blender/intern/cycles/render/mesh.cpp
Mai Lavelle b6954c8da1 Cycles: Fix regression introduced in c96a4c8
A few places still needed to be updated to use the new Mesh::num_triangles()
method; wrong number from triangles.size() was causing crashes.
2016-06-07 07:38:09 -04:00

1560 lines
42 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "bvh.h"
#include "bvh_build.h"
#include "camera.h"
#include "curves.h"
#include "device.h"
#include "graph.h"
#include "shader.h"
#include "light.h"
#include "mesh.h"
#include "nodes.h"
#include "object.h"
#include "scene.h"
#include "osl_globals.h"
#include "util_foreach.h"
#include "util_logging.h"
#include "util_progress.h"
#include "util_set.h"
#include "subd_split.h"
#include "subd_patch.h"
CCL_NAMESPACE_BEGIN
/* Triangle */
void Mesh::Triangle::bounds_grow(const float3 *verts, BoundBox& bounds) const
{
bounds.grow(verts[v[0]]);
bounds.grow(verts[v[1]]);
bounds.grow(verts[v[2]]);
}
/* Curve */
void Mesh::Curve::bounds_grow(const int k, const float3 *curve_keys, const float *curve_radius, BoundBox& bounds) const
{
float3 P[4];
P[0] = curve_keys[max(first_key + k - 1,first_key)];
P[1] = curve_keys[first_key + k];
P[2] = curve_keys[first_key + k + 1];
P[3] = curve_keys[min(first_key + k + 2, first_key + num_keys - 1)];
float3 lower;
float3 upper;
curvebounds(&lower.x, &upper.x, P, 0);
curvebounds(&lower.y, &upper.y, P, 1);
curvebounds(&lower.z, &upper.z, P, 2);
float mr = max(curve_radius[first_key + k], curve_radius[first_key + k + 1]);
bounds.grow(lower, mr);
bounds.grow(upper, mr);
}
/* Mesh */
NODE_DEFINE(Mesh)
{
NodeType* type = NodeType::add("mesh", create);
static NodeEnum displacement_method_enum;
displacement_method_enum.insert("bump", DISPLACE_BUMP);
displacement_method_enum.insert("true", DISPLACE_TRUE);
displacement_method_enum.insert("both", DISPLACE_BOTH);
SOCKET_ENUM(displacement_method, "Displacement Method", displacement_method_enum, DISPLACE_BUMP);
SOCKET_INT(motion_steps, "Motion Steps", 3);
SOCKET_BOOLEAN(use_motion_blur, "Use Motion Blur", false);
SOCKET_INT_ARRAY(triangles, "Triangles", array<int>());
SOCKET_POINT_ARRAY(verts, "Vertices", array<float3>());
SOCKET_INT_ARRAY(shader, "Shader", array<int>());
SOCKET_BOOLEAN_ARRAY(smooth, "Smooth", array<bool>());
SOCKET_POINT_ARRAY(curve_keys, "Curve Keys", array<float3>());
SOCKET_FLOAT_ARRAY(curve_radius, "Curve Radius", array<float>());
SOCKET_INT_ARRAY(curve_first_key, "Curve First Key", array<int>());
SOCKET_INT_ARRAY(curve_shader, "Curve Shader", array<int>());
return type;
}
Mesh::Mesh()
: Node(node_type)
{
need_update = true;
need_update_rebuild = false;
transform_applied = false;
transform_negative_scaled = false;
transform_normal = transform_identity();
bounds = BoundBox::empty;
bvh = NULL;
tri_offset = 0;
vert_offset = 0;
curve_offset = 0;
curvekey_offset = 0;
attributes.triangle_mesh = this;
curve_attributes.curve_mesh = this;
geometry_flags = GEOMETRY_NONE;
has_volume = false;
has_surface_bssrdf = false;
}
Mesh::~Mesh()
{
delete bvh;
}
void Mesh::resize_mesh(int numverts, int numtris)
{
verts.resize(numverts);
triangles.resize(numtris * 3);
shader.resize(numtris);
smooth.resize(numtris);
forms_quad.resize(numtris);
attributes.resize();
}
void Mesh::reserve_mesh(int numverts, int numtris)
{
/* reserve space to add verts and triangles later */
verts.reserve(numverts);
triangles.reserve(numtris * 3);
shader.reserve(numtris);
smooth.reserve(numtris);
forms_quad.reserve(numtris);
attributes.resize(true);
}
void Mesh::resize_curves(int numcurves, int numkeys)
{
curve_keys.resize(numkeys);
curve_radius.resize(numkeys);
curve_first_key.resize(numcurves);
curve_shader.resize(numcurves);
curve_attributes.resize();
}
void Mesh::reserve_curves(int numcurves, int numkeys)
{
curve_keys.reserve(numkeys);
curve_radius.reserve(numkeys);
curve_first_key.reserve(numcurves);
curve_shader.reserve(numcurves);
curve_attributes.resize(true);
}
void Mesh::clear()
{
/* clear all verts and triangles */
verts.clear();
triangles.clear();
shader.clear();
smooth.clear();
forms_quad.clear();
curve_keys.clear();
curve_radius.clear();
curve_first_key.clear();
curve_shader.clear();
attributes.clear();
curve_attributes.clear();
used_shaders.clear();
transform_applied = false;
transform_negative_scaled = false;
transform_normal = transform_identity();
geometry_flags = GEOMETRY_NONE;
}
int Mesh::split_vertex(int vertex)
{
/* copy vertex location and vertex attributes */
add_vertex_slow(verts[vertex]);
foreach(Attribute& attr, attributes.attributes) {
if(attr.element == ATTR_ELEMENT_VERTEX) {
vector<char> tmp(attr.data_sizeof());
memcpy(&tmp[0], attr.data() + tmp.size()*vertex, tmp.size());
attr.add(&tmp[0]);
}
}
return verts.size() - 1;
}
void Mesh::add_vertex(float3 P)
{
verts.push_back_reserved(P);
}
void Mesh::add_vertex_slow(float3 P)
{
verts.push_back_slow(P);
}
void Mesh::add_triangle(int v0, int v1, int v2, int shader_, bool smooth_, bool forms_quad_)
{
triangles.push_back_reserved(v0);
triangles.push_back_reserved(v1);
triangles.push_back_reserved(v2);
shader.push_back_reserved(shader_);
smooth.push_back_reserved(smooth_);
forms_quad.push_back_reserved(forms_quad_);
}
