blender/intern/cycles/device/device_opencl.cpp
Sergey Sharybin 78de47ca24 Cycles: Fix zero-size buffer allocation with OpenCL devices
This is not really supported by OpenCL but might happen in certain
configurations. There might be some remained cases when this happens
but so far can not find any,
2015-07-01 11:56:48 +02:00

3550 lines
113 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifdef WITH_OPENCL
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "clew.h"
#include "device.h"
#include "device_intern.h"
#include "buffers.h"
#include "util_foreach.h"
#include "util_logging.h"
#include "util_map.h"
#include "util_math.h"
#include "util_md5.h"
#include "util_opengl.h"
#include "util_path.h"
#include "util_time.h"
CCL_NAMESPACE_BEGIN
#define CL_MEM_PTR(p) ((cl_mem)(uintptr_t)(p))
/* Macro declarations used with split kernel */
/* Macro to enable/disable work-stealing */
#define __WORK_STEALING__
#define SPLIT_KERNEL_LOCAL_SIZE_X 64
#define SPLIT_KERNEL_LOCAL_SIZE_Y 1
/* This value may be tuned according to the scene we are rendering.
*
* Modifying PATH_ITER_INC_FACTOR value proportional to number of expected
* ray-bounces will improve performance.
*/
#define PATH_ITER_INC_FACTOR 8
/* When allocate global memory in chunks. We may not be able to
* allocate exactly "CL_DEVICE_MAX_MEM_ALLOC_SIZE" bytes in chunks;
* Since some bytes may be needed for aligning chunks of memory;
* This is the amount of memory that we dedicate for that purpose.
*/
#define DATA_ALLOCATION_MEM_FACTOR 5000000 //5MB
struct OpenCLPlatformDevice {
OpenCLPlatformDevice(cl_platform_id platform_id,
cl_device_id device_id)
: platform_id(platform_id), device_id(device_id) {}
cl_platform_id platform_id;
cl_device_id device_id;
};
namespace {
cl_device_type opencl_device_type()
{
char *device = getenv("CYCLES_OPENCL_TEST");
if(device) {
if(strcmp(device, "ALL") == 0)
return CL_DEVICE_TYPE_ALL;
else if(strcmp(device, "DEFAULT") == 0)
return CL_DEVICE_TYPE_DEFAULT;
else if(strcmp(device, "CPU") == 0)
return CL_DEVICE_TYPE_CPU;
else if(strcmp(device, "GPU") == 0)
return CL_DEVICE_TYPE_GPU;
else if(strcmp(device, "ACCELERATOR") == 0)
return CL_DEVICE_TYPE_ACCELERATOR;
}
return CL_DEVICE_TYPE_ALL;
}
bool opencl_kernel_use_debug()
{
return (getenv("CYCLES_OPENCL_DEBUG") != NULL);
}
bool opencl_kernel_use_advanced_shading(const string& platform)
{
/* keep this in sync with kernel_types.h! */
if(platform == "NVIDIA CUDA")
return true;
else if(platform == "Apple")
return false;
else if(platform == "AMD Accelerated Parallel Processing")
return true;
else if(platform == "Intel(R) OpenCL")
return true;
return false;
}
bool opencl_kernel_use_split(const string& platform_name,
const cl_device_type device_type)
{
if(getenv("CYCLES_OPENCL_SPLIT_KERNEL_TEST") != NULL) {
return true;
}
/* TODO(sergey): Replace string lookups with more enum-like API,
* similar to device/vendor checks blender's gpu.
*/
if(platform_name == "AMD Accelerated Parallel Processing" &&
device_type == CL_DEVICE_TYPE_GPU)
{
return true;
}
return false;
}
bool opencl_device_supported(const string& platform_name,
const cl_device_id device_id)
{
cl_device_type device_type;
clGetDeviceInfo(device_id,
CL_DEVICE_TYPE,
sizeof(cl_device_type),
&device_type,
NULL);
if(platform_name == "AMD Accelerated Parallel Processing" &&
device_type == CL_DEVICE_TYPE_GPU)
{
return true;;
}
return false;
}
bool opencl_platform_version_check(cl_platform_id platform,
string *error = NULL)
{
const int req_major = 1, req_minor = 1;
int major, minor;
char version[256];
clGetPlatformInfo(platform,
CL_PLATFORM_VERSION,
sizeof(version),
&version,
NULL);
if(sscanf(version, "OpenCL %d.%d", &major, &minor) < 2) {
if(error != NULL) {
*error = string_printf("OpenCL: failed to parse platform version string (%s).", version);
}
return false;
}
if(!((major == req_major && minor >= req_minor) || (major > req_major))) {
if(error != NULL) {
*error = string_printf("OpenCL: platform version 1.1 or later required, found %d.%d", major, minor);
}
return false;
}
if(error != NULL) {
*error = "";
}
return true;
}
bool opencl_device_version_check(cl_device_id device,
string *error = NULL)
{
const int req_major = 1, req_minor = 1;
int major, minor;
char version[256];
clGetDeviceInfo(device,
CL_DEVICE_OPENCL_C_VERSION,
sizeof(version),
&version,
NULL);
if(sscanf(version, "OpenCL C %d.%d", &major, &minor) < 2) {
if(error != NULL) {
*error = string_printf("OpenCL: failed to parse OpenCL C version string (%s).", version);
}
return false;
}
if(!((major == req_major && minor >= req_minor) || (major > req_major))) {
if(error != NULL) {
*error = string_printf("OpenCL: C version 1.1 or later required, found %d.%d", major, minor);
}
return false;
}
if(error != NULL) {
*error = "";
}
return true;
}
void opencl_get_usable_devices(vector<OpenCLPlatformDevice> *usable_devices)
{
const bool force_all_platforms =
(getenv("CYCLES_OPENCL_TEST") != NULL) ||
(getenv("CYCLES_OPENCL_SPLIT_KERNEL_TEST")) != NULL;
const cl_device_type device_type = opencl_device_type();
vector<cl_device_id> device_ids;
cl_uint num_devices = 0;
vector<cl_platform_id> platform_ids;
cl_uint num_platforms = 0;
/* Number of the devices added to the device info list. */
cl_uint num_added_devices = 0;
/* Get devices. */
if(clGetPlatformIDs(0, NULL, &num_platforms) != CL_SUCCESS ||
num_platforms == 0)
{
return;
}
platform_ids.resize(num_platforms);
if(clGetPlatformIDs(num_platforms, &platform_ids[0], NULL) != CL_SUCCESS) {
return;
}
/* Devices are numbered consecutively across platforms. */
int num_base = 0;
for(int platform = 0;
platform < num_platforms;
platform++, num_base += num_added_devices)
{
cl_platform_id platform_id = platform_ids[platform];
num_devices = num_added_devices = 0;
if(clGetDeviceIDs(platform_id,
device_type,
0,
NULL,
&num_devices) != CL_SUCCESS || num_devices == 0)
{
continue;
}
device_ids.resize(num_devices);
if(clGetDeviceIDs(platform_id,
device_type,
num_devices,
&device_ids[0],
NULL) != CL_SUCCESS)
{
continue;
}
if(!opencl_platform_version_check(platform_ids[platform])) {
continue;
}
char pname[256];
clGetPlatformInfo(platform_id,
CL_PLATFORM_NAME,
sizeof(pname),
&pname,
NULL);
string platform_name = pname;
for(int num = 0; num < num_devices; num++) {
cl_device_id device_id = device_ids[num];
if(!opencl_device_version_check(device_id)) {
continue;
}
if(force_all_platforms ||
opencl_device_supported(platform_name, device_id))
{
usable_devices->push_back(OpenCLPlatformDevice(platform_id,
device_id));
}
}
}
}
} /* namespace */
/* thread safe cache for contexts and programs */
class OpenCLCache
{
struct Slot
{
thread_mutex *mutex;
cl_context context;
/* cl_program for shader, bake, film_convert kernels (used in OpenCLDeviceBase) */
cl_program ocl_dev_base_program;
/* cl_program for megakernel (used in OpenCLDeviceMegaKernel) */
cl_program ocl_dev_megakernel_program;
Slot() : mutex(NULL), context(NULL), ocl_dev_base_program(NULL), ocl_dev_megakernel_program(NULL) {}
Slot(const Slot &rhs)
: mutex(rhs.mutex)
, context(rhs.context)
, ocl_dev_base_program(rhs.ocl_dev_base_program)
, ocl_dev_megakernel_program(rhs.ocl_dev_megakernel_program)
{
/* copy can only happen in map insert, assert that */
assert(mutex == NULL);
}
~Slot()
{
delete mutex;
mutex = NULL;
}
};
/* key is combination of platform ID and device ID */
typedef pair<cl_platform_id, cl_device_id> PlatformDevicePair;
/* map of Slot objects */
typedef map<PlatformDevicePair, Slot> CacheMap;
CacheMap cache;
thread_mutex cache_lock;
/* lazy instantiate */
static OpenCLCache &global_instance()
{
static OpenCLCache instance;
return instance;
}
OpenCLCache()
{
}
~OpenCLCache()
{
/* Intel OpenCL bug raises SIGABRT due to pure virtual call
* so this is disabled. It's not necessary to free objects
* at process exit anyway.
* http://software.intel.com/en-us/forums/topic/370083#comments */
//flush();
}
/* lookup something in the cache. If this returns NULL, slot_locker
* will be holding a lock for the cache. slot_locker should refer to a
* default constructed thread_scoped_lock */
template<typename T>
static T get_something(cl_platform_id platform, cl_device_id device,
T Slot::*member, thread_scoped_lock &slot_locker)
{
assert(platform != NULL);
OpenCLCache &self = global_instance();
thread_scoped_lock cache_lock(self.cache_lock);
pair<CacheMap::iterator,bool> ins = self.cache.insert(
CacheMap::value_type(PlatformDevicePair(platform, device), Slot()));
Slot &slot = ins.first->second;
/* create slot lock only while holding cache lock */
if(!slot.mutex)
slot.mutex = new thread_mutex;
/* need to unlock cache before locking slot, to allow store to complete */
cache_lock.unlock();
/* lock the slot */
slot_locker = thread_scoped_lock(*slot.mutex);
/* If the thing isn't cached */
if(slot.*member == NULL) {
/* return with the caller's lock holder holding the slot lock */
return NULL;
}
/* the item was already cached, release the slot lock */
slot_locker.unlock();
return slot.*member;
}
/* store something in the cache. you MUST have tried to get the item before storing to it */
template<typename T>
static void store_something(cl_platform_id platform, cl_device_id device, T thing,
T Slot::*member, thread_scoped_lock &slot_locker)
{
assert(platform != NULL);
assert(device != NULL);
assert(thing != NULL);
OpenCLCache &self = global_instance();
thread_scoped_lock cache_lock(self.cache_lock);
CacheMap::iterator i = self.cache.find(PlatformDevicePair(platform, device));
cache_lock.unlock();
Slot &slot = i->second;
/* sanity check */
assert(i != self.cache.end());
assert(slot.*member == NULL);
slot.*member = thing;
/* unlock the slot */
slot_locker.unlock();
}
public:
enum ProgramName {
OCL_DEV_BASE_PROGRAM,
OCL_DEV_MEGAKERNEL_PROGRAM,
};
/* see get_something comment */
static cl_context get_context(cl_platform_id platform, cl_device_id device,
thread_scoped_lock &slot_locker)
{
cl_context context = get_something<cl_context>(platform, device, &Slot::context, slot_locker);
if(!context)
return NULL;
/* caller is going to release it when done with it, so retain it */
cl_int ciErr = clRetainContext(context);
assert(ciErr == CL_SUCCESS);
(void)ciErr;
return context;
}
/* see get_something comment */
static cl_program get_program(cl_platform_id platform, cl_device_id device, ProgramName program_name,
thread_scoped_lock &slot_locker)
{
cl_program program = NULL;
if(program_name == OCL_DEV_BASE_PROGRAM) {
/* Get program related to OpenCLDeviceBase */
program = get_something<cl_program>(platform, device, &Slot::ocl_dev_base_program, slot_locker);
}
else if(program_name == OCL_DEV_MEGAKERNEL_PROGRAM) {
/* Get program related to megakernel */
program = get_something<cl_program>(platform, device, &Slot::ocl_dev_megakernel_program, slot_locker);
} else {
assert(!"Invalid program name");
}
if(!program)
return NULL;
/* caller is going to release it when done with it, so retain it */
cl_int ciErr = clRetainProgram(program);
assert(ciErr == CL_SUCCESS);
(void)ciErr;
return program;
}
/* see store_something comment */
static void store_context(cl_platform_id platform, cl_device_id device, cl_context context,
thread_scoped_lock &slot_locker)
{
store_something<cl_context>(platform, device, context, &Slot::context, slot_locker);
/* increment reference count in OpenCL.
