blender/intern/cycles/subd/subd_dice.cpp
Ton Roosendaal da376e0237 Cycles render engine, initial commit. This is the engine itself, blender modifications and build instructions will follow later.
Cycles uses code from some great open source projects, many thanks them:

* BVH building and traversal code from NVidia's "Understanding the Efficiency of Ray Traversal on GPUs":
http://code.google.com/p/understanding-the-efficiency-of-ray-traversal-on-gpus/
* Open Shading Language for a large part of the shading system:
http://code.google.com/p/openshadinglanguage/
* Blender for procedural textures and a few other nodes.
* Approximate Catmull Clark subdivision from NVidia Mesh tools:
http://code.google.com/p/nvidia-mesh-tools/
* Sobol direction vectors from:
http://web.maths.unsw.edu.au/~fkuo/sobol/
* Film response functions from:
http://www.cs.columbia.edu/CAVE/software/softlib/dorf.php
2011-04-27 11:58:34 +00:00

462 lines
12 KiB
C++

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "camera.h"
#include "mesh.h"
#include "subd_dice.h"
#include "subd_patch.h"
#include "util_debug.h"
CCL_NAMESPACE_BEGIN
/* EdgeDice Base */
EdgeDice::EdgeDice(Mesh *mesh_, int shader_, bool smooth_, float dicing_rate_)
{
mesh = mesh_;
mesh_P = NULL;
mesh_N = NULL;
vert_offset = 0;
dicing_rate = dicing_rate_;
shader = shader_;
smooth = smooth_;
camera = NULL;
mesh->attributes.add(Attribute::STD_VERTEX_NORMAL);
}
void EdgeDice::reserve(int num_verts, int num_tris)
{
vert_offset = mesh->verts.size();
tri_offset = mesh->triangles.size();
mesh->reserve(vert_offset + num_verts, tri_offset + num_tris);
Attribute *attr_vN = mesh->attributes.add(Attribute::STD_VERTEX_NORMAL);
mesh_P = &mesh->verts[0];
mesh_N = attr_vN->data_float3();
}
int EdgeDice::add_vert(Patch *patch, float2 uv)
{
float3 P, N, dPdu, dPdv;
patch->eval(&P, &dPdu, &dPdv, uv.x, uv.y);
N = normalize(cross(dPdu, dPdv));
assert(vert_offset < mesh->verts.size());
mesh_P[vert_offset] = P;
mesh_N[vert_offset] = N;
return vert_offset++;
}
void EdgeDice::add_triangle(int v0, int v1, int v2)
{
mesh->add_triangle(v0, v1, v2, shader, smooth);
}
void EdgeDice::stitch_triangles(vector<int>& outer, vector<int>& inner)
{
if(inner.size() == 0 || outer.size() == 0)
return; // XXX avoid crashes for Mu or Mv == 1, missing polygons
/* stitch together two arrays of verts with triangles. at each step,
we compare using the next verts on both sides, to find the split
direction with the smallest diagonal, and use that in order to keep
the triangle shape reasonable. */
for(size_t i = 0, j = 0; i+1 < inner.size() || j+1 < outer.size();) {
int v0, v1, v2;
v0 = inner[i];
v1 = outer[j];
if(j+1 == outer.size()) {
v2 = inner[++i];
}
else if(i+1 == inner.size()) {
v2 = outer[++j];
}
else {
/* length of diagonals */
float len1 = len(mesh_P[inner[i]] - mesh_P[outer[j+1]]);
float len2 = len(mesh_P[outer[j]] - mesh_P[inner[i+1]]);