void Mesh::add_curve_key(float3 co, float radius)
{
curve_keys.push_back_reserved(co);
curve_radius.push_back_reserved(radius);
}
void Mesh::add_curve(int first_key, int shader)
{
curve_first_key.push_back_reserved(first_key);
curve_shader.push_back_reserved(shader);
}
void Mesh::compute_bounds()
{
BoundBox bnds = BoundBox::empty;
size_t verts_size = verts.size();
size_t curve_keys_size = curve_keys.size();
if(verts_size + curve_keys_size > 0) {
for(size_t i = 0; i < verts_size; i++)
bnds.grow(verts[i]);
for(size_t i = 0; i < curve_keys_size; i++)
bnds.grow(curve_keys[i], curve_radius[i]);
Attribute *attr = attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
if(use_motion_blur && attr) {
size_t steps_size = verts.size() * (motion_steps - 1);
float3 *vert_steps = attr->data_float3();
for(size_t i = 0; i < steps_size; i++)
bnds.grow(vert_steps[i]);
}
Attribute *curve_attr = curve_attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
if(use_motion_blur && curve_attr) {
size_t steps_size = curve_keys.size() * (motion_steps - 1);
float3 *key_steps = curve_attr->data_float3();
for(size_t i = 0; i < steps_size; i++)
bnds.grow(key_steps[i]);
}
if(!bnds.valid()) {
bnds = BoundBox::empty;
/* skip nan or inf coordinates */
for(size_t i = 0; i < verts_size; i++)
bnds.grow_safe(verts[i]);
for(size_t i = 0; i < curve_keys_size; i++)
bnds.grow_safe(curve_keys[i], curve_radius[i]);
if(use_motion_blur && attr) {
size_t steps_size = verts.size() * (motion_steps - 1);
float3 *vert_steps = attr->data_float3();
for(size_t i = 0; i < steps_size; i++)
bnds.grow_safe(vert_steps[i]);
}
if(use_motion_blur && curve_attr) {
size_t steps_size = curve_keys.size() * (motion_steps - 1);
float3 *key_steps = curve_attr->data_float3();
for(size_t i = 0; i < steps_size; i++)
bnds.grow_safe(key_steps[i]);
}
}
}
if(!bnds.valid()) {
/* empty mesh */
bnds.grow(make_float3(0.0f, 0.0f, 0.0f));
}
bounds = bnds;
}
static float3 compute_face_normal(const Mesh::Triangle& t, float3 *verts)
{
float3 v0 = verts[t.v[0]];
float3 v1 = verts[t.v[1]];
float3 v2 = verts[t.v[2]];
float3 norm = cross(v1 - v0, v2 - v0);
float normlen = len(norm);
if(normlen == 0.0f)
return make_float3(1.0f, 0.0f, 0.0f);
return norm / normlen;
}
void Mesh::add_face_normals()
{
/* don't compute if already there */
if(attributes.find(ATTR_STD_FACE_NORMAL))
return;
/* get attributes */
Attribute *attr_fN = attributes.add(ATTR_STD_FACE_NORMAL);
float3 *fN = attr_fN->data_float3();
/* compute face normals */
size_t triangles_size = num_triangles();
bool flip = transform_negative_scaled;
if(triangles_size) {
float3 *verts_ptr = &verts[0];
for(size_t i = 0; i < triangles_size; i++) {
fN[i] = compute_face_normal(get_triangle(i), verts_ptr);
if(flip)
fN[i] = -fN[i];
}
}
/* expected to be in local space */
if(transform_applied) {
Transform ntfm = transform_inverse(transform_normal);
for(size_t i = 0; i < triangles_size; i++)
fN[i] = normalize(transform_direction(&ntfm, fN[i]));
}
}
void Mesh::add_vertex_normals()
{
bool flip = transform_negative_scaled;
size_t verts_size = verts.size();
size_t triangles_size = num_triangles();
/* static vertex normals */
if(!attributes.find(ATTR_STD_VERTEX_NORMAL)) {
/* get attributes */
Attribute *attr_fN = attributes.find(ATTR_STD_FACE_NORMAL);
Attribute *attr_vN = attributes.add(ATTR_STD_VERTEX_NORMAL);
float3 *fN = attr_fN->data_float3();
float3 *vN = attr_vN->data_float3();
/* compute vertex normals */
memset(vN, 0, verts.size()*sizeof(float3));
if(triangles_size) {
for(size_t i = 0; i < triangles_size; i++)
for(size_t j = 0; j < 3; j++)
vN[get_triangle(i).v[j]] += fN[i];
}
for(size_t i = 0; i < verts_size; i++) {
vN[i] = normalize(vN[i]);
if(flip)
vN[i] = -vN[i];
}
}
/* motion vertex normals */
Attribute *attr_mP = attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
Attribute *attr_mN = attributes.find(ATTR_STD_MOTION_VERTEX_NORMAL);
if(has_motion_blur() && attr_mP && !attr_mN) {
/* create attribute */
attr_mN = attributes.add(ATTR_STD_MOTION_VERTEX_NORMAL);
for(int step = 0; step < motion_steps - 1; step++) {
float3 *mP = attr_mP->data_float3() + step*verts.size();
float3 *mN = attr_mN->data_float3() + step*verts.size();
/* compute */
memset(mN, 0, verts.size()*sizeof(float3));
if(triangles_size) {
for(size_t i = 0; i < triangles_size; i++) {
for(size_t j = 0; j < 3; j++) {
float3 fN = compute_face_normal(get_triangle(i), mP);
mN[get_triangle(i).v[j]] += fN;
}
}
}
for(size_t i = 0; i < verts_size; i++) {
mN[i] = normalize(mN[i]);
if(flip)
mN[i] = -mN[i];
}
}
}
}
void Mesh::pack_normals(Scene *scene, uint *tri_shader, float4 *vnormal)
{
Attribute *attr_vN = attributes.find(ATTR_STD_VERTEX_NORMAL);
float3 *vN = attr_vN->data_float3();
uint shader_id = 0;
uint last_shader = -1;
bool last_smooth = false;
size_t triangles_size = num_triangles();
int *shader_ptr = (shader.size())? &shader[0]: NULL;
bool do_transform = transform_applied;
Transform ntfm = transform_normal;
/* save shader */
for(size_t i = 0; i < triangles_size; i++) {
if(shader_ptr[i] != last_shader || last_smooth != smooth[i]) {
last_shader = shader_ptr[i];
last_smooth = smooth[i];
Shader *shader = (last_shader < used_shaders.size()) ?