* The caller is going to release the object when done with it. */
cl_int ciErr = clRetainContext(context);
assert(ciErr == CL_SUCCESS);
(void)ciErr;
}
/* see store_something comment */
static void store_program(cl_platform_id platform, cl_device_id device, cl_program program, ProgramName program_name,
thread_scoped_lock &slot_locker)
{
if(program_name == OCL_DEV_BASE_PROGRAM) {
store_something<cl_program>(platform, device, program, &Slot::ocl_dev_base_program, slot_locker);
}
else if(program_name == OCL_DEV_MEGAKERNEL_PROGRAM) {
store_something<cl_program>(platform, device, program, &Slot::ocl_dev_megakernel_program, slot_locker);
} else {
assert(!"Invalid program name\n");
return;
}
/* increment reference count in OpenCL.
* The caller is going to release the object when done with it. */
cl_int ciErr = clRetainProgram(program);
assert(ciErr == CL_SUCCESS);
(void)ciErr;
}
/* discard all cached contexts and programs
* the parameter is a temporary workaround. See OpenCLCache::~OpenCLCache */
static void flush()
{
OpenCLCache &self = global_instance();
thread_scoped_lock cache_lock(self.cache_lock);
foreach(CacheMap::value_type &item, self.cache) {
if(item.second.ocl_dev_base_program != NULL)
clReleaseProgram(item.second.ocl_dev_base_program);
if(item.second.ocl_dev_megakernel_program != NULL)
clReleaseProgram(item.second.ocl_dev_megakernel_program);
if(item.second.context != NULL)
clReleaseContext(item.second.context);
}
self.cache.clear();
}
};
class OpenCLDeviceBase : public Device
{
public:
DedicatedTaskPool task_pool;
cl_context cxContext;
cl_command_queue cqCommandQueue;
cl_platform_id cpPlatform;
cl_device_id cdDevice;
cl_program cpProgram;
cl_kernel ckFilmConvertByteKernel;
cl_kernel ckFilmConvertHalfFloatKernel;
cl_kernel ckShaderKernel;
cl_kernel ckBakeKernel;
cl_int ciErr;
typedef map<string, device_vector<uchar>*> ConstMemMap;
typedef map<string, device_ptr> MemMap;
ConstMemMap const_mem_map;
MemMap mem_map;
device_ptr null_mem;
bool device_initialized;
string platform_name;
bool opencl_error(cl_int err)
{
if(err != CL_SUCCESS) {
string message = string_printf("OpenCL error (%d): %s", err, clewErrorString(err));
if(error_msg == "")
error_msg = message;
fprintf(stderr, "%s\n", message.c_str());
return true;
}
return false;
}
void opencl_error(const string& message)
{
if(error_msg == "")
error_msg = message;
fprintf(stderr, "%s\n", message.c_str());
}
#define opencl_assert(stmt) \
{ \
cl_int err = stmt; \
\
if(err != CL_SUCCESS) { \
string message = string_printf("OpenCL error: %s in %s", clewErrorString(err), #stmt); \
if(error_msg == "") \
error_msg = message; \
fprintf(stderr, "%s\n", message.c_str()); \
} \
} (void)0
void opencl_assert_err(cl_int err, const char* where)
{
if(err != CL_SUCCESS) {
string message = string_printf("OpenCL error (%d): %s in %s", err, clewErrorString(err), where);
if(error_msg == "")
error_msg = message;
fprintf(stderr, "%s\n", message.c_str());
#ifndef NDEBUG
abort();
#endif
}
}
OpenCLDeviceBase(DeviceInfo& info, Stats &stats, bool background_)
: Device(info, stats, background_)
{
cpPlatform = NULL;
cdDevice = NULL;
cxContext = NULL;
cqCommandQueue = NULL;
cpProgram = NULL;
ckFilmConvertByteKernel = NULL;
ckFilmConvertHalfFloatKernel = NULL;
ckShaderKernel = NULL;
ckBakeKernel = NULL;
null_mem = 0;
device_initialized = false;
vector<OpenCLPlatformDevice> usable_devices;
opencl_get_usable_devices(&usable_devices);
if(usable_devices.size() == 0) {
opencl_error("OpenCL: no devices found.");
return;
}
assert(info.num < usable_devices.size());
OpenCLPlatformDevice& platform_device = usable_devices[info.num];
cpPlatform = platform_device.platform_id;
cdDevice = platform_device.device_id;
char name[256];
clGetPlatformInfo(cpPlatform, CL_PLATFORM_NAME, sizeof(name), &name, NULL);
platform_name = name;
{
/* try to use cached context */
thread_scoped_lock cache_locker;
cxContext = OpenCLCache::get_context(cpPlatform, cdDevice, cache_locker);
if(cxContext == NULL) {
/* create context properties array to specify platform */
const cl_context_properties context_props[] = {
CL_CONTEXT_PLATFORM, (cl_context_properties)cpPlatform,
0, 0
};
/* create context */
cxContext = clCreateContext(context_props, 1, &cdDevice,
context_notify_callback, cdDevice, &ciErr);
if(opencl_error(ciErr)) {
opencl_error("OpenCL: clCreateContext failed");
return;
}
/* cache it */
OpenCLCache::store_context(cpPlatform, cdDevice, cxContext, cache_locker);
}
}
cqCommandQueue = clCreateCommandQueue(cxContext, cdDevice, 0, &ciErr);
if(opencl_error(ciErr))
return;
null_mem = (device_ptr)clCreateBuffer(cxContext, CL_MEM_READ_ONLY, 1, NULL, &ciErr);
if(opencl_error(ciErr))
return;
fprintf(stderr, "Device init success\n");
device_initialized = true;
}
static void CL_CALLBACK context_notify_callback(const char *err_info,
const void * /*private_info*/, size_t /*cb*/, void *user_data)
{
char name[256];
clGetDeviceInfo((cl_device_id)user_data, CL_DEVICE_NAME, sizeof(name), &name, NULL);
fprintf(stderr, "OpenCL error (%s): %s\n", name, err_info);
}
bool opencl_version_check()
{
string error;
if(!opencl_platform_version_check(cpPlatform, &error)) {
opencl_error(error);
return false;
}
if(!opencl_device_version_check(cdDevice, &error)) {
opencl_error(error);
return false;
}
return true;
}
bool load_binary(const string& /*kernel_path*/,
const string& clbin,
string custom_kernel_build_options,
cl_program *program,
const string *debug_src = NULL)
{
/* read binary into memory */
vector<uint8_t> binary;
if(!path_read_binary(clbin, binary)) {
opencl_error(string_printf("OpenCL failed to read cached binary %s.", clbin.c_str()));
return false;
}
/* create program */
cl_int status;
size_t size = binary.size();
const uint8_t *bytes = &binary[0];
*program = clCreateProgramWithBinary(cxContext, 1, &cdDevice,
&size, &bytes, &status, &ciErr);
if(opencl_error(status) || opencl_error(ciErr)) {
opencl_error(string_printf("OpenCL failed create program from cached binary %s.", clbin.c_str()));
return false;
}
if(!build_kernel(program, custom_kernel_build_options, debug_src))
return false;
return true;
}
bool save_binary(cl_program *program, const string& clbin)
{
size_t size = 0;
clGetProgramInfo(*program, CL_PROGRAM_BINARY_SIZES, sizeof(size_t), &size, NULL);
if(!size)
return false;
vector<uint8_t> binary(size);
uint8_t *bytes = &binary[0];
clGetProgramInfo(*program, CL_PROGRAM_BINARIES, sizeof(uint8_t*), &bytes, NULL);
if(!path_write_binary(clbin, binary)) {
opencl_error(string_printf("OpenCL failed to write cached binary %s.", clbin.c_str()));
return false;
}
return true;
}
bool build_kernel(cl_program *kernel_program,
string custom_kernel_build_options,
const string *debug_src = NULL)
{
string build_options;
build_options = kernel_build_options(debug_src) + custom_kernel_build_options;
ciErr = clBuildProgram(*kernel_program, 0, NULL, build_options.c_str(), NULL, NULL);
/* show warnings even if build is successful */
size_t ret_val_size = 0;
clGetProgramBuildInfo(*kernel_program, cdDevice, CL_PROGRAM_BUILD_LOG, 0, NULL, &ret_val_size);
if(ret_val_size > 1) {
vector<char> build_log(ret_val_size + 1);
clGetProgramBuildInfo(*kernel_program, cdDevice, CL_PROGRAM_BUILD_LOG, ret_val_size, &build_log[0], NULL);
build_log[ret_val_size] = '\0';
/* Skip meaningless empty output from the NVidia compiler. */
if(!(ret_val_size == 2 && build_log[0] == '\n')) {
fprintf(stderr, "OpenCL kernel build output:\n");
fprintf(stderr, "%s\n", &build_log[0]);
}
}
if(ciErr != CL_SUCCESS) {
opencl_error("OpenCL build failed: errors in console");
return false;
}
return true;
}
bool compile_kernel(const string& kernel_path,
string source,
string custom_kernel_build_options,
cl_program *kernel_program,
const string *debug_src = NULL)
{
/* we compile kernels consisting of many files. unfortunately opencl
* kernel caches do not seem to recognize changes in included files.
* so we force recompile on changes by adding the md5 hash of all files */
source = path_source_replace_includes(source, kernel_path);
if(debug_src)
path_write_text(*debug_src, source);
size_t source_len = source.size();
const char *source_str = source.c_str();
*kernel_program = clCreateProgramWithSource(cxContext, 1, &source_str, &source_len, &ciErr);
if(opencl_error(ciErr))
return false;
double starttime = time_dt();
printf("Compiling OpenCL kernel ...\n");
/* TODO(sergey): Report which kernel is being compiled
* as well (megakernel or which of split kernels etc..).