/* use smallest diagonal */
if(len1 < len2)
v2 = outer[++j];
else
v2 = inner[++i];
}
add_triangle(v0, v1, v2);
}
}
/* QuadDice */
QuadDice::QuadDice(Mesh *mesh_, int shader_, bool smooth_, float dicing_rate_)
: EdgeDice(mesh_, shader_, smooth_, dicing_rate_)
{
}
void QuadDice::reserve(EdgeFactors& ef, int Mu, int Mv)
{
/* XXX need to make this also work for edge factor 0 and 1 */
int num_verts = (ef.tu0 + ef.tu1 + ef.tv0 + ef.tv1) + (Mu - 1)*(Mv - 1);
EdgeDice::reserve(num_verts, 0);
}
float2 QuadDice::map_uv(SubPatch& sub, float u, float v)
{
/* map UV from subpatch to patch parametric coordinates */
float2 d0 = interp(sub.P00, sub.P01, v);
float2 d1 = interp(sub.P10, sub.P11, v);
return interp(d0, d1, u);
}
float3 QuadDice::eval_projected(SubPatch& sub, float u, float v)
{
float2 uv = map_uv(sub, u, v);
float3 P;
sub.patch->eval(&P, NULL, NULL, uv.x, uv.y);
if(camera)
P = transform(&camera->worldtoraster, P);
return P;
}
int QuadDice::add_vert(SubPatch& sub, float u, float v)
{
return EdgeDice::add_vert(sub.patch, map_uv(sub, u, v));
}
void QuadDice::add_side_u(SubPatch& sub,
vector<int>& outer, vector<int>& inner,
int Mu, int Mv, int tu, int side, int offset)
{
outer.clear();
inner.clear();
/* set verts on the edge of the patch */
outer.push_back(offset + ((side)? 2: 0));
for(int i = 1; i < tu; i++) {
float u = i/(float)tu;
float v = (side)? 1.0f: 0.0f;
outer.push_back(add_vert(sub, u, v));
}
outer.push_back(offset + ((side)? 3: 1));
/* set verts on the edge of the inner grid */
for(int i = 0; i < Mu-1; i++) {
int j = (side)? Mv-1-1: 0;
inner.push_back(offset + 4 + i + j*(Mu-1));
}
}
void QuadDice::add_side_v(SubPatch& sub,
vector<int>& outer, vector<int>& inner,
int Mu, int Mv, int tv, int side, int offset)
{
outer.clear();
inner.clear();
/* set verts on the edge of the patch */
outer.push_back(offset + ((side)? 1: 0));
for(int j = 1; j < tv; j++) {
float u = (side)? 1.0f: 0.0f;
float v = j/(float)tv;
outer.push_back(add_vert(sub, u, v));
}
outer.push_back(offset + ((side)? 3: 2));
/* set verts on the edge of the inner grid */
for(int j = 0; j < Mv-1; j++) {
int i = (side)? Mu-1-1: 0;
inner.push_back(offset + 4 + i + j*(Mu-1));
}
}
float QuadDice::quad_area(const float3& a, const float3& b, const float3& c, const float3& d)
{
return triangle_area(a, b, d) + triangle_area(a, d, c);
}
float QuadDice::scale_factor(SubPatch& sub, EdgeFactors& ef, int Mu, int Mv)
{
/* estimate area as 4x largest of 4 quads */
float3 P[3][3];
for(int i = 0; i < 3; i++)
for(int j = 0; j < 3; j++)
P[i][j] = eval_projected(sub, i*0.5f, j*0.5f);
float A1 = quad_area(P[0][0], P[1][0], P[0][1], P[1][1]);
float A2 = quad_area(P[1][0], P[2][0], P[1][1], P[2][1]);
float A3 = quad_area(P[0][1], P[1][1], P[0][2], P[1][2]);
float A4 = quad_area(P[1][1], P[2][1], P[1][2], P[2][2]);
float Apatch = max(A1, max(A2, max(A3, A4)))*4.0f;
/* solve for scaling factor */
float Atri = dicing_rate*dicing_rate*0.5f;