used_shaders[last_shader] : scene->default_surface;
shader_id = scene->shader_manager->get_shader_id(shader, this, last_smooth);
}
tri_shader[i] = shader_id;
}
size_t verts_size = verts.size();
for(size_t i = 0; i < verts_size; i++) {
float3 vNi = vN[i];
if(do_transform)
vNi = normalize(transform_direction(&ntfm, vNi));
vnormal[i] = make_float4(vNi.x, vNi.y, vNi.z, 0.0f);
}
}
void Mesh::pack_verts(float4 *tri_verts, float4 *tri_vindex, size_t vert_offset)
{
size_t verts_size = verts.size();
if(verts_size) {
float3 *verts_ptr = &verts[0];
for(size_t i = 0; i < verts_size; i++) {
float3 p = verts_ptr[i];
tri_verts[i] = make_float4(p.x, p.y, p.z, 0.0f);
}
}
size_t triangles_size = num_triangles();
if(triangles_size) {
for(size_t i = 0; i < triangles_size; i++) {
Triangle t = get_triangle(i);
tri_vindex[i] = make_float4(
__int_as_float(t.v[0] + vert_offset),
__int_as_float(t.v[1] + vert_offset),
__int_as_float(t.v[2] + vert_offset),
0);
}
}
}
void Mesh::pack_curves(Scene *scene, float4 *curve_key_co, float4 *curve_data, size_t curvekey_offset)
{
size_t curve_keys_size = curve_keys.size();
/* pack curve keys */
if(curve_keys_size) {
float3 *keys_ptr = &curve_keys[0];
float *radius_ptr = &curve_radius[0];
for(size_t i = 0; i < curve_keys_size; i++)
curve_key_co[i] = make_float4(keys_ptr[i].x, keys_ptr[i].y, keys_ptr[i].z, radius_ptr[i]);
}
/* pack curve segments */
size_t curve_num = num_curves();
if(curve_num) {
for(size_t i = 0; i < curve_num; i++) {
Curve curve = get_curve(i);
int shader_id = curve_shader[i];
Shader *shader = (shader_id < used_shaders.size()) ?
used_shaders[shader_id] : scene->default_surface;
shader_id = scene->shader_manager->get_shader_id(shader, this, false);
curve_data[i] = make_float4(
__int_as_float(curve.first_key + curvekey_offset),
__int_as_float(curve.num_keys),
__int_as_float(shader_id),
0.0f);
}
}
}
void Mesh::compute_bvh(SceneParams *params, Progress *progress, int n, int total)
{
if(progress->get_cancel())
return;
compute_bounds();
if(need_build_bvh()) {
string msg = "Updating Mesh BVH ";
if(name == "")
msg += string_printf("%u/%u", (uint)(n+1), (uint)total);
else
msg += string_printf("%s %u/%u", name.c_str(), (uint)(n+1), (uint)total);
Object object;
object.mesh = this;
vector<Object*> objects;
objects.push_back(&object);
if(bvh && !need_update_rebuild) {
progress->set_status(msg, "Refitting BVH");
bvh->objects = objects;
bvh->refit(*progress);
}
else {
progress->set_status(msg, "Building BVH");
BVHParams bparams;
bparams.use_spatial_split = params->use_bvh_spatial_split;
bparams.use_qbvh = params->use_qbvh;
delete bvh;
bvh = BVH::create(bparams, objects);
MEM_GUARDED_CALL(progress, bvh->build, *progress);
}
}
need_update = false;
need_update_rebuild = false;
}
void Mesh::tag_update(Scene *scene, bool rebuild)
{
need_update = true;
if(rebuild) {
need_update_rebuild = true;
scene->light_manager->need_update = true;
}
else {
foreach(Shader *shader, used_shaders)
if(shader->has_surface_emission)
scene->light_manager->need_update = true;
}
scene->mesh_manager->need_update = true;
scene->object_manager->need_update = true;
}
bool Mesh::has_motion_blur() const
{
return (use_motion_blur &&
(attributes.find(ATTR_STD_MOTION_VERTEX_POSITION) ||
curve_attributes.find(ATTR_STD_MOTION_VERTEX_POSITION)));
}
bool Mesh::need_build_bvh() const
{
return !transform_applied || has_surface_bssrdf;
}
bool Mesh::is_instanced() const
{
/* Currently we treat subsurface objects as instanced.
*
* While it might be not very optimal for ray traversal, it avoids having
* duplicated BVH in the memory, saving quite some space.