*/
printf("Build flags: %s\n", custom_kernel_build_options.c_str());
if(!build_kernel(kernel_program, custom_kernel_build_options, debug_src))
return false;
printf("Kernel compilation finished in %.2lfs.\n", time_dt() - starttime);
return true;
}
string device_md5_hash(string kernel_custom_build_options = "")
{
MD5Hash md5;
char version[256], driver[256], name[256], vendor[256];
clGetPlatformInfo(cpPlatform, CL_PLATFORM_VENDOR, sizeof(vendor), &vendor, NULL);
clGetDeviceInfo(cdDevice, CL_DEVICE_VERSION, sizeof(version), &version, NULL);
clGetDeviceInfo(cdDevice, CL_DEVICE_NAME, sizeof(name), &name, NULL);
clGetDeviceInfo(cdDevice, CL_DRIVER_VERSION, sizeof(driver), &driver, NULL);
md5.append((uint8_t*)vendor, strlen(vendor));
md5.append((uint8_t*)version, strlen(version));
md5.append((uint8_t*)name, strlen(name));
md5.append((uint8_t*)driver, strlen(driver));
string options = kernel_build_options();
options += kernel_custom_build_options;
md5.append((uint8_t*)options.c_str(), options.size());
return md5.get_hex();
}
bool load_kernels(const DeviceRequestedFeatures& /*requested_features*/)
{
/* verify if device was initialized */
if(!device_initialized) {
fprintf(stderr, "OpenCL: failed to initialize device.\n");
return false;
}
/* try to use cached kernel */
thread_scoped_lock cache_locker;
cpProgram = OpenCLCache::get_program(cpPlatform, cdDevice, OpenCLCache::OCL_DEV_BASE_PROGRAM, cache_locker);
if(!cpProgram) {
/* verify we have right opencl version */
if(!opencl_version_check())
return false;
/* md5 hash to detect changes */
string kernel_path = path_get("kernel");
string kernel_md5 = path_files_md5_hash(kernel_path);
string device_md5 = device_md5_hash();
/* path to cached binary */
string clbin = string_printf("cycles_kernel_%s_%s.clbin", device_md5.c_str(), kernel_md5.c_str());
clbin = path_user_get(path_join("cache", clbin));
/* path to preprocessed source for debugging */
string clsrc, *debug_src = NULL;
if(opencl_kernel_use_debug()) {
clsrc = string_printf("cycles_kernel_%s_%s.cl", device_md5.c_str(), kernel_md5.c_str());
clsrc = path_user_get(path_join("cache", clsrc));
debug_src = &clsrc;
}
/* if exists already, try use it */
if(path_exists(clbin) && load_binary(kernel_path, clbin, "", &cpProgram)) {
/* kernel loaded from binary */
}
else {
string init_kernel_source = "#include \"kernels/opencl/kernel.cl\" // " + kernel_md5 + "\n";
/* if does not exist or loading binary failed, compile kernel */
if(!compile_kernel(kernel_path, init_kernel_source, "", &cpProgram, debug_src))
return false;
/* save binary for reuse */
if(!save_binary(&cpProgram, clbin))
return false;
}
/* cache the program */
OpenCLCache::store_program(cpPlatform, cdDevice, cpProgram, OpenCLCache::OCL_DEV_BASE_PROGRAM, cache_locker);
}
/* find kernels */
ckFilmConvertByteKernel = clCreateKernel(cpProgram, "kernel_ocl_convert_to_byte", &ciErr);
if(opencl_error(ciErr))
return false;
ckFilmConvertHalfFloatKernel = clCreateKernel(cpProgram, "kernel_ocl_convert_to_half_float", &ciErr);
if(opencl_error(ciErr))
return false;
ckShaderKernel = clCreateKernel(cpProgram, "kernel_ocl_shader", &ciErr);
if(opencl_error(ciErr))
return false;
ckBakeKernel = clCreateKernel(cpProgram, "kernel_ocl_bake", &ciErr);
if(opencl_error(ciErr))
return false;
return true;
}
~OpenCLDeviceBase()
{
task_pool.stop();
if(null_mem)
clReleaseMemObject(CL_MEM_PTR(null_mem));
ConstMemMap::iterator mt;
for(mt = const_mem_map.begin(); mt != const_mem_map.end(); mt++) {
mem_free(*(mt->second));
delete mt->second;
}
if(ckFilmConvertByteKernel)
clReleaseKernel(ckFilmConvertByteKernel);
if(ckFilmConvertHalfFloatKernel)
clReleaseKernel(ckFilmConvertHalfFloatKernel);
if(ckShaderKernel)
clReleaseKernel(ckShaderKernel);
if(ckBakeKernel)
clReleaseKernel(ckBakeKernel);
if(cpProgram)
clReleaseProgram(cpProgram);
if(cqCommandQueue)
clReleaseCommandQueue(cqCommandQueue);
if(cxContext)
clReleaseContext(cxContext);
}
void mem_alloc(device_memory& mem, MemoryType type)
{
size_t size = mem.memory_size();
cl_mem_flags mem_flag;
void *mem_ptr = NULL;
if(type == MEM_READ_ONLY)
mem_flag = CL_MEM_READ_ONLY;
else if(type == MEM_WRITE_ONLY)
mem_flag = CL_MEM_WRITE_ONLY;
else
mem_flag = CL_MEM_READ_WRITE;
/* Zero-size allocation might be invoked by render, but not really
* supported by OpenCL. Using NULL as device pointer also doesn't really
* work for some reason, so for the time being we'll use special case
* will null_mem buffer.
*/
if(size != 0) {
mem.device_pointer = (device_ptr)clCreateBuffer(cxContext,
mem_flag,
size,
mem_ptr,
&ciErr);
opencl_assert_err(ciErr, "clCreateBuffer");
}
else {
mem.device_pointer = null_mem;
}
stats.mem_alloc(size);
mem.device_size = size;
}
void mem_copy_to(device_memory& mem)
{
/* this is blocking */
size_t size = mem.memory_size();
if(size != 0){
opencl_assert(clEnqueueWriteBuffer(cqCommandQueue,
CL_MEM_PTR(mem.device_pointer),
CL_TRUE,
0,
size,
(void*)mem.data_pointer,
0,
NULL, NULL));
}
}
void mem_copy_from(device_memory& mem, int y, int w, int h, int elem)
{
size_t offset = elem*y*w;
size_t size = elem*w*h;
assert(size != 0);
opencl_assert(clEnqueueReadBuffer(cqCommandQueue,
CL_MEM_PTR(mem.device_pointer),
CL_TRUE,
offset,
size,
(uchar*)mem.data_pointer + offset,
0,
NULL, NULL));
}
void mem_zero(device_memory& mem)
{
if(mem.device_pointer) {
memset((void*)mem.data_pointer, 0, mem.memory_size());
mem_copy_to(mem);
}
}
void mem_free(device_memory& mem)
{
if(mem.device_pointer) {
if(mem.device_pointer != null_mem) {
opencl_assert(clReleaseMemObject(CL_MEM_PTR(mem.device_pointer)));
}
mem.device_pointer = 0;
stats.mem_free(mem.device_size);
mem.device_size = 0;
}
}
void const_copy_to(const char *name, void *host, size_t size)
{
ConstMemMap::iterator i = const_mem_map.find(name);
if(i == const_mem_map.end()) {
device_vector<uchar> *data = new device_vector<uchar>();
data->copy((uchar*)host, size);
mem_alloc(*data, MEM_READ_ONLY);
i = const_mem_map.insert(ConstMemMap::value_type(name, data)).first;
}
else {
device_vector<uchar> *data = i->second;
data->copy((uchar*)host, size);
}
mem_copy_to(*i->second);
}
void tex_alloc(const char *name,
device_memory& mem,
InterpolationType /*interpolation*/,
bool /*periodic*/)
{
VLOG(1) << "Texture allocate: " << name << ", " << mem.memory_size() << " bytes.";
mem_alloc(mem, MEM_READ_ONLY);
mem_copy_to(mem);
assert(mem_map.find(name) == mem_map.end());
mem_map.insert(MemMap::value_type(name, mem.device_pointer));
}
void tex_free(device_memory& mem)
{
if(mem.device_pointer) {
foreach(const MemMap::value_type& value, mem_map) {
if(value.second == mem.device_pointer) {
mem_map.erase(value.first);
break;
}
}
mem_free(mem);
}
}
size_t global_size_round_up(int group_size, int global_size)
{
int r = global_size % group_size;
return global_size + ((r == 0)? 0: group_size - r);
}
void enqueue_kernel(cl_kernel kernel, size_t w, size_t h)
{
size_t workgroup_size, max_work_items[3];
clGetKernelWorkGroupInfo(kernel, cdDevice,
CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &workgroup_size, NULL);
clGetDeviceInfo(cdDevice,
CL_DEVICE_MAX_WORK_ITEM_SIZES, sizeof(size_t)*3, max_work_items, NULL);
/* try to divide evenly over 2 dimensions */
size_t sqrt_workgroup_size = max((size_t)sqrt((double)workgroup_size), 1);
size_t local_size[2] = {sqrt_workgroup_size, sqrt_workgroup_size};
/* some implementations have max size 1 on 2nd dimension */
if(local_size[1] > max_work_items[1]) {
local_size[0] = workgroup_size/max_work_items[1];
local_size[1] = max_work_items[1];
}
size_t global_size[2] = {global_size_round_up(local_size[0], w), global_size_round_up(local_size[1], h)};
/* run kernel */
opencl_assert(clEnqueueNDRangeKernel(cqCommandQueue, kernel, 2, NULL, global_size, NULL, 0, NULL, NULL));
opencl_assert(clFlush(cqCommandQueue));
}
void set_kernel_arg_mem(cl_kernel kernel, cl_uint *narg, const char *name)
{
cl_mem ptr;
MemMap::iterator i = mem_map.find(name);
if(i != mem_map.end()) {
ptr = CL_MEM_PTR(i->second);
}
else {
/* work around NULL not working, even though the spec says otherwise */
ptr = CL_MEM_PTR(null_mem);
}
opencl_assert(clSetKernelArg(kernel, (*narg)++, sizeof(ptr), (void*)&ptr));
}
void film_convert(DeviceTask& task, device_ptr buffer, device_ptr rgba_byte, device_ptr rgba_half)
{
/* cast arguments to cl types */
cl_mem d_data = CL_MEM_PTR(const_mem_map["__data"]->device_pointer);
cl_mem d_rgba = (rgba_byte)? CL_MEM_PTR(rgba_byte): CL_MEM_PTR(rgba_half);
cl_mem d_buffer = CL_MEM_PTR(buffer);
cl_int d_x = task.x;
cl_int d_y = task.y;
cl_int d_w = task.w;
cl_int d_h = task.h;
cl_float d_sample_scale = 1.0f/(task.sample + 1);
cl_int d_offset = task.offset;
cl_int d_stride = task.stride;
cl_kernel ckFilmConvertKernel = (rgba_byte)? ckFilmConvertByteKernel: ckFilmConvertHalfFloatKernel;
cl_uint start_arg_index =
kernel_set_args(ckFilmConvertKernel,
0,
d_data,
d_rgba,
d_buffer);
#define KERNEL_TEX(type, ttype, name) \
set_kernel_arg_mem(ckFilmConvertKernel, &start_arg_index, #name);
#include "kernel_textures.h"
#undef KERNEL_TEX
start_arg_index += kernel_set_args(ckFilmConvertKernel,
start_arg_index,
d_sample_scale,
d_x,
d_y,
d_w,
d_h,
d_offset,
d_stride);
enqueue_kernel(ckFilmConvertKernel, d_w, d_h);
}
void shader(DeviceTask& task)
{
/* cast arguments to cl types */
cl_mem d_data = CL_MEM_PTR(const_mem_map["__data"]->device_pointer);
cl_mem d_input = CL_MEM_PTR(task.shader_input);
cl_mem d_output = CL_MEM_PTR(task.shader_output);
cl_int d_shader_eval_type = task.shader_eval_type;
cl_int d_shader_x = task.shader_x;
cl_int d_shader_w = task.shader_w;
cl_int d_offset = task.offset;
cl_kernel kernel;
if(task.shader_eval_type >= SHADER_EVAL_BAKE)
kernel = ckBakeKernel;
else
kernel = ckShaderKernel;
for(int sample = 0; sample < task.num_samples; sample++) {
if(task.get_cancel())
break;
cl_int d_sample = sample;
cl_uint start_arg_index =
kernel_set_args(kernel,
0,
d_data,
d_input,
d_output);
#define KERNEL_TEX(type, ttype, name) \
set_kernel_arg_mem(kernel, &start_arg_index, #name);
#include "kernel_textures.h"
#undef KERNEL_TEX
start_arg_index += kernel_set_args(kernel,
start_arg_index,
d_shader_eval_type,
d_shader_x,
d_shader_w,
d_offset,
d_sample);
enqueue_kernel(kernel, task.shader_w, 1);
task.update_progress(NULL);
}
}
class OpenCLDeviceTask : public DeviceTask {
public:
OpenCLDeviceTask(OpenCLDeviceBase *device, DeviceTask& task)
: DeviceTask(task)
{
run = function_bind(&OpenCLDeviceBase::thread_run,
device,
this);
}
};
int get_split_task_count(DeviceTask& /*task*/)
{
return 1;
}
void task_add(DeviceTask& task)
{
task_pool.push(new OpenCLDeviceTask(this, task));
}
void task_wait()
{
task_pool.wait();
}
void task_cancel()
{
task_pool.cancel();
}
virtual void thread_run(DeviceTask * /*task*/) = 0;
protected:
string kernel_build_options(const string *debug_src = NULL)
{
string build_options = " -cl-fast-relaxed-math ";
if(platform_name == "NVIDIA CUDA") {
build_options += "-D__KERNEL_OPENCL_NVIDIA__ "
"-cl-nv-maxrregcount=32 "
"-cl-nv-verbose ";
uint compute_capability_major, compute_capability_minor;
clGetDeviceInfo(cdDevice, CL_DEVICE_COMPUTE_CAPABILITY_MAJOR_NV,
sizeof(cl_uint), &compute_capability_major, NULL);
clGetDeviceInfo(cdDevice, CL_DEVICE_COMPUTE_CAPABILITY_MINOR_NV,
sizeof(cl_uint), &compute_capability_minor, NULL);
build_options += string_printf("-D__COMPUTE_CAPABILITY__=%u ",
compute_capability_major * 100 +
compute_capability_minor * 10);
}
else if(platform_name == "Apple")
build_options += "-D__KERNEL_OPENCL_APPLE__ ";
else if(platform_name == "AMD Accelerated Parallel Processing")
build_options += "-D__KERNEL_OPENCL_AMD__ ";
else if(platform_name == "Intel(R) OpenCL") {
build_options += "-D__KERNEL_OPENCL_INTEL_CPU__ ";
/* Options for gdb source level kernel debugging.