float Ntris = Apatch/Atri;
// XXX does the -sqrt solution matter
// XXX max(D, 0.0) is highly suspicious, need to test cases
// where D goes negative
float N = 0.5f*(Ntris - (ef.tu0 + ef.tu1 + ef.tv0 + ef.tv1));
float D = 4.0f*N*Mu*Mv + (Mu + Mv)*(Mu + Mv);
float S = (Mu + Mv + sqrtf(max(D, 0.0f)))/(2*Mu*Mv);
return S;
}
void QuadDice::add_corners(SubPatch& sub)
{
/* add verts for patch corners */
if(sub.patch->is_triangle()) {
add_vert(sub, 0.0f, 0.0f);
add_vert(sub, 1.0f, 0.0f);
add_vert(sub, 0.0f, 1.0f);
}
else {
add_vert(sub, 0.0f, 0.0f);
add_vert(sub, 1.0f, 0.0f);
add_vert(sub, 0.0f, 1.0f);
add_vert(sub, 1.0f, 1.0f);
}
}
void QuadDice::add_grid(SubPatch& sub, int Mu, int Mv, int offset)
{
/* create inner grid */
float du = 1.0f/(float)Mu;
float dv = 1.0f/(float)Mv;
for(int j = 1; j < Mv; j++) {
for(int i = 1; i < Mu; i++) {
float u = i*du;
float v = j*dv;
add_vert(sub, u, v);
if(i < Mu-1 && j < Mv-1) {
int i1 = offset + 4 + (i-1) + (j-1)*(Mu-1);
int i2 = offset + 4 + i + (j-1)*(Mu-1);
int i3 = offset + 4 + i + j*(Mu-1);
int i4 = offset + 4 + (i-1) + j*(Mu-1);
add_triangle(i1, i2, i3);
add_triangle(i1, i3, i4);
}
}
}
}
void QuadDice::dice(SubPatch& sub, EdgeFactors& ef)
{
/* compute inner grid size with scale factor */
int Mu = max(ef.tu0, ef.tu1);
int Mv = max(ef.tv0, ef.tv1);
float S = scale_factor(sub, ef, Mu, Mv);
Mu = max((int)ceil(S*Mu), 2); // XXX handle 0 & 1?
Mv = max((int)ceil(S*Mv), 2); // XXX handle 0 & 1?
/* reserve space for new verts */
int offset = mesh->verts.size();
reserve(ef, Mu, Mv);
/* corners and inner grid */
add_corners(sub);
add_grid(sub, Mu, Mv, offset);
/* bottom side */
vector<int> outer, inner;
add_side_u(sub, outer, inner, Mu, Mv, ef.tu0, 0, offset);
stitch_triangles(outer, inner);
/* top side */
add_side_u(sub, outer, inner, Mu, Mv, ef.tu1, 1, offset);
stitch_triangles(inner, outer);
/* left side */
add_side_v(sub, outer, inner, Mu, Mv, ef.tv0, 0, offset);
stitch_triangles(inner, outer);
/* right side */
add_side_v(sub, outer, inner, Mu, Mv, ef.tv1, 1, offset);
stitch_triangles(outer, inner);
assert(vert_offset == mesh->verts.size());
}
/* TriangleDice */
TriangleDice::TriangleDice(Mesh *mesh_, int shader_, bool smooth_, float dicing_rate_)
: EdgeDice(mesh_, shader_, smooth_, dicing_rate_)
{
}
void TriangleDice::reserve(EdgeFactors& ef, int M)
{
int num_verts = ef.tu + ef.tv + ef.tw;
for(int m = M-2; m > 0; m -= 2)
num_verts += 3 + (m-1)*3;
if(!(M & 1))
num_verts++;
EdgeDice::reserve(num_verts, 0);
}
float2 TriangleDice::map_uv(SubPatch& sub, float2 uv)
{
/* map UV from subpatch to patch parametric coordinates */
return uv.x*sub.Pu + uv.y*sub.Pv + (1.0f - uv.x - uv.y)*sub.Pw;
}
int TriangleDice::add_vert(SubPatch& sub, float2 uv)
{
return EdgeDice::add_vert(sub.patch, map_uv(sub, uv));
}
void TriangleDice::add_grid(SubPatch& sub, EdgeFactors& ef, int M)
{
// XXX normals are flipped, why?