*/
return !transform_applied || has_surface_bssrdf;
}
/* Mesh Manager */
MeshManager::MeshManager()
{
bvh = NULL;
need_update = true;
need_flags_update = true;
}
MeshManager::~MeshManager()
{
delete bvh;
}
void MeshManager::update_osl_attributes(Device *device, Scene *scene, vector<AttributeRequestSet>& mesh_attributes)
{
#ifdef WITH_OSL
/* for OSL, a hash map is used to lookup the attribute by name. */
OSLGlobals *og = (OSLGlobals*)device->osl_memory();
og->object_name_map.clear();
og->attribute_map.clear();
og->object_names.clear();
og->attribute_map.resize(scene->objects.size()*ATTR_PRIM_TYPES);
for(size_t i = 0; i < scene->objects.size(); i++) {
/* set object name to object index map */
Object *object = scene->objects[i];
og->object_name_map[object->name] = i;
og->object_names.push_back(object->name);
/* set object attributes */
foreach(ParamValue& attr, object->attributes) {
OSLGlobals::Attribute osl_attr;
osl_attr.type = attr.type();
osl_attr.elem = ATTR_ELEMENT_OBJECT;
osl_attr.value = attr;
osl_attr.offset = 0;
og->attribute_map[i*ATTR_PRIM_TYPES][attr.name()] = osl_attr;
og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_CURVE][attr.name()] = osl_attr;
}
/* find mesh attributes */
size_t j;
for(j = 0; j < scene->meshes.size(); j++)
if(scene->meshes[j] == object->mesh)
break;
AttributeRequestSet& attributes = mesh_attributes[j];
/* set object attributes */
foreach(AttributeRequest& req, attributes.requests) {
OSLGlobals::Attribute osl_attr;
if(req.triangle_element != ATTR_ELEMENT_NONE) {
osl_attr.elem = req.triangle_element;
osl_attr.offset = req.triangle_offset;
if(req.triangle_type == TypeDesc::TypeFloat)
osl_attr.type = TypeDesc::TypeFloat;
else if(req.triangle_type == TypeDesc::TypeMatrix)
osl_attr.type = TypeDesc::TypeMatrix;
else
osl_attr.type = TypeDesc::TypeColor;
if(req.std != ATTR_STD_NONE) {
/* if standard attribute, add lookup by geom: name convention */
ustring stdname(string("geom:") + string(Attribute::standard_name(req.std)));
og->attribute_map[i*ATTR_PRIM_TYPES][stdname] = osl_attr;
}
else if(req.name != ustring()) {
/* add lookup by mesh attribute name */
og->attribute_map[i*ATTR_PRIM_TYPES][req.name] = osl_attr;
}
}
if(req.curve_element != ATTR_ELEMENT_NONE) {
osl_attr.elem = req.curve_element;
osl_attr.offset = req.curve_offset;
if(req.curve_type == TypeDesc::TypeFloat)
osl_attr.type = TypeDesc::TypeFloat;
else if(req.curve_type == TypeDesc::TypeMatrix)
osl_attr.type = TypeDesc::TypeMatrix;
else
osl_attr.type = TypeDesc::TypeColor;
if(req.std != ATTR_STD_NONE) {
/* if standard attribute, add lookup by geom: name convention */
ustring stdname(string("geom:") + string(Attribute::standard_name(req.std)));
og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_CURVE][stdname] = osl_attr;
}
else if(req.name != ustring()) {
/* add lookup by mesh attribute name */
og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_CURVE][req.name] = osl_attr;
}
}
}
}
#else
(void)device;
(void)scene;
(void)mesh_attributes;
#endif
}
void MeshManager::update_svm_attributes(Device *device, DeviceScene *dscene, Scene *scene, vector<AttributeRequestSet>& mesh_attributes)
{
/* for SVM, the attributes_map table is used to lookup the offset of an
* attribute, based on a unique shader attribute id. */
/* compute array stride */
int attr_map_stride = 0;
for(size_t i = 0; i < scene->meshes.size(); i++)
attr_map_stride = max(attr_map_stride, (mesh_attributes[i].size() + 1)*ATTR_PRIM_TYPES);
if(attr_map_stride == 0)
return;
/* create attribute map */
uint4 *attr_map = dscene->attributes_map.resize(attr_map_stride*scene->objects.size());
memset(attr_map, 0, dscene->attributes_map.size()*sizeof(uint));
for(size_t i = 0; i < scene->objects.size(); i++) {
Object *object = scene->objects[i];
Mesh *mesh = object->mesh;
/* find mesh attributes */
size_t j;
for(j = 0; j < scene->meshes.size(); j++)
if(scene->meshes[j] == mesh)
break;
AttributeRequestSet& attributes = mesh_attributes[j];
/* set object attributes */
int index = i*attr_map_stride;
foreach(AttributeRequest& req, attributes.requests) {
uint id;
if(req.std == ATTR_STD_NONE)
id = scene->shader_manager->get_attribute_id(req.name);
else
id = scene->shader_manager->get_attribute_id(req.std);
if(mesh->num_triangles()) {
attr_map[index].x = id;
attr_map[index].y = req.triangle_element;
attr_map[index].z = as_uint(req.triangle_offset);
if(req.triangle_type == TypeDesc::TypeFloat)
attr_map[index].w = NODE_ATTR_FLOAT;
else if(req.triangle_type == TypeDesc::TypeMatrix)
attr_map[index].w = NODE_ATTR_MATRIX;
else
attr_map[index].w = NODE_ATTR_FLOAT3;
}
index++;
if(mesh->num_curves()) {
attr_map[index].x = id;
attr_map[index].y = req.curve_element;
attr_map[index].z = as_uint(req.curve_offset);
if(req.curve_type == TypeDesc::TypeFloat)
attr_map[index].w = NODE_ATTR_FLOAT;
else if(req.curve_type == TypeDesc::TypeMatrix)
attr_map[index].w = NODE_ATTR_MATRIX;
else
attr_map[index].w = NODE_ATTR_FLOAT3;
}
index++;
}
/* terminator */
attr_map[index].x = ATTR_STD_NONE;
attr_map[index].y = 0;
attr_map[index].z = 0;
attr_map[index].w = 0;
index++;
attr_map[index].x = ATTR_STD_NONE;
attr_map[index].y = 0;
attr_map[index].z = 0;
attr_map[index].w = 0;
index++;
}
/* copy to device */
dscene->data.bvh.attributes_map_stride = attr_map_stride;
device->tex_alloc("__attributes_map", dscene->attributes_map);
}
static void update_attribute_element_size(Mesh *mesh,
Attribute *mattr,
size_t *attr_float_size,
size_t *attr_float3_size,
size_t *attr_uchar4_size)
{
if(mattr) {
size_t size = mattr->element_size(
mesh->verts.size(),
mesh->num_triangles(),
mesh->motion_steps,
mesh->num_curves(),
mesh->curve_keys.size());
if(mattr->element == ATTR_ELEMENT_VOXEL) {
/* pass */
}
else if(mattr->element == ATTR_ELEMENT_CORNER_BYTE) {
*attr_uchar4_size += size;
}
else if(mattr->type == TypeDesc::TypeFloat) {
*attr_float_size += size;
}
else if(mattr->type == TypeDesc::TypeMatrix) {
*attr_float3_size += size * 4;
}
else {
*attr_float3_size += size;
}
}
}
static void update_attribute_element_offset(Mesh *mesh,
vector<float>& attr_float,
size_t& attr_float_offset,
vector<float4>& attr_float3,
size_t& attr_float3_offset,
vector<uchar4>& attr_uchar4,
size_t& attr_uchar4_offset,
Attribute *mattr,
TypeDesc& type,
int& offset,
AttributeElement& element)
{
if(mattr) {
/* store element and type */
element = mattr->element;
type = mattr->type;
/* store attribute data in arrays */
size_t size = mattr->element_size(
mesh->verts.size(),
mesh->num_triangles(),
mesh->motion_steps,
mesh->num_curves(),
mesh->curve_keys.size());
if(mattr->element == ATTR_ELEMENT_VOXEL) {
/* store slot in offset value */
VoxelAttribute *voxel_data = mattr->data_voxel();
offset = voxel_data->slot;
}
else if(mattr->element == ATTR_ELEMENT_CORNER_BYTE) {
uchar4 *data = mattr->data_uchar4();
offset = attr_uchar4_offset;
assert(attr_uchar4.capacity() >= offset + size);
for(size_t k = 0; k < size; k++) {
attr_uchar4[offset+k] = data[k];
}
attr_uchar4_offset += size;
}
else if(mattr->type == TypeDesc::TypeFloat) {
float *data = mattr->data_float();
offset = attr_float_offset;
assert(attr_float.capacity() >= offset + size);
for(size_t k = 0; k < size; k++) {
attr_float[offset+k] = data[k];
}
attr_float_offset += size;
}
else if(mattr->type == TypeDesc::TypeMatrix) {
Transform *tfm = mattr->data_transform();
offset = attr_float3_offset;
assert(attr_float3.capacity() >= offset + size * 4);
for(size_t k = 0; k < size*4; k++) {
attr_float3[offset+k] = (&tfm->x)[k];
}
attr_float3_offset += size * 4;
}
else {
float4 *data = mattr->data_float4();
offset = attr_float3_offset;
assert(attr_float3.capacity() >= offset + size);
for(size_t k = 0; k < size; k++) {
attr_float3[offset+k] = data[k];
}
attr_float3_offset += size;
}
/* mesh vertex/curve index is global, not per object, so we sneak
* a correction for that in here */
if(element == ATTR_ELEMENT_VERTEX)
offset -= mesh->vert_offset;
else if(element == ATTR_ELEMENT_VERTEX_MOTION)
offset -= mesh->vert_offset;
else if(element == ATTR_ELEMENT_FACE)
offset -= mesh->tri_offset;
else if(element == ATTR_ELEMENT_CORNER || element == ATTR_ELEMENT_CORNER_BYTE)
offset -= 3*mesh->tri_offset;
else if(element == ATTR_ELEMENT_CURVE)
offset -= mesh->curve_offset;
else if(element == ATTR_ELEMENT_CURVE_KEY)
offset -= mesh->curvekey_offset;
else if(element == ATTR_ELEMENT_CURVE_KEY_MOTION)
offset -= mesh->curvekey_offset;
}
else {
/* attribute not found */
element = ATTR_ELEMENT_NONE;
offset = 0;
}
}
void MeshManager::device_update_attributes(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress)
{
progress.set_status("Updating Mesh", "Computing attributes");
/* gather per mesh requested attributes. as meshes may have multiple
* shaders assigned, this merges the requested attributes that have
* been set per shader by the shader manager */
vector<AttributeRequestSet> mesh_attributes(scene->meshes.size());
for(size_t i = 0; i < scene->meshes.size(); i++) {
Mesh *mesh = scene->meshes[i];
scene->need_global_attributes(mesh_attributes[i]);
foreach(Shader *shader, mesh->used_shaders) {
mesh_attributes[i].add(shader->attributes);
}
}
/* mesh attribute are stored in a single array per data type. here we fill
* those arrays, and set the offset and element type to create attribute
* maps next */
/* Pre-allocate attributes to avoid arrays re-allocation which would
* take 2x of overall attribute memory usage.
*/
size_t attr_float_size = 0;
size_t attr_float3_size = 0;
size_t attr_uchar4_size = 0;
for(size_t i = 0; i < scene->meshes.size(); i++) {
Mesh *mesh = scene->meshes[i];
AttributeRequestSet& attributes = mesh_attributes[i];
foreach(AttributeRequest& req, attributes.requests) {
Attribute *triangle_mattr = mesh->attributes.find(req);
Attribute *curve_mattr = mesh->curve_attributes.find(req);
/* todo: get rid of this exception, it's only here for giving some
* working texture coordinate for subdivision as we can't preserve
* any attributes yet */
if(!triangle_mattr && req.std == ATTR_STD_GENERATED) {
triangle_mattr = mesh->attributes.add(ATTR_STD_GENERATED);
if(mesh->verts.size())
memcpy(triangle_mattr->data_float3(), &mesh->verts[0], sizeof(float3)*mesh->verts.size());
}
update_attribute_element_size(mesh,
triangle_mattr,
&attr_float_size,
&attr_float3_size,
&attr_uchar4_size);
update_attribute_element_size(mesh,
curve_mattr,
&attr_float_size,
&attr_float3_size,
&attr_uchar4_size);
}
}
vector<float> attr_float(attr_float_size);
vector<float4> attr_float3(attr_float3_size);
vector<uchar4> attr_uchar4(attr_uchar4_size);
size_t attr_float_offset = 0;
size_t attr_float3_offset = 0;
size_t attr_uchar4_offset = 0;
/* Fill in attributes. */
for(size_t i = 0; i < scene->meshes.size(); i++) {
Mesh *mesh = scene->meshes[i];
AttributeRequestSet& attributes = mesh_attributes[i];
/* todo: we now store std and name attributes from requests even if
* they actually refer to the same mesh attributes, optimize */
foreach(AttributeRequest& req, attributes.requests) {
Attribute *triangle_mattr = mesh->attributes.find(req);
Attribute *curve_mattr = mesh->curve_attributes.find(req);
update_attribute_element_offset(mesh,
attr_float, attr_float_offset,
attr_float3, attr_float3_offset,
attr_uchar4, attr_uchar4_offset,
triangle_mattr,
req.triangle_type,
req.triangle_offset,
req.triangle_element);
update_attribute_element_offset(mesh,
attr_float, attr_float_offset,
attr_float3, attr_float3_offset,
attr_uchar4, attr_uchar4_offset,
curve_mattr,
req.curve_type,
req.curve_offset,
req.curve_element);
if(progress.get_cancel()) return;
}
}
/* create attribute lookup maps */
if(scene->shader_manager->use_osl())
update_osl_attributes(device, scene, mesh_attributes);
update_svm_attributes(device, dscene, scene, mesh_attributes);
if(progress.get_cancel()) return;
/* copy to device */
progress.set_status("Updating Mesh", "Copying Attributes to device");
if(attr_float.size()) {
dscene->attributes_float.copy(&attr_float[0], attr_float.size());
device->tex_alloc("__attributes_float", dscene->attributes_float);
}
if(attr_float3.size()) {
dscene->attributes_float3.copy(&attr_float3[0], attr_float3.size());
device->tex_alloc("__attributes_float3", dscene->attributes_float3);
}
if(attr_uchar4.size()) {
dscene->attributes_uchar4.copy(&attr_uchar4[0], attr_uchar4.size());
device->tex_alloc("__attributes_uchar4", dscene->attributes_uchar4);
}
}
void MeshManager::device_update_mesh(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress)
{
/* count and update offsets */
size_t vert_size = 0;
size_t tri_size = 0;
size_t curve_key_size = 0;
size_t curve_size = 0;
foreach(Mesh *mesh, scene->meshes) {
mesh->vert_offset = vert_size;
mesh->tri_offset = tri_size;
mesh->curvekey_offset = curve_key_size;
mesh->curve_offset = curve_size;
vert_size += mesh->verts.size();
tri_size += mesh->num_triangles();
curve_key_size += mesh->curve_keys.size();
curve_size += mesh->num_curves();
}
if(tri_size != 0) {
/* normals */
progress.set_status("Updating Mesh", "Computing normals");
uint *tri_shader = dscene->tri_shader.resize(tri_size);
float4 *vnormal = dscene->tri_vnormal.resize(vert_size);
float4 *tri_verts = dscene->tri_verts.resize(vert_size);
float4 *tri_vindex = dscene->tri_vindex.resize(tri_size);
foreach(Mesh *mesh, scene->meshes) {
mesh->pack_normals(scene, &tri_shader[mesh->tri_offset], &vnormal[mesh->vert_offset]);
mesh->pack_verts(&tri_verts[mesh->vert_offset], &tri_vindex[mesh->tri_offset], mesh->vert_offset);
if(progress.get_cancel()) return;
}
/* vertex coordinates */
progress.set_status("Updating Mesh", "Copying Mesh to device");
device->tex_alloc("__tri_shader", dscene->tri_shader);
device->tex_alloc("__tri_vnormal", dscene->tri_vnormal);
device->tex_alloc("__tri_verts", dscene->tri_verts);
device->tex_alloc("__tri_vindex", dscene->tri_vindex);
}
if(curve_size != 0) {
progress.set_status("Updating Mesh", "Copying Strands to device");
float4 *curve_keys = dscene->curve_keys.resize(curve_key_size);
float4 *curves = dscene->curves.resize(curve_size);
foreach(Mesh *mesh, scene->meshes) {
mesh->pack_curves(scene, &curve_keys[mesh->curvekey_offset], &curves[mesh->curve_offset], mesh->curvekey_offset);
if(progress.get_cancel()) return;
}
device->tex_alloc("__curve_keys", dscene->curve_keys);
device->tex_alloc("__curves", dscene->curves);
}
}
void MeshManager::device_update_bvh(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress)
{
/* bvh build */
progress.set_status("Updating Scene BVH", "Building");
VLOG(1) << (scene->params.use_qbvh ? "Using QBVH optimization structure"
: "Using regular BVH optimization structure");
BVHParams bparams;
bparams.top_level = true;
bparams.use_qbvh = scene->params.use_qbvh;
bparams.use_spatial_split = scene->params.use_bvh_spatial_split;
delete bvh;
bvh = BVH::create(bparams, scene->objects);
bvh->build(progress);
if(progress.get_cancel()) return;
/* copy to device */
progress.set_status("Updating Scene BVH", "Copying BVH to device");
PackedBVH& pack = bvh->pack;
if(pack.nodes.size()) {
dscene->bvh_nodes.reference((float4*)&pack.nodes[0], pack.nodes.size());
device->tex_alloc("__bvh_nodes", dscene->bvh_nodes);
}
if(pack.leaf_nodes.size()) {
dscene->bvh_leaf_nodes.reference((float4*)&pack.leaf_nodes[0], pack.leaf_nodes.size());
device->tex_alloc("__bvh_leaf_nodes", dscene->bvh_leaf_nodes);
}
if(pack.object_node.size()) {
dscene->object_node.reference((uint*)&pack.object_node[0], pack.object_node.size());
device->tex_alloc("__object_node", dscene->object_node);
}
if(pack.tri_storage.size()) {
dscene->tri_storage.reference(&pack.tri_storage[0], pack.tri_storage.size());
device->tex_alloc("__tri_storage", dscene->tri_storage);
}
if(pack.prim_type.size()) {
dscene->prim_type.reference((uint*)&pack.prim_type[0], pack.prim_type.size());
device->tex_alloc("__prim_type", dscene->prim_type);
}
if(pack.prim_visibility.size()) {
dscene->prim_visibility.reference((uint*)&pack.prim_visibility[0], pack.prim_visibility.size());
device->tex_alloc("__prim_visibility", dscene->prim_visibility);
}
if(pack.prim_index.size()) {
dscene->prim_index.reference((uint*)&pack.prim_index[0], pack.prim_index.size());
device->tex_alloc("__prim_index", dscene->prim_index);
}
if(pack.prim_object.size()) {
dscene->prim_object.reference((uint*)&pack.prim_object[0], pack.prim_object.size());
device->tex_alloc("__prim_object", dscene->prim_object);
}
dscene->data.bvh.root = pack.root_index;
dscene->data.bvh.use_qbvh = scene->params.use_qbvh;
}
void MeshManager::device_update_flags(Device * /*device*/,
DeviceScene * /*dscene*/,
Scene * scene,
Progress& /*progress*/)
{
if(!need_update && !need_flags_update) {
return;
}
/* update flags */
foreach(Mesh *mesh, scene->meshes) {
mesh->has_volume = false;
foreach(const Shader *shader, mesh->used_shaders) {
if(shader->has_volume) {
mesh->has_volume = true;
}
if(shader->has_surface_bssrdf) {
mesh->has_surface_bssrdf = true;
}
}
}
need_flags_update = false;
}
void MeshManager::device_update_displacement_images(Device *device,
DeviceScene *dscene,
Scene *scene,
Progress& progress)
{
progress.set_status("Updating Displacement Images");
TaskPool pool;
ImageManager *image_manager = scene->image_manager;
set<int> bump_images;
foreach(Mesh *mesh, scene->meshes) {
if(mesh->need_update) {
foreach(Shader *shader, mesh->used_shaders) {
if(shader->graph_bump == NULL) {
continue;
}
foreach(ShaderNode* node, shader->graph_bump->nodes) {
if(node->special_type != SHADER_SPECIAL_TYPE_IMAGE_SLOT) {
continue;
}
if(device->info.pack_images) {
/* If device requires packed images we need to update all
* images now, even if they're not used for displacement.
*/
image_manager->device_update(device,
dscene,
progress);
return;
}
ImageSlotTextureNode *image_node = static_cast<ImageSlotTextureNode*>(node);
int slot = image_node->slot;
if(slot != -1) {
bump_images.insert(slot);
}
}
}
}
}
foreach(int slot, bump_images) {
pool.push(function_bind(&ImageManager::device_update_slot,
image_manager,
device,
dscene,
slot,
&progress));
}
pool.wait_work();
}
void MeshManager::device_update(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress)
{
if(!need_update)
return;
VLOG(1) << "Total " << scene->meshes.size() << " meshes.";
/* update normals */
foreach(Mesh *mesh, scene->meshes) {
foreach(Shader *shader, mesh->used_shaders) {
if(shader->need_update_attributes)
mesh->need_update = true;
}
if(mesh->need_update) {
mesh->add_face_normals();
mesh->add_vertex_normals();
if(progress.get_cancel()) return;
}
}
/* Update images needed for true displacement. */
bool need_displacement_images = false;
bool old_need_object_flags_update = false;
foreach(Mesh *mesh, scene->meshes) {
if(mesh->need_update &&
mesh->displacement_method != Mesh::DISPLACE_BUMP)
{
need_displacement_images = true;
break;
}
}
if(need_displacement_images) {
VLOG(1) << "Updating images used for true displacement.";
device_update_displacement_images(device, dscene, scene, progress);
old_need_object_flags_update = scene->object_manager->need_flags_update;
scene->object_manager->device_update_flags(device,
dscene,
scene,
progress,
false);
}
/* device update */
device_free(device, dscene);
device_update_mesh(device, dscene, scene, progress);
if(progress.get_cancel()) return;
device_update_attributes(device, dscene, scene, progress);
if(progress.get_cancel()) return;
/* update displacement */
bool displacement_done = false;
foreach(Mesh *mesh, scene->meshes)
if(mesh->need_update && displace(device, dscene, scene, mesh, progress))
displacement_done = true;
/* todo: properly handle cancel halfway displacement */
if(progress.get_cancel()) return;
/* device re-update after displacement */
if(displacement_done) {
device_free(device, dscene);
device_update_mesh(device, dscene, scene, progress);
if(progress.get_cancel()) return;
device_update_attributes(device, dscene, scene, progress);
if(progress.get_cancel()) return;
}
/* update bvh */
size_t i = 0, num_bvh = 0;
foreach(Mesh *mesh, scene->meshes)
if(mesh->need_update && mesh->need_build_bvh())
num_bvh++;
TaskPool pool;
foreach(Mesh *mesh, scene->meshes) {
if(mesh->need_update) {
pool.push(function_bind(&Mesh::compute_bvh,
mesh,
&scene->params,
&progress,
i,
num_bvh));
if(mesh->need_build_bvh()) {
i++;
}
}
}
TaskPool::Summary summary;
pool.wait_work(&summary);
VLOG(2) << "Objects BVH build pool statistics:\n"
<< summary.full_report();
foreach(Shader *shader, scene->shaders)
shader->need_update_attributes = false;
#ifdef __OBJECT_MOTION__
Scene::MotionType need_motion = scene->need_motion(device->info.advanced_shading);
bool motion_blur = need_motion == Scene::MOTION_BLUR;
#else
bool motion_blur = false;
#endif
/* update obejcts */
vector<Object *> volume_objects;
foreach(Object *object, scene->objects)
object->compute_bounds(motion_blur);
if(progress.get_cancel()) return;
device_update_bvh(device, dscene, scene, progress);
need_update = false;
if(need_displacement_images) {
/* Re-tag flags for update, so they're re-evaluated
* for meshes with correct bounding boxes.
*
* This wouldn't cause wrong results, just true
* displacement might be less optimal ot calculate.
*/
scene->object_manager->need_flags_update = old_need_object_flags_update;
}
}
void MeshManager::device_free(Device *device, DeviceScene *dscene)
{
device->tex_free(dscene->bvh_nodes);
device->tex_free(dscene->bvh_leaf_nodes);
device->tex_free(dscene->object_node);
device->tex_free(dscene->tri_storage);
device->tex_free(dscene->prim_type);
device->tex_free(dscene->prim_visibility);
device->tex_free(dscene->prim_index);
device->tex_free(dscene->prim_object);
device->tex_free(dscene->tri_shader);
device->tex_free(dscene->tri_vnormal);
device->tex_free(dscene->tri_vindex);
device->tex_free(dscene->tri_verts);
device->tex_free(dscene->curves);
device->tex_free(dscene->curve_keys);
device->tex_free(dscene->attributes_map);
device->tex_free(dscene->attributes_float);
device->tex_free(dscene->attributes_float3);
device->tex_free(dscene->attributes_uchar4);
dscene->bvh_nodes.clear();
dscene->object_node.clear();
dscene->tri_storage.clear();
dscene->prim_type.clear();
dscene->prim_visibility.clear();
dscene->prim_index.clear();
dscene->prim_object.clear();
dscene->tri_shader.clear();
dscene->tri_vnormal.clear();
dscene->tri_vindex.clear();
dscene->tri_verts.clear();
dscene->curves.clear();
dscene->curve_keys.clear();
dscene->attributes_map.clear();
dscene->attributes_float.clear();
dscene->attributes_float3.clear();
dscene->attributes_uchar4.clear();
#ifdef WITH_OSL
OSLGlobals *og = (OSLGlobals*)device->osl_memory();
if(og) {
og->object_name_map.clear();
og->attribute_map.clear();
og->object_names.clear();
}
#endif
}
void MeshManager::tag_update(Scene *scene)
{
need_update = true;
scene->object_manager->need_update = true;
}
bool Mesh::need_attribute(Scene *scene, AttributeStandard std)
{
if(std == ATTR_STD_NONE)
return false;
if(scene->need_global_attribute(std))
return true;
foreach(Shader *shader, used_shaders)
if(shader->attributes.find(std))
return true;
return false;
}
bool Mesh::need_attribute(Scene * /*scene*/, ustring name)
{
if(name == ustring())
return false;
foreach(Shader *shader, used_shaders)
if(shader->attributes.find(name))
return true;
return false;
}
void Mesh::tessellate(DiagSplit *split)
{
int num_faces = num_triangles();
add_face_normals();
add_vertex_normals();
Attribute *attr_fN = attributes.find(ATTR_STD_FACE_NORMAL);
float3 *fN = attr_fN->data_float3();
Attribute *attr_vN = attributes.find(ATTR_STD_VERTEX_NORMAL);
float3 *vN = attr_vN->data_float3();
for(int f = 0; f < num_faces; f++) {
if(!forms_quad[f]) {
/* triangle */
LinearTrianglePatch patch;
Triangle triangle = get_triangle(f);
float3 *hull = patch.hull;
float3 *normals = patch.normals;
for(int i = 0; i < 3; i++) {
hull[i] = verts[triangle.v[i]];
}
if(smooth[f]) {
for(int i = 0; i < 3; i++) {
normals[i] = vN[triangle.v[i]];
}
}
else {
for(int i = 0; i < 3; i++) {
normals[i] = fN[f];
}
}
split->split_triangle(&patch);
}
else {
/* quad */
LinearQuadPatch patch;
Triangle triangle0 = get_triangle(f);
Triangle triangle1 = get_triangle(f+1);
float3 *hull = patch.hull;
float3 *normals = patch.normals;
hull[0] = verts[triangle0.v[0]];
hull[1] = verts[triangle0.v[1]];
hull[3] = verts[triangle0.v[2]];
hull[2] = verts[triangle1.v[2]];
if(smooth[f]) {
normals[0] = vN[triangle0.v[0]];
normals[1] = vN[triangle0.v[1]];
normals[3] = vN[triangle0.v[2]];
normals[2] = vN[triangle1.v[2]];
}
else {
for(int i = 0; i < 4; i++) {
normals[i] = fN[f];
}
}
split->split_quad(&patch);
// consume second triangle in quad
f++;
}
}
}
CCL_NAMESPACE_END