* this segfaults on linux currently.
*/
if(opencl_kernel_use_debug() && debug_src)
build_options += "-g -s \"" + *debug_src + "\" ";
}
if(opencl_kernel_use_debug())
build_options += "-D__KERNEL_OPENCL_DEBUG__ ";
#ifdef WITH_CYCLES_DEBUG
build_options += "-D__KERNEL_DEBUG__ ";
#endif
return build_options;
}
class ArgumentWrapper {
public:
ArgumentWrapper() : size(0), pointer(NULL) {}
template <typename T>
ArgumentWrapper(T& argument) : size(sizeof(argument)),
pointer(&argument) { }
size_t size;
void *pointer;
};
/* TODO(sergey): In the future we can use variadic templates, once
* C++0x is allowed. Should allow to clean this up a bit.
*/
int kernel_set_args(cl_kernel kernel,
int start_argument_index,
const ArgumentWrapper& arg1 = ArgumentWrapper(),
const ArgumentWrapper& arg2 = ArgumentWrapper(),
const ArgumentWrapper& arg3 = ArgumentWrapper(),
const ArgumentWrapper& arg4 = ArgumentWrapper(),
const ArgumentWrapper& arg5 = ArgumentWrapper(),
const ArgumentWrapper& arg6 = ArgumentWrapper(),
const ArgumentWrapper& arg7 = ArgumentWrapper(),
const ArgumentWrapper& arg8 = ArgumentWrapper(),
const ArgumentWrapper& arg9 = ArgumentWrapper(),
const ArgumentWrapper& arg10 = ArgumentWrapper(),
const ArgumentWrapper& arg11 = ArgumentWrapper(),
const ArgumentWrapper& arg12 = ArgumentWrapper(),
const ArgumentWrapper& arg13 = ArgumentWrapper(),
const ArgumentWrapper& arg14 = ArgumentWrapper(),
const ArgumentWrapper& arg15 = ArgumentWrapper(),
const ArgumentWrapper& arg16 = ArgumentWrapper(),
const ArgumentWrapper& arg17 = ArgumentWrapper(),
const ArgumentWrapper& arg18 = ArgumentWrapper(),
const ArgumentWrapper& arg19 = ArgumentWrapper(),
const ArgumentWrapper& arg20 = ArgumentWrapper(),
const ArgumentWrapper& arg21 = ArgumentWrapper(),
const ArgumentWrapper& arg22 = ArgumentWrapper(),
const ArgumentWrapper& arg23 = ArgumentWrapper(),
const ArgumentWrapper& arg24 = ArgumentWrapper(),
const ArgumentWrapper& arg25 = ArgumentWrapper(),
const ArgumentWrapper& arg26 = ArgumentWrapper(),
const ArgumentWrapper& arg27 = ArgumentWrapper(),
const ArgumentWrapper& arg28 = ArgumentWrapper(),
const ArgumentWrapper& arg29 = ArgumentWrapper(),
const ArgumentWrapper& arg30 = ArgumentWrapper(),
const ArgumentWrapper& arg31 = ArgumentWrapper(),
const ArgumentWrapper& arg32 = ArgumentWrapper(),
const ArgumentWrapper& arg33 = ArgumentWrapper())
{
int current_arg_index = 0;
#define FAKE_VARARG_HANDLE_ARG(arg) \
do { \
if(arg.pointer != NULL) { \
opencl_assert(clSetKernelArg( \
kernel, \
start_argument_index + current_arg_index, \
arg.size, arg.pointer)); \
++current_arg_index; \
} \
else { \
return current_arg_index; \
} \
} while(false)
FAKE_VARARG_HANDLE_ARG(arg1);
FAKE_VARARG_HANDLE_ARG(arg2);
FAKE_VARARG_HANDLE_ARG(arg3);
FAKE_VARARG_HANDLE_ARG(arg4);
FAKE_VARARG_HANDLE_ARG(arg5);
FAKE_VARARG_HANDLE_ARG(arg6);
FAKE_VARARG_HANDLE_ARG(arg7);
FAKE_VARARG_HANDLE_ARG(arg8);
FAKE_VARARG_HANDLE_ARG(arg9);
FAKE_VARARG_HANDLE_ARG(arg10);
FAKE_VARARG_HANDLE_ARG(arg11);
FAKE_VARARG_HANDLE_ARG(arg12);
FAKE_VARARG_HANDLE_ARG(arg13);
FAKE_VARARG_HANDLE_ARG(arg14);
FAKE_VARARG_HANDLE_ARG(arg15);
FAKE_VARARG_HANDLE_ARG(arg16);
FAKE_VARARG_HANDLE_ARG(arg17);
FAKE_VARARG_HANDLE_ARG(arg18);
FAKE_VARARG_HANDLE_ARG(arg19);
FAKE_VARARG_HANDLE_ARG(arg20);
FAKE_VARARG_HANDLE_ARG(arg21);
FAKE_VARARG_HANDLE_ARG(arg22);
FAKE_VARARG_HANDLE_ARG(arg23);
FAKE_VARARG_HANDLE_ARG(arg24);
FAKE_VARARG_HANDLE_ARG(arg25);
FAKE_VARARG_HANDLE_ARG(arg26);
FAKE_VARARG_HANDLE_ARG(arg27);
FAKE_VARARG_HANDLE_ARG(arg28);
FAKE_VARARG_HANDLE_ARG(arg29);
FAKE_VARARG_HANDLE_ARG(arg30);
FAKE_VARARG_HANDLE_ARG(arg31);
FAKE_VARARG_HANDLE_ARG(arg32);
FAKE_VARARG_HANDLE_ARG(arg33);
#undef FAKE_VARARG_HANDLE_ARG
return current_arg_index;
}
inline void release_kernel_safe(cl_kernel kernel)
{
if(kernel) {
clReleaseKernel(kernel);
}
}
inline void release_mem_object_safe(cl_mem mem)
{
if(mem != NULL) {
clReleaseMemObject(mem);
}
}
inline void release_program_safe(cl_program program)
{
if(program) {
clReleaseProgram(program);
}
}
string build_options_from_requested_features(
const DeviceRequestedFeatures& requested_features)
{
string build_options = "";
if(requested_features.experimental) {
build_options += " -D__KERNEL_EXPERIMENTAL__";
}
build_options += " -D__NODES_MAX_GROUP__=" +
string_printf("%d", requested_features.max_nodes_group);
build_options += " -D__NODES_FEATURES__=" +
string_printf("%d", requested_features.nodes_features);
build_options += string_printf(" -D__MAX_CLOSURE__=%d",
requested_features.max_closure);
if(!requested_features.use_hair) {
build_options += " -D__NO_HAIR__";
}
if(!requested_features.use_object_motion) {
build_options += " -D__NO_OBJECT_MOTION__";
}
if(!requested_features.use_camera_motion) {
build_options += " -D__NO_CAMERA_MOTION__";
}
return build_options;
}
};
class OpenCLDeviceMegaKernel : public OpenCLDeviceBase
{
public:
cl_kernel ckPathTraceKernel;
cl_program path_trace_program;
OpenCLDeviceMegaKernel(DeviceInfo& info, Stats &stats, bool background_)
: OpenCLDeviceBase(info, stats, background_)
{
ckPathTraceKernel = NULL;
path_trace_program = NULL;
}
bool load_kernels(const DeviceRequestedFeatures& requested_features)
{
/* Get Shader, bake and film convert kernels.
* It'll also do verification of OpenCL actually initialized.
*/
if(!OpenCLDeviceBase::load_kernels(requested_features)) {
return false;
}
/* Try to use cached kernel. */
thread_scoped_lock cache_locker;
path_trace_program = OpenCLCache::get_program(cpPlatform,
cdDevice,
OpenCLCache::OCL_DEV_MEGAKERNEL_PROGRAM,
cache_locker);
if(!path_trace_program) {
/* Verify we have right opencl version. */
if(!opencl_version_check())
return false;
/* Calculate md5 hash to detect changes. */
string kernel_path = path_get("kernel");
string kernel_md5 = path_files_md5_hash(kernel_path);
string custom_kernel_build_options = "-D__COMPILE_ONLY_MEGAKERNEL__ ";
string device_md5 = device_md5_hash(custom_kernel_build_options);
/* Path to cached binary. */
string clbin = string_printf("cycles_kernel_%s_%s.clbin",
device_md5.c_str(),
kernel_md5.c_str());
clbin = path_user_get(path_join("cache", clbin));
/* Path to preprocessed source for debugging. */
string clsrc, *debug_src = NULL;
if(opencl_kernel_use_debug()) {
clsrc = string_printf("cycles_kernel_%s_%s.cl",
device_md5.c_str(),
kernel_md5.c_str());
clsrc = path_user_get(path_join("cache", clsrc));
debug_src = &clsrc;
}
/* If exists already, try use it. */
if(path_exists(clbin) && load_binary(kernel_path,
clbin,
custom_kernel_build_options,
&path_trace_program,
debug_src)) {
/* Kernel loaded from binary, nothing to do. */
}
else {
string init_kernel_source = "#include \"kernels/opencl/kernel.cl\" // " +
kernel_md5 + "\n";
/* If does not exist or loading binary failed, compile kernel. */
if(!compile_kernel(kernel_path,
init_kernel_source,
custom_kernel_build_options,
&path_trace_program,
debug_src))
{
return false;
}
/* Save binary for reuse. */
if(!save_binary(&path_trace_program, clbin)) {
return false;
}
}
/* Cache the program. */
OpenCLCache::store_program(cpPlatform,
cdDevice,
path_trace_program,
OpenCLCache::OCL_DEV_MEGAKERNEL_PROGRAM,
cache_locker);
}
/* Find kernels. */
ckPathTraceKernel = clCreateKernel(path_trace_program,
"kernel_ocl_path_trace",
&ciErr);
if(opencl_error(ciErr))
return false;
return true;
}
~OpenCLDeviceMegaKernel()
{
task_pool.stop();
release_kernel_safe(ckPathTraceKernel);
release_program_safe(path_trace_program);
}
void path_trace(RenderTile& rtile, int sample)
{
/* Cast arguments to cl types. */
cl_mem d_data = CL_MEM_PTR(const_mem_map["__data"]->device_pointer);
cl_mem d_buffer = CL_MEM_PTR(rtile.buffer);
cl_mem d_rng_state = CL_MEM_PTR(rtile.rng_state);
cl_int d_x = rtile.x;
cl_int d_y = rtile.y;
cl_int d_w = rtile.w;
cl_int d_h = rtile.h;
cl_int d_offset = rtile.offset;
cl_int d_stride = rtile.stride;
/* Sample arguments. */
cl_int d_sample = sample;
cl_uint start_arg_index =
kernel_set_args(ckPathTraceKernel,
0,
d_data,
d_buffer,
d_rng_state);
#define KERNEL_TEX(type, ttype, name) \
set_kernel_arg_mem(ckPathTraceKernel, &start_arg_index, #name);
#include "kernel_textures.h"
#undef KERNEL_TEX
start_arg_index += kernel_set_args(ckPathTraceKernel,
start_arg_index,
d_sample,
d_x,
d_y,
d_w,
d_h,
d_offset,
d_stride);
enqueue_kernel(ckPathTraceKernel, d_w, d_h);
}
void thread_run(DeviceTask *task)
{
if(task->type == DeviceTask::FILM_CONVERT) {
film_convert(*task, task->buffer, task->rgba_byte, task->rgba_half);
}
else if(task->type == DeviceTask::SHADER) {
shader(*task);
}
else if(task->type == DeviceTask::PATH_TRACE) {
RenderTile tile;
/* Keep rendering tiles until done. */
while(task->acquire_tile(this, tile)) {
int start_sample = tile.start_sample;
int end_sample = tile.start_sample + tile.num_samples;
for(int sample = start_sample; sample < end_sample; sample++) {
if(task->get_cancel()) {
if(task->need_finish_queue == false)
break;
}
path_trace(tile, sample);
tile.sample = sample + 1;
task->update_progress(&tile);
}
/* Complete kernel execution before release tile */
/* This helps in multi-device render;
* The device that reaches the critical-section function
* release_tile waits (stalling other devices from entering
* release_tile) for all kernels to complete. If device1 (a
* slow-render device) reaches release_tile first then it would
* stall device2 (a fast-render device) from proceeding to render
* next tile.
*/
clFinish(cqCommandQueue);
task->release_tile(tile);
}
}
}
};
/* TODO(sergey): This is to keep tile split on OpenCL level working
* for now, since without this view-port render does not work as it
* should.
*
* Ideally it'll be done on the higher level, but we need to get ready
* for merge rather soon, so let's keep split logic private here in
* the file.
*/
class SplitRenderTile : public RenderTile {
public:
SplitRenderTile()
: RenderTile(),
buffer_offset_x(0),
buffer_offset_y(0),
rng_state_offset_x(0),
rng_state_offset_y(0),
buffer_rng_state_stride(0) {}
explicit SplitRenderTile(RenderTile& tile)
: RenderTile(),
buffer_offset_x(0),
buffer_offset_y(0),
rng_state_offset_x(0),
rng_state_offset_y(0),
buffer_rng_state_stride(0)
{
x = tile.x;
y = tile.y;
w = tile.w;
h = tile.h;
start_sample = tile.start_sample;
num_samples = tile.num_samples;
sample = tile.sample;
resolution = tile.resolution;
offset = tile.offset;
stride = tile.stride;
buffer = tile.buffer;
rng_state = tile.rng_state;
buffers = tile.buffers;
}
/* Split kernel is device global memory constrained;
* hence split kernel cant render big tile size's in
* one go. If the user sets a big tile size (big tile size
* is a term relative to the available device global memory),
* we split the tile further and then call path_trace on
* each of those split tiles. The following variables declared,
* assist in achieving that purpose
*/
int buffer_offset_x;
int buffer_offset_y;
int rng_state_offset_x;
int rng_state_offset_y;
int buffer_rng_state_stride;
};
/* OpenCLDeviceSplitKernel's declaration/definition. */
class OpenCLDeviceSplitKernel : public OpenCLDeviceBase
{
public:
/* Kernel declaration. */
cl_kernel ckPathTraceKernel_data_init;
cl_kernel ckPathTraceKernel_scene_intersect;
cl_kernel ckPathTraceKernel_lamp_emission;
cl_kernel ckPathTraceKernel_queue_enqueue;
cl_kernel ckPathTraceKernel_background_buffer_update;
cl_kernel ckPathTraceKernel_shader_eval;
cl_kernel ckPathTraceKernel_holdout_emission_blurring_pathtermination_ao;
cl_kernel ckPathTraceKernel_direct_lighting;
cl_kernel ckPathTraceKernel_shadow_blocked;
cl_kernel ckPathTraceKernel_next_iteration_setup;
cl_kernel ckPathTraceKernel_sum_all_radiance;
/* cl_program declaration. */
cl_program data_init_program;
cl_program scene_intersect_program;
cl_program lamp_emission_program;
cl_program queue_enqueue_program;
cl_program background_buffer_update_program;
cl_program shader_eval_program;
cl_program holdout_emission_blurring_pathtermination_ao_program;
cl_program direct_lighting_program;
cl_program shadow_blocked_program;
cl_program next_iteration_setup_program;
cl_program sum_all_radiance_program;
/* Global memory variables [porting]; These memory is used for
* co-operation between different kernels; Data written by one
* kernel will be available to another kernel via this global
* memory.
*/
cl_mem rng_coop;
cl_mem throughput_coop;
cl_mem L_transparent_coop;
cl_mem PathRadiance_coop;
cl_mem Ray_coop;
cl_mem PathState_coop;
cl_mem Intersection_coop;
cl_mem kgbuffer; /* KernelGlobals buffer. */
/* Global buffers for ShaderData. */
cl_mem sd; /* ShaderData used in the main path-iteration loop. */
cl_mem sd_DL_shadow; /* ShaderData used in Direct Lighting and
* shadow_blocked kernel.
*/
/* Global buffers of each member of ShaderData. */
cl_mem P_sd;
cl_mem P_sd_DL_shadow;
cl_mem N_sd;
cl_mem N_sd_DL_shadow;
cl_mem Ng_sd;
cl_mem Ng_sd_DL_shadow;
cl_mem I_sd;
cl_mem I_sd_DL_shadow;
cl_mem shader_sd;
cl_mem shader_sd_DL_shadow;
cl_mem flag_sd;
cl_mem flag_sd_DL_shadow;
cl_mem prim_sd;
cl_mem prim_sd_DL_shadow;
cl_mem type_sd;
cl_mem type_sd_DL_shadow;
cl_mem u_sd;
cl_mem u_sd_DL_shadow;
cl_mem v_sd;
cl_mem v_sd_DL_shadow;
cl_mem object_sd;
cl_mem object_sd_DL_shadow;
cl_mem time_sd;
cl_mem time_sd_DL_shadow;
cl_mem ray_length_sd;
cl_mem ray_length_sd_DL_shadow;
cl_mem ray_depth_sd;
cl_mem ray_depth_sd_DL_shadow;
cl_mem transparent_depth_sd;
cl_mem transparent_depth_sd_DL_shadow;
/* Ray differentials. */
cl_mem dP_sd, dI_sd;
cl_mem dP_sd_DL_shadow, dI_sd_DL_shadow;
cl_mem du_sd, dv_sd;
cl_mem du_sd_DL_shadow, dv_sd_DL_shadow;
/* Dp/Du */
cl_mem dPdu_sd, dPdv_sd;
cl_mem dPdu_sd_DL_shadow, dPdv_sd_DL_shadow;
/* Object motion. */
cl_mem ob_tfm_sd, ob_itfm_sd;
cl_mem ob_tfm_sd_DL_shadow, ob_itfm_sd_DL_shadow;
cl_mem closure_sd;
cl_mem closure_sd_DL_shadow;
cl_mem num_closure_sd;
cl_mem num_closure_sd_DL_shadow;
cl_mem randb_closure_sd;
cl_mem randb_closure_sd_DL_shadow;
cl_mem ray_P_sd;
cl_mem ray_P_sd_DL_shadow;
cl_mem ray_dP_sd;
cl_mem ray_dP_sd_DL_shadow;
/* Global memory required for shadow blocked and accum_radiance. */
cl_mem BSDFEval_coop;
cl_mem ISLamp_coop;
cl_mem LightRay_coop;
cl_mem AOAlpha_coop;
cl_mem AOBSDF_coop;
cl_mem AOLightRay_coop;
cl_mem Intersection_coop_AO;
cl_mem Intersection_coop_DL;
#ifdef WITH_CYCLES_DEBUG
/* DebugData memory */
cl_mem debugdata_coop;
#endif
/* Global state array that tracks ray state. */
cl_mem ray_state;
/* Per sample buffers. */
cl_mem per_sample_output_buffers;
/* Denotes which sample each ray is being processed for. */
cl_mem work_array;
/* Queue */
cl_mem Queue_data; /* Array of size queuesize * num_queues * sizeof(int). */
cl_mem Queue_index; /* Array of size num_queues * sizeof(int);
* Tracks the size of each queue.
*/
/* Flag to make sceneintersect and lampemission kernel use queues. */
cl_mem use_queues_flag;
/* Amount of memory in output buffer associated with one pixel/thread. */
size_t per_thread_output_buffer_size;
/* Total allocatable available device memory. */
size_t total_allocatable_memory;
/* host version of ray_state; Used in checking host path-iteration
* termination.
*/
char *hostRayStateArray;
/* Number of path-iterations to be done in one shot. */
unsigned int PathIteration_times;
#ifdef __WORK_STEALING__
/* Work pool with respect to each work group. */
cl_mem work_pool_wgs;
/* Denotes the maximum work groups possible w.r.t. current tile size. */
unsigned int max_work_groups;
#endif
/* clos_max value for which the kernels have been loaded currently. */
int current_max_closure;
/* Marked True in constructor and marked false at the end of path_trace(). */
bool first_tile;
OpenCLDeviceSplitKernel(DeviceInfo& info, Stats &stats, bool background_)
: OpenCLDeviceBase(info, stats, background_)
{
background = background_;
/* Initialize kernels. */
ckPathTraceKernel_data_init = NULL;
ckPathTraceKernel_scene_intersect = NULL;
ckPathTraceKernel_lamp_emission = NULL;
ckPathTraceKernel_background_buffer_update = NULL;
ckPathTraceKernel_shader_eval = NULL;
ckPathTraceKernel_holdout_emission_blurring_pathtermination_ao = NULL;
ckPathTraceKernel_direct_lighting = NULL;
ckPathTraceKernel_shadow_blocked = NULL;
ckPathTraceKernel_next_iteration_setup = NULL;
ckPathTraceKernel_sum_all_radiance = NULL;
ckPathTraceKernel_queue_enqueue = NULL;
/* Initialize program. */
data_init_program = NULL;
scene_intersect_program = NULL;
lamp_emission_program = NULL;
queue_enqueue_program = NULL;
background_buffer_update_program = NULL;
shader_eval_program = NULL;
holdout_emission_blurring_pathtermination_ao_program = NULL;
direct_lighting_program = NULL;
shadow_blocked_program = NULL;
next_iteration_setup_program = NULL;
sum_all_radiance_program = NULL;
/* Initialize cl_mem variables. */
kgbuffer = NULL;
sd = NULL;
sd_DL_shadow = NULL;
P_sd = NULL;
P_sd_DL_shadow = NULL;
N_sd = NULL;
N_sd_DL_shadow = NULL;
Ng_sd = NULL;
Ng_sd_DL_shadow = NULL;
I_sd = NULL;
I_sd_DL_shadow = NULL;
shader_sd = NULL;
shader_sd_DL_shadow = NULL;
flag_sd = NULL;
flag_sd_DL_shadow = NULL;
prim_sd = NULL;
prim_sd_DL_shadow = NULL;
type_sd = NULL;
type_sd_DL_shadow = NULL;
u_sd = NULL;
u_sd_DL_shadow = NULL;
v_sd = NULL;
v_sd_DL_shadow = NULL;
object_sd = NULL;
object_sd_DL_shadow = NULL;
time_sd = NULL;
time_sd_DL_shadow = NULL;
ray_length_sd = NULL;
ray_length_sd_DL_shadow = NULL;
ray_depth_sd = NULL;
ray_depth_sd_DL_shadow = NULL;
transparent_depth_sd = NULL;
transparent_depth_sd_DL_shadow = NULL;
/* Ray differentials. */
dP_sd = NULL;
dI_sd = NULL;
dP_sd_DL_shadow = NULL;
dI_sd_DL_shadow = NULL;
du_sd = NULL;
dv_sd = NULL;
du_sd_DL_shadow = NULL;
dv_sd_DL_shadow = NULL;
/* Dp/Du */
dPdu_sd = NULL;
dPdv_sd = NULL;
dPdu_sd_DL_shadow = NULL;
dPdv_sd_DL_shadow = NULL;
/* Object motion. */
ob_tfm_sd = NULL;
ob_itfm_sd = NULL;
ob_tfm_sd_DL_shadow = NULL;
ob_itfm_sd_DL_shadow = NULL;
closure_sd = NULL;
closure_sd_DL_shadow = NULL;
num_closure_sd = NULL;
num_closure_sd_DL_shadow = NULL;
randb_closure_sd = NULL;
randb_closure_sd_DL_shadow = NULL;
ray_P_sd = NULL;
ray_P_sd_DL_shadow = NULL;
ray_dP_sd = NULL;
ray_dP_sd_DL_shadow = NULL;
rng_coop = NULL;
throughput_coop = NULL;
L_transparent_coop = NULL;
PathRadiance_coop = NULL;
Ray_coop = NULL;
PathState_coop = NULL;
Intersection_coop = NULL;
ray_state = NULL;
AOAlpha_coop = NULL;
AOBSDF_coop = NULL;
AOLightRay_coop = NULL;
BSDFEval_coop = NULL;
ISLamp_coop = NULL;
LightRay_coop = NULL;
Intersection_coop_AO = NULL;
Intersection_coop_DL = NULL;
#ifdef WITH_CYCLES_DEBUG
debugdata_coop = NULL;
#endif
work_array = NULL;
/* Queue. */
Queue_data = NULL;
Queue_index = NULL;
use_queues_flag = NULL;
per_sample_output_buffers = NULL;
per_thread_output_buffer_size = 0;
hostRayStateArray = NULL;
PathIteration_times = PATH_ITER_INC_FACTOR;
#ifdef __WORK_STEALING__
work_pool_wgs = NULL;
max_work_groups = 0;
#endif
current_max_closure = -1;
first_tile = true;
/* Get device's maximum memory that can be allocated. */
ciErr = clGetDeviceInfo(cdDevice,
CL_DEVICE_MAX_MEM_ALLOC_SIZE,
sizeof(size_t),
&total_allocatable_memory,
NULL);
assert(ciErr == CL_SUCCESS);
if(platform_name == "AMD Accelerated Parallel Processing") {
/* This value is tweak-able; AMD platform does not seem to
* give maximum performance when all of CL_DEVICE_MAX_MEM_ALLOC_SIZE
* is considered for further computation.
*/
total_allocatable_memory /= 2;
}
}
/* TODO(sergey): Seems really close to load_kernel(),
* could it be de-duplicated?
*/
bool load_split_kernel(string kernel_path,
string kernel_init_source,
string clbin,
string custom_kernel_build_options,
cl_program *program,
const string *debug_src = NULL)
{
if(!opencl_version_check())
return false;
clbin = path_user_get(path_join("cache", clbin));
/* If exists already, try use it. */
if(path_exists(clbin) && load_binary(kernel_path,
clbin,
custom_kernel_build_options,
program,
debug_src)) {
/* Kernel loaded from binary. */
}
else {
/* If does not exist or loading binary failed, compile kernel. */
if(!compile_kernel(kernel_path,
kernel_init_source,
custom_kernel_build_options,
program,
debug_src))
{
return false;
}
/* Save binary for reuse. */
if(!save_binary(program, clbin)) {
return false;
}
}
return true;
}
/* Split kernel utility functions. */
size_t get_tex_size(const char *tex_name)
{
cl_mem ptr;
size_t ret_size = 0;
MemMap::iterator i = mem_map.find(tex_name);
if(i != mem_map.end()) {
ptr = CL_MEM_PTR(i->second);
ciErr = clGetMemObjectInfo(ptr,
CL_MEM_SIZE,
sizeof(ret_size),
&ret_size,
NULL);
assert(ciErr == CL_SUCCESS);
}
return ret_size;
}
size_t get_shader_closure_size(int max_closure)
{
return (sizeof(ShaderClosure) * max_closure);
}
size_t get_shader_data_size(size_t shader_closure_size)
{
/* ShaderData size without accounting for ShaderClosure array. */
size_t shader_data_size =
sizeof(ShaderData) - (sizeof(ShaderClosure) * MAX_CLOSURE);
return (shader_data_size + shader_closure_size);
}
/* Returns size of KernelGlobals structure associated with OpenCL. */
size_t get_KernelGlobals_size()
{
/* Copy dummy KernelGlobals related to OpenCL from kernel_globals.h to
* fetch its size.
*/
typedef struct KernelGlobals {
ccl_constant KernelData *data;
#define KERNEL_TEX(type, ttype, name) \
ccl_global type *name;
#include "kernel_textures.h"
#undef KERNEL_TEX
} KernelGlobals;
return sizeof(KernelGlobals);
}
/* Returns size of Structure of arrays implementation of. */
size_t get_shaderdata_soa_size()
{
size_t shader_soa_size = 0;
#define SD_VAR(type, what) shader_soa_size += sizeof(void *);
#define SD_CLOSURE_VAR(type, what, max_closure) shader_soa_size += sizeof(void *);
#include "kernel_shaderdata_vars.h"
#undef SD_VAR
#undef SD_CLOSURE_VAR
return shader_soa_size;
}
bool load_kernels(const DeviceRequestedFeatures& requested_features)
{
/* Get Shader, bake and film_convert kernels.
* It'll also do verification of OpenCL actually initialized.
*/
if(!OpenCLDeviceBase::load_kernels(requested_features)) {
return false;
}
string kernel_path = path_get("kernel");
string kernel_md5 = path_files_md5_hash(kernel_path);
string device_md5;
string kernel_init_source;
string clbin;
string clsrc, *debug_src = NULL;
string build_options = "-D__SPLIT_KERNEL__";
#ifdef __WORK_STEALING__
build_options += " -D__WORK_STEALING__";
#endif
build_options += build_options_from_requested_features(requested_features);
/* Set compute device build option. */
cl_device_type device_type;
ciErr = clGetDeviceInfo(cdDevice,
CL_DEVICE_TYPE,
sizeof(cl_device_type),
&device_type,
NULL);
assert(ciErr == CL_SUCCESS);
if(device_type == CL_DEVICE_TYPE_GPU) {
build_options += " -D__COMPUTE_DEVICE_GPU__";
}
#define GLUE(a, b) a ## b
#define LOAD_KERNEL(name) \
do { \
kernel_init_source = "#include \"kernels/opencl/kernel_" #name ".cl\" // " + \
kernel_md5 + "\n"; \
device_md5 = device_md5_hash(build_options); \
clbin = string_printf("cycles_kernel_%s_%s_" #name ".clbin", \
device_md5.c_str(), kernel_md5.c_str()); \
if(opencl_kernel_use_debug()) { \
clsrc = string_printf("cycles_kernel_%s_%s_" #name ".cl", \
device_md5.c_str(), kernel_md5.c_str()); \
clsrc = path_user_get(path_join("cache", clsrc)); \
debug_src = &clsrc; \
} \
if(!load_split_kernel(kernel_path, kernel_init_source, clbin, \
build_options, \
&GLUE(name, _program), \
debug_src)) \
{ \
fprintf(stderr, "Faled to compile %s\n", #name); \
return false; \
} \
} while(false)
LOAD_KERNEL(data_init);
LOAD_KERNEL(scene_intersect);
LOAD_KERNEL(lamp_emission);
LOAD_KERNEL(queue_enqueue);
LOAD_KERNEL(background_buffer_update);
LOAD_KERNEL(shader_eval);
LOAD_KERNEL(holdout_emission_blurring_pathtermination_ao);
LOAD_KERNEL(direct_lighting);
LOAD_KERNEL(shadow_blocked);
LOAD_KERNEL(next_iteration_setup);
LOAD_KERNEL(sum_all_radiance);
#undef LOAD_KERNEL
#define FIND_KERNEL(name) \
do { \
GLUE(ckPathTraceKernel_, name) = \
clCreateKernel(GLUE(name, _program), \
"kernel_ocl_path_trace_" #name, &ciErr); \
if(opencl_error(ciErr)) { \
fprintf(stderr,"Missing kernel kernel_ocl_path_trace_%s\n", #name); \
return false; \
} \
} while(false)
FIND_KERNEL(data_init);
FIND_KERNEL(scene_intersect);
FIND_KERNEL(lamp_emission);
FIND_KERNEL(queue_enqueue);
FIND_KERNEL(background_buffer_update);
FIND_KERNEL(shader_eval);
FIND_KERNEL(holdout_emission_blurring_pathtermination_ao);
FIND_KERNEL(direct_lighting);
FIND_KERNEL(shadow_blocked);
FIND_KERNEL(next_iteration_setup);
FIND_KERNEL(sum_all_radiance);
#undef FIND_KERNEL
#undef GLUE
current_max_closure = requested_features.max_closure;
return true;
}
~OpenCLDeviceSplitKernel()
{
task_pool.stop();
/* Release kernels */
release_kernel_safe(ckPathTraceKernel_data_init);
release_kernel_safe(ckPathTraceKernel_scene_intersect);
release_kernel_safe(ckPathTraceKernel_lamp_emission);
release_kernel_safe(ckPathTraceKernel_queue_enqueue);
release_kernel_safe(ckPathTraceKernel_background_buffer_update);
release_kernel_safe(ckPathTraceKernel_shader_eval);
release_kernel_safe(ckPathTraceKernel_holdout_emission_blurring_pathtermination_ao);
release_kernel_safe(ckPathTraceKernel_direct_lighting);
release_kernel_safe(ckPathTraceKernel_shadow_blocked);
release_kernel_safe(ckPathTraceKernel_next_iteration_setup);
release_kernel_safe(ckPathTraceKernel_sum_all_radiance);
/* Release global memory */
release_mem_object_safe(P_sd);
release_mem_object_safe(P_sd_DL_shadow);
release_mem_object_safe(N_sd);
release_mem_object_safe(N_sd_DL_shadow);
release_mem_object_safe(Ng_sd);
release_mem_object_safe(Ng_sd_DL_shadow);
release_mem_object_safe(I_sd);
release_mem_object_safe(I_sd_DL_shadow);
release_mem_object_safe(shader_sd);
release_mem_object_safe(shader_sd_DL_shadow);
release_mem_object_safe(flag_sd);
release_mem_object_safe(flag_sd_DL_shadow);
release_mem_object_safe(prim_sd);
release_mem_object_safe(prim_sd_DL_shadow);
release_mem_object_safe(type_sd);
release_mem_object_safe(type_sd_DL_shadow);
release_mem_object_safe(u_sd);
release_mem_object_safe(u_sd_DL_shadow);
release_mem_object_safe(v_sd);
release_mem_object_safe(v_sd_DL_shadow);
release_mem_object_safe(object_sd);
release_mem_object_safe(object_sd_DL_shadow);
release_mem_object_safe(time_sd);
release_mem_object_safe(time_sd_DL_shadow);
release_mem_object_safe(ray_length_sd);
release_mem_object_safe(ray_length_sd_DL_shadow);
release_mem_object_safe(ray_depth_sd);
release_mem_object_safe(ray_depth_sd_DL_shadow);
release_mem_object_safe(transparent_depth_sd);
release_mem_object_safe(transparent_depth_sd_DL_shadow);
/* Ray differentials. */
release_mem_object_safe(dP_sd);
release_mem_object_safe(dP_sd_DL_shadow);
release_mem_object_safe(dI_sd);
release_mem_object_safe(dI_sd_DL_shadow);
release_mem_object_safe(du_sd);
release_mem_object_safe(du_sd_DL_shadow);
release_mem_object_safe(dv_sd);
release_mem_object_safe(dv_sd_DL_shadow);
/* Dp/Du */
release_mem_object_safe(dPdu_sd);
release_mem_object_safe(dPdu_sd_DL_shadow);
release_mem_object_safe(dPdv_sd);
release_mem_object_safe(dPdv_sd_DL_shadow);
/* Object motion. */
release_mem_object_safe(ob_tfm_sd);
release_mem_object_safe(ob_itfm_sd);
release_mem_object_safe(ob_tfm_sd_DL_shadow);
release_mem_object_safe(ob_itfm_sd_DL_shadow);
release_mem_object_safe(closure_sd);
release_mem_object_safe(closure_sd_DL_shadow);
release_mem_object_safe(num_closure_sd);
release_mem_object_safe(num_closure_sd_DL_shadow);
release_mem_object_safe(randb_closure_sd);
release_mem_object_safe(randb_closure_sd_DL_shadow);
release_mem_object_safe(ray_P_sd);
release_mem_object_safe(ray_P_sd_DL_shadow);
release_mem_object_safe(ray_dP_sd);
release_mem_object_safe(ray_dP_sd_DL_shadow);
release_mem_object_safe(rng_coop);
release_mem_object_safe(throughput_coop);
release_mem_object_safe(L_transparent_coop);
release_mem_object_safe(PathRadiance_coop);
release_mem_object_safe(Ray_coop);
release_mem_object_safe(PathState_coop);
release_mem_object_safe(Intersection_coop);
release_mem_object_safe(kgbuffer);
release_mem_object_safe(sd);
release_mem_object_safe(sd_DL_shadow);
release_mem_object_safe(ray_state);
release_mem_object_safe(AOAlpha_coop);
release_mem_object_safe(AOBSDF_coop);
release_mem_object_safe(AOLightRay_coop);
release_mem_object_safe(BSDFEval_coop);
release_mem_object_safe(ISLamp_coop);
release_mem_object_safe(LightRay_coop);
release_mem_object_safe(Intersection_coop_AO);
release_mem_object_safe(Intersection_coop_DL);
#ifdef WITH_CYCLES_DEBUG
release_mem_object_safe(debugdata_coop);
#endif
release_mem_object_safe(use_queues_flag);
release_mem_object_safe(Queue_data);
release_mem_object_safe(Queue_index);
release_mem_object_safe(work_array);
#ifdef __WORK_STEALING__
release_mem_object_safe(work_pool_wgs);
#endif
release_mem_object_safe(per_sample_output_buffers);
/* Release programs */
release_program_safe(data_init_program);
release_program_safe(scene_intersect_program);
release_program_safe(lamp_emission_program);
release_program_safe(queue_enqueue_program);
release_program_safe(background_buffer_update_program);
release_program_safe(shader_eval_program);
release_program_safe(holdout_emission_blurring_pathtermination_ao_program);
release_program_safe(direct_lighting_program);
release_program_safe(shadow_blocked_program);
release_program_safe(next_iteration_setup_program);
release_program_safe(sum_all_radiance_program);
if(hostRayStateArray != NULL) {
free(hostRayStateArray);
}
}
void path_trace(SplitRenderTile& rtile, int2 max_render_feasible_tile_size)
{
/* cast arguments to cl types */
cl_mem d_data = CL_MEM_PTR(const_mem_map["__data"]->device_pointer);
cl_mem d_buffer = CL_MEM_PTR(rtile.buffer);
cl_mem d_rng_state = CL_MEM_PTR(rtile.rng_state);
cl_int d_x = rtile.x;
cl_int d_y = rtile.y;
cl_int d_w = rtile.w;
cl_int d_h = rtile.h;
cl_int d_offset = rtile.offset;
cl_int d_stride = rtile.stride;
/* Make sure that set render feasible tile size is a multiple of local
* work size dimensions.
*/
assert(max_render_feasible_tile_size.x % SPLIT_KERNEL_LOCAL_SIZE_X == 0);
assert(max_render_feasible_tile_size.y % SPLIT_KERNEL_LOCAL_SIZE_Y == 0);
size_t global_size[2];
size_t local_size[2] = {SPLIT_KERNEL_LOCAL_SIZE_X,
SPLIT_KERNEL_LOCAL_SIZE_Y};
/* Set the range of samples to be processed for every ray in
* path-regeneration logic.
*/
cl_int start_sample = rtile.start_sample;
cl_int end_sample = rtile.start_sample + rtile.num_samples;
cl_int num_samples = rtile.num_samples;
#ifdef __WORK_STEALING__
global_size[0] = (((d_w - 1) / local_size[0]) + 1) * local_size[0];
global_size[1] = (((d_h - 1) / local_size[1]) + 1) * local_size[1];
unsigned int num_parallel_samples = 1;
#else
global_size[1] = (((d_h - 1) / local_size[1]) + 1) * local_size[1];
unsigned int num_threads = max_render_feasible_tile_size.x *
max_render_feasible_tile_size.y;
unsigned int num_tile_columns_possible = num_threads / global_size[1];
/* Estimate number of parallel samples that can be
* processed in parallel.
*/
unsigned int num_parallel_samples = min(num_tile_columns_possible / d_w,
rtile.num_samples);
/* Wavefront size in AMD is 64.
* TODO(sergey): What about other platforms?
*/
if(num_parallel_samples >= 64) {
/* TODO(sergey): Could use generic round-up here. */
num_parallel_samples = (num_parallel_samples / 64) * 64;
}
assert(num_parallel_samples != 0);
global_size[0] = d_w * num_parallel_samples;
#endif /* __WORK_STEALING__ */
assert(global_size[0] * global_size[1] <=
max_render_feasible_tile_size.x * max_render_feasible_tile_size.y);
/* Allocate all required global memory once. */
if(first_tile) {
size_t num_global_elements = max_render_feasible_tile_size.x *
max_render_feasible_tile_size.y;
/* TODO(sergey): This will actually over-allocate if
* particular kernel does not support multiclosure.
*/
size_t ShaderClosure_size = get_shader_closure_size(current_max_closure);
#ifdef __WORK_STEALING__
/* Calculate max groups */
size_t max_global_size[2];
size_t tile_x = max_render_feasible_tile_size.x;
size_t tile_y = max_render_feasible_tile_size.y;
max_global_size[0] = (((tile_x - 1) / local_size[0]) + 1) * local_size[0];
max_global_size[1] = (((tile_y - 1) / local_size[1]) + 1) * local_size[1];
max_work_groups = (max_global_size[0] * max_global_size[1]) /
(local_size[0] * local_size[1]);
/* Allocate work_pool_wgs memory. */
work_pool_wgs = mem_alloc(max_work_groups * sizeof(unsigned int));
#endif /* __WORK_STEALING__ */
/* Allocate queue_index memory only once. */
Queue_index = mem_alloc(NUM_QUEUES * sizeof(int));
use_queues_flag = mem_alloc(sizeof(char));
kgbuffer = mem_alloc(get_KernelGlobals_size());
/* Create global buffers for ShaderData. */
sd = mem_alloc(get_shaderdata_soa_size());
sd_DL_shadow = mem_alloc(get_shaderdata_soa_size());
P_sd = mem_alloc(num_global_elements * sizeof(float3));
P_sd_DL_shadow = mem_alloc(num_global_elements * 2 * sizeof(float3));
N_sd = mem_alloc(num_global_elements * sizeof(float3));
N_sd_DL_shadow = mem_alloc(num_global_elements * 2 * sizeof(float3));
Ng_sd = mem_alloc(num_global_elements * sizeof(float3));
Ng_sd_DL_shadow = mem_alloc(num_global_elements * 2 * sizeof(float3));
I_sd = mem_alloc(num_global_elements * sizeof(float3));
I_sd_DL_shadow = mem_alloc(num_global_elements * 2 * sizeof(float3));
shader_sd = mem_alloc(num_global_elements * sizeof(int));
shader_sd_DL_shadow = mem_alloc(num_global_elements * 2 * sizeof(int));
flag_sd = mem_alloc(num_global_elements * sizeof(int));
flag_sd_DL_shadow = mem_alloc(num_global_elements * 2 * sizeof(int));
prim_sd = mem_alloc(num_global_elements * sizeof(int));
prim_sd_DL_shadow = mem_alloc(num_global_elements * 2 * sizeof(int));
type_sd = mem_alloc(num_global_elements * sizeof(int));
type_sd_DL_shadow = mem_alloc(num_global_elements * 2 * sizeof(int));
u_sd = mem_alloc(num_global_elements * sizeof(float));
u_sd_DL_shadow = mem_alloc(num_global_elements * 2 * sizeof(float));
v_sd = mem_alloc(num_global_elements * sizeof(float));
v_sd_DL_shadow = mem_alloc(num_global_elements * 2 * sizeof(float));
object_sd = mem_alloc(num_global_elements * sizeof(int));
object_sd_DL_shadow = mem_alloc(num_global_elements * 2 * sizeof(int));
time_sd = mem_alloc(num_global_elements * sizeof(float));
time_sd_DL_shadow = mem_alloc(num_global_elements * 2 * sizeof(float));
ray_length_sd = mem_alloc(num_global_elements * sizeof(float));
ray_length_sd_DL_shadow = mem_alloc(num_global_elements * 2 * sizeof(float));
ray_depth_sd = mem_alloc(num_global_elements * sizeof(int));
ray_depth_sd_DL_shadow = mem_alloc(num_global_elements * 2 * sizeof(int));
transparent_depth_sd = mem_alloc(num_global_elements * sizeof(int));
transparent_depth_sd_DL_shadow = mem_alloc(num_global_elements * 2 * sizeof(int));
/* Ray differentials. */
dP_sd = mem_alloc(num_global_elements * sizeof(differential3));
dP_sd_DL_shadow = mem_alloc(num_global_elements * 2 * sizeof(differential3));
dI_sd = mem_alloc(num_global_elements * sizeof(differential3));
dI_sd_DL_shadow = mem_alloc(num_global_elements * 2 * sizeof(differential3));
du_sd = mem_alloc(num_global_elements * sizeof(differential));
du_sd_DL_shadow = mem_alloc(num_global_elements * 2 * sizeof(differential));
dv_sd = mem_alloc(num_global_elements * sizeof(differential));
dv_sd_DL_shadow = mem_alloc(num_global_elements * 2 * sizeof(differential));
/* Dp/Du */
dPdu_sd = mem_alloc(num_global_elements * sizeof(float3));
dPdu_sd_DL_shadow = mem_alloc(num_global_elements * 2 * sizeof(float3));
dPdv_sd = mem_alloc(num_global_elements * sizeof(float3));
dPdv_sd_DL_shadow = mem_alloc(num_global_elements * 2 * sizeof(float3));
/* Object motion. */
ob_tfm_sd = mem_alloc(num_global_elements * sizeof(Transform));
ob_tfm_sd_DL_shadow = mem_alloc(num_global_elements * 2 * sizeof(Transform));
ob_itfm_sd = mem_alloc(num_global_elements * sizeof(Transform));
ob_itfm_sd_DL_shadow = mem_alloc(num_global_elements * 2 * sizeof(Transform));
closure_sd = mem_alloc(num_global_elements * ShaderClosure_size);
closure_sd_DL_shadow = mem_alloc(num_global_elements * 2 * ShaderClosure_size);
num_closure_sd = mem_alloc(num_global_elements * sizeof(int));
num_closure_sd_DL_shadow = mem_alloc(num_global_elements * 2 * sizeof(int));
randb_closure_sd = mem_alloc(num_global_elements * sizeof(float));
randb_closure_sd_DL_shadow = mem_alloc(num_global_elements * 2 * sizeof(float));
ray_P_sd = mem_alloc(num_global_elements * sizeof(float3));
ray_P_sd_DL_shadow = mem_alloc(num_global_elements * 2 * sizeof(float3));
ray_dP_sd = mem_alloc(num_global_elements * sizeof(differential3));
ray_dP_sd_DL_shadow = mem_alloc(num_global_elements * 2 * sizeof(differential3));
/* Creation of global memory buffers which are shared among
* the kernels.
*/
rng_coop = mem_alloc(num_global_elements * sizeof(RNG));
throughput_coop = mem_alloc(num_global_elements * sizeof(float3));
L_transparent_coop = mem_alloc(num_global_elements * sizeof(float));
PathRadiance_coop = mem_alloc(num_global_elements * sizeof(PathRadiance));
Ray_coop = mem_alloc(num_global_elements * sizeof(Ray));
PathState_coop = mem_alloc(num_global_elements * sizeof(PathState));
Intersection_coop = mem_alloc(num_global_elements * sizeof(Intersection));
AOAlpha_coop = mem_alloc(num_global_elements * sizeof(float3));
AOBSDF_coop = mem_alloc(num_global_elements * sizeof(float3));
AOLightRay_coop = mem_alloc(num_global_elements * sizeof(Ray));
BSDFEval_coop = mem_alloc(num_global_elements * sizeof(BsdfEval));
ISLamp_coop = mem_alloc(num_global_elements * sizeof(int));
LightRay_coop = mem_alloc(num_global_elements * sizeof(Ray));
Intersection_coop_AO = mem_alloc(num_global_elements * sizeof(Intersection));
Intersection_coop_DL = mem_alloc(num_global_elements * sizeof(Intersection));
#ifdef WITH_CYCLES_DEBUG
debugdata_coop = mem_alloc(num_global_elements * sizeof(DebugData));
#endif
ray_state = mem_alloc(num_global_elements * sizeof(char));
hostRayStateArray = (char *)calloc(num_global_elements, sizeof(char));
assert(hostRayStateArray != NULL && "Can't create hostRayStateArray memory");
Queue_data = mem_alloc(num_global_elements * (NUM_QUEUES * sizeof(int)+sizeof(int)));
work_array = mem_alloc(num_global_elements * sizeof(unsigned int));
per_sample_output_buffers = mem_alloc(num_global_elements *
per_thread_output_buffer_size);
}
cl_int dQueue_size = global_size[0] * global_size[1];
cl_int total_num_rays = global_size[0] * global_size[1];
cl_uint start_arg_index =
kernel_set_args(ckPathTraceKernel_data_init,
0,
kgbuffer,
sd,
sd_DL_shadow,
P_sd,
P_sd_DL_shadow,
N_sd,
N_sd_DL_shadow,
Ng_sd,
Ng_sd_DL_shadow,
I_sd,
I_sd_DL_shadow,
shader_sd,
shader_sd_DL_shadow,
flag_sd,
flag_sd_DL_shadow,
prim_sd,
prim_sd_DL_shadow,
type_sd,
type_sd_DL_shadow,
u_sd,
u_sd_DL_shadow,
v_sd,
v_sd_DL_shadow,
object_sd,
object_sd_DL_shadow,
time_sd,
time_sd_DL_shadow,
ray_length_sd,
ray_length_sd_DL_shadow,
ray_depth_sd,
ray_depth_sd_DL_shadow,
transparent_depth_sd,
transparent_depth_sd_DL_shadow);
/* Ray differentials. */
start_arg_index +=
kernel_set_args(ckPathTraceKernel_data_init,
start_arg_index,
dP_sd,
dP_sd_DL_shadow,
dI_sd,
dI_sd_DL_shadow,
du_sd,
du_sd_DL_shadow,
dv_sd,
dv_sd_DL_shadow);
/* Dp/Du */
start_arg_index +=
kernel_set_args(ckPathTraceKernel_data_init,
start_arg_index,
dPdu_sd,
dPdu_sd_DL_shadow,
dPdv_sd,
dPdv_sd_DL_shadow);
/* Object motion. */
start_arg_index +=
kernel_set_args(ckPathTraceKernel_data_init,
start_arg_index,
ob_tfm_sd,
ob_tfm_sd_DL_shadow,
ob_itfm_sd,
ob_itfm_sd_DL_shadow);
start_arg_index +=
kernel_set_args(ckPathTraceKernel_data_init,
start_arg_index,
closure_sd,
closure_sd_DL_shadow,
num_closure_sd,
num_closure_sd_DL_shadow,
randb_closure_sd,
randb_closure_sd_DL_shadow,
ray_P_sd,
ray_P_sd_DL_shadow,
ray_dP_sd,
ray_dP_sd_DL_shadow,
d_data,
per_sample_output_buffers,
d_rng_state,
rng_coop,
throughput_coop,
L_transparent_coop,
PathRadiance_coop,
Ray_coop,
PathState_coop,
ray_state);
/* TODO(segrey): Avoid map lookup here. */
#define KERNEL_TEX(type, ttype, name) \
set_kernel_arg_mem(ckPathTraceKernel_data_init, &start_arg_index, #name);
#include "kernel_textures.h"
#undef KERNEL_TEX
start_arg_index +=
kernel_set_args(ckPathTraceKernel_data_init,
start_arg_index,
start_sample,
d_x,
d_y,
d_w,
d_h,
d_offset,
d_stride,
rtile.rng_state_offset_x,
rtile.rng_state_offset_y,
rtile.buffer_rng_state_stride,
Queue_data,
Queue_index,
dQueue_size,
use_queues_flag,
work_array,
#ifdef __WORK_STEALING__
work_pool_wgs,
num_samples,
#endif
#ifdef WITH_CYCLES_DEBUG
debugdata_coop,
#endif
num_parallel_samples);
kernel_set_args(ckPathTraceKernel_scene_intersect,
0,
kgbuffer,
d_data,
rng_coop,
Ray_coop,
PathState_coop,
Intersection_coop,
ray_state,
d_w,
d_h,
Queue_data,
Queue_index,
dQueue_size,
use_queues_flag,
#ifdef WITH_CYCLES_DEBUG
debugdata_coop,
#endif
num_parallel_samples);
kernel_set_args(ckPathTraceKernel_lamp_emission,
0,
kgbuffer,
d_data,
sd,
throughput_coop,
PathRadiance_coop,
Ray_coop,
PathState_coop,
Intersection_coop,
ray_state,
d_w,
d_h,
Queue_data,
Queue_index,
dQueue_size,
use_queues_flag,
num_parallel_samples);
kernel_set_args(ckPathTraceKernel_queue_enqueue,
0,
Queue_data,
Queue_index,
ray_state,
dQueue_size);
kernel_set_args(ckPathTraceKernel_background_buffer_update,
0,
kgbuffer,
d_data,
sd,
per_sample_output_buffers,
d_rng_state,
rng_coop,
throughput_coop,
PathRadiance_coop,
Ray_coop,
PathState_coop,
L_transparent_coop,
ray_state,
d_w,
d_h,
d_x,
d_y,
d_stride,
rtile.rng_state_offset_x,
rtile.rng_state_offset_y,
rtile.buffer_rng_state_stride,
work_array,
Queue_data,
Queue_index,
dQueue_size,
end_sample,
start_sample,
#ifdef __WORK_STEALING__
work_pool_wgs,
num_samples,
#endif
#ifdef WITH_CYCLES_DEBUG
debugdata_coop,
#endif
num_parallel_samples);
kernel_set_args(ckPathTraceKernel_shader_eval,
0,
kgbuffer,
d_data,
sd,
rng_coop,
Ray_coop,
PathState_coop,
Intersection_coop,
ray_state,
Queue_data,
Queue_index,
dQueue_size);
kernel_set_args(ckPathTraceKernel_holdout_emission_blurring_pathtermination_ao,
0,
kgbuffer,
d_data,
sd,
per_sample_output_buffers,
rng_coop,
throughput_coop,
L_transparent_coop,
PathRadiance_coop,
PathState_coop,
Intersection_coop,
AOAlpha_coop,
AOBSDF_coop,
AOLightRay_coop,
d_w,
d_h,
d_x,
d_y,
d_stride,
ray_state,
work_array,
Queue_data,
Queue_index,
dQueue_size,
#ifdef __WORK_STEALING__
start_sample,
#endif
num_parallel_samples);
kernel_set_args(ckPathTraceKernel_direct_lighting,
0,
kgbuffer,
d_data,
sd,
sd_DL_shadow,
rng_coop,
PathState_coop,
ISLamp_coop,
LightRay_coop,
BSDFEval_coop,
ray_state,
Queue_data,
Queue_index,
dQueue_size);
kernel_set_args(ckPathTraceKernel_shadow_blocked,
0,
kgbuffer,
d_data,
sd_DL_shadow,
PathState_coop,
LightRay_coop,
AOLightRay_coop,
Intersection_coop_AO,
Intersection_coop_DL,
ray_state,
Queue_data,
Queue_index,
dQueue_size,
total_num_rays);
kernel_set_args(ckPathTraceKernel_next_iteration_setup,
0,
kgbuffer,
d_data,
sd,
rng_coop,
throughput_coop,
PathRadiance_coop,
Ray_coop,
PathState_coop,
LightRay_coop,
ISLamp_coop,
BSDFEval_coop,
AOLightRay_coop,
AOBSDF_coop,
AOAlpha_coop,
ray_state,
Queue_data,
Queue_index,
dQueue_size,
use_queues_flag);
kernel_set_args(ckPathTraceKernel_sum_all_radiance,
0,
d_data,
d_buffer,
per_sample_output_buffers,
num_parallel_samples,
d_w,
d_h,
d_stride,
rtile.buffer_offset_x,
rtile.buffer_offset_y,
rtile.buffer_rng_state_stride,
start_sample);
/* Macro for Enqueuing split kernels. */
#define GLUE(a, b) a ## b
#define ENQUEUE_SPLIT_KERNEL(kernelName, globalSize, localSize) \
opencl_assert(clEnqueueNDRangeKernel(cqCommandQueue, \
GLUE(ckPathTraceKernel_, \
kernelName), \
2, \
NULL, \
globalSize, \
localSize, \
0, \
NULL, \
NULL))
/* Enqueue ckPathTraceKernel_data_init kernel. */
ENQUEUE_SPLIT_KERNEL(data_init, global_size, local_size);
bool activeRaysAvailable = true;
/* Record number of time host intervention has been made */
unsigned int numHostIntervention = 0;
unsigned int numNextPathIterTimes = PathIteration_times;
while(activeRaysAvailable) {
/* Twice the global work size of other kernels for
* ckPathTraceKernel_shadow_blocked_direct_lighting. */
size_t global_size_shadow_blocked[2];
global_size_shadow_blocked[0] = global_size[0] * 2;
global_size_shadow_blocked[1] = global_size[1];
/* Do path-iteration in host [Enqueue Path-iteration kernels. */
for(int PathIter = 0; PathIter < PathIteration_times; PathIter++) {
ENQUEUE_SPLIT_KERNEL(scene_intersect, global_size, local_size);
ENQUEUE_SPLIT_KERNEL(lamp_emission, global_size, local_size);
ENQUEUE_SPLIT_KERNEL(queue_enqueue, global_size, local_size);
ENQUEUE_SPLIT_KERNEL(background_buffer_update, global_size, local_size);
ENQUEUE_SPLIT_KERNEL(shader_eval, global_size, local_size);
ENQUEUE_SPLIT_KERNEL(holdout_emission_blurring_pathtermination_ao, global_size, local_size);
ENQUEUE_SPLIT_KERNEL(direct_lighting, global_size, local_size);
ENQUEUE_SPLIT_KERNEL(shadow_blocked, global_size_shadow_blocked, local_size);
ENQUEUE_SPLIT_KERNEL(next_iteration_setup, global_size, local_size);
}
/* Read ray-state into Host memory to decide if we should exit
* path-iteration in host.
*/
ciErr = clEnqueueReadBuffer