switch (m_locrot) {
|
|
case KX_ACT_CONSTRAINT_LOCX:
|
|
case KX_ACT_CONSTRAINT_LOCY:
|
|
case KX_ACT_CONSTRAINT_LOCZ:
|
|
m_minimumBound = minArg;
|
|
break;
|
|
case KX_ACT_CONSTRAINT_ROTX:
|
|
case KX_ACT_CONSTRAINT_ROTY:
|
|
case KX_ACT_CONSTRAINT_ROTZ:
|
|
m_minimumBound = MT_radians(minArg);
|
|
break;
|
|
default:
|
|
; /* error */
|
|
}
|
|
|
|
Py_Return;
|
|
}
|
|
/* 5. getMin */
|
|
char KX_ConstraintActuator::GetMin_doc[] =
|
|
"getMin()\n"
|
|
"\tReturns the lower value of the interval to which the value\n"
|
|
"\tis clipped.\n";
|
|
PyObject* KX_ConstraintActuator::PyGetMin(PyObject* self,
|
|
PyObject* args,
|
|
PyObject* kwds) {
|
|
return PyFloat_FromDouble(m_minimumBound);
|
|
}
|
|
|
|
/* 6. setMax */
|
|
char KX_ConstraintActuator::SetMax_doc[] =
|
|
"setMax(upper_bound)\n"
|
|
"\t- upper_bound: float\n"
|
|
"\tSets the upper value of the interval to which the value\n"
|
|
"\tis clipped.\n";
|
|
PyObject* KX_ConstraintActuator::PySetMax(PyObject* self,
|
|
PyObject* args,
|
|
PyObject* kwds){
|
|
float maxArg;
|
|
if(!PyArg_ParseTuple(args, "f", &maxArg)) {
|
|
return NULL;
|
|
}
|
|
|
|
switch (m_locrot) {
|
|
case KX_ACT_CONSTRAINT_LOCX:
|
|
case KX_ACT_CONSTRAINT_LOCY:
|
|
case KX_ACT_CONSTRAINT_LOCZ:
|
|
m_maximumBound = maxArg;
|
|
break;
|
|
case KX_ACT_CONSTRAINT_ROTX:
|
|
case KX_ACT_CONSTRAINT_ROTY:
|
|
case KX_ACT_CONSTRAINT_ROTZ:
|
|
m_maximumBound = MT_radians(maxArg);
|
|
break;
|
|
default:
|
|
; /* error */
|
|
}
|
|
|
|
Py_Return;
|
|
}
|
|
/* 7. getMax */
|
|
char KX_ConstraintActuator::GetMax_doc[] =
|
|
"getMax()\n"
|
|
"\tReturns the upper value of the interval to which the value\n"
|
|
"\tis clipped.\n";
|
|
PyObject* KX_ConstraintActuator::PyGetMax(PyObject* self,
|
|
PyObject* args,
|
|
PyObject* kwds) {
|
|
return PyFloat_FromDouble(m_maximumBound);
|
|
}
|
|
|
|
|
|
/* This setter/getter probably for the constraint type */
|
|
/* 8. setLimit */
|
|
char KX_ConstraintActuator::SetLimit_doc[] =
|
|
"setLimit(type)\n"
|
|
"\t- type: KX_CONSTRAINTACT_LOCX, KX_CONSTRAINTACT_LOCY,\n"
|
|
"\t KX_CONSTRAINTACT_LOCZ, KX_CONSTRAINTACT_ROTX,\n"
|
|
"\t KX_CONSTRAINTACT_ROTY, or KX_CONSTRAINTACT_ROTZ.\n"
|
|
"\tSets the type of constraint.\n";
|
|
PyObject* KX_ConstraintActuator::PySetLimit(PyObject* self,
|
|
PyObject* args,
|
|
PyObject* kwds) {
|
|
int locrotArg;
|
|
if(!PyArg_ParseTuple(args, "i", &locrotArg)) {
|
|
return NULL;
|
|
}
|
|
|
|
if (IsValidMode((KX_CONSTRAINTTYPE)locrotArg)) m_locrot = locrotArg;
|
|
|
|
Py_Return;
|
|
}
|
|
/* 9. getLimit */
|
|
char KX_ConstraintActuator::GetLimit_doc[] =
|
|
"getLimit(type)\n"
|
|
"\tReturns the type of constraint.\n";
|
|
PyObject* KX_ConstraintActuator::PyGetLimit(PyObject* self,
|
|
PyObject* args,
|
|
PyObject* kwds) {
|
|
return PyInt_FromLong(m_locrot);
|
|
}
|
|
|
|
/* eof */
|