/* grid is constructed starting from the outside edges, and adding
progressively smaller inner triangles that connected to the outer
one, until M = 1 or 2, the we fill up the last part. */
vector<int> outer_u, outer_v, outer_w;
int m;
/* add outer corners vertices */
{
float2 p_u = make_float2(1.0f, 0.0f);
float2 p_v = make_float2(0.0f, 1.0f);
float2 p_w = make_float2(0.0f, 0.0f);
int corner_u = add_vert(sub, p_u);
int corner_v = add_vert(sub, p_v);
int corner_w = add_vert(sub, p_w);
outer_u.push_back(corner_v);
outer_v.push_back(corner_w);
outer_w.push_back(corner_u);
for(int i = 1; i < ef.tu; i++)
outer_u.push_back(add_vert(sub, interp(p_v, p_w, i/(float)ef.tu)));
for(int i = 1; i < ef.tv; i++)
outer_v.push_back(add_vert(sub, interp(p_w, p_u, i/(float)ef.tv)));
for(int i = 1; i < ef.tw; i++)
outer_w.push_back(add_vert(sub, interp(p_u, p_v, i/(float)ef.tw)));
outer_u.push_back(corner_w);
outer_v.push_back(corner_u);
outer_w.push_back(corner_v);
}
for(m = M-2; m > 0; m -= 2) {
vector<int> inner_u, inner_v, inner_w;
float t = m/(float)M;
float2 center = make_float2(1.0f/3.0f, 1.0f/3.0f);
/* 3 corner vertices */
float2 p_u = interp(center, make_float2(1.0f, 0.0f), t);
float2 p_v = interp(center, make_float2(0.0f, 1.0f), t);
float2 p_w = interp(center, make_float2(0.0f, 0.0f), t);
int corner_u = add_vert(sub, p_u);
int corner_v = add_vert(sub, p_v);
int corner_w = add_vert(sub, p_w);
/* construct array of vertex indices for each side */
inner_u.push_back(corner_v);
inner_v.push_back(corner_w);
inner_w.push_back(corner_u);
for(int i = 1; i < m; i++) {
/* add vertices between corners */
float t = i/(float)m;
inner_u.push_back(add_vert(sub, interp(p_v, p_w, t)));
inner_v.push_back(add_vert(sub, interp(p_w, p_u, t)));
inner_w.push_back(add_vert(sub, interp(p_u, p_v, t)));
}
inner_u.push_back(corner_w);
inner_v.push_back(corner_u);
inner_w.push_back(corner_v);
/* stitch together inner/outer with triangles */
stitch_triangles(outer_u, inner_u);
stitch_triangles(outer_v, inner_v);
stitch_triangles(outer_w, inner_w);
outer_u = inner_u;
outer_v = inner_v;
outer_w = inner_w;
}
/* fill up last part */
if(m == -1) {
/* single triangle */
add_triangle(outer_w[0], outer_u[0], outer_v[0]);
}
else {
/* center vertex + 6 triangles */
int center = add_vert(sub, make_float2(1.0f/3.0f, 1.0f/3.0f));
add_triangle(outer_w[0], outer_w[1], center);
add_triangle(outer_w[1], outer_w[2], center);
add_triangle(outer_u[0], outer_u[1], center);
add_triangle(outer_u[1], outer_u[2], center);
add_triangle(outer_v[0], outer_v[1], center);
add_triangle(outer_v[1], outer_v[2], center);
}
}
void TriangleDice::dice(SubPatch& sub, EdgeFactors& ef)
{
/* todo: handle 2 1 1 resolution */
int M = max(ef.tu, max(ef.tv, ef.tw));
reserve(ef, M);
add_grid(sub, ef, M);
assert(vert_offset == mesh->verts.size());
}
CCL_NAMESPACE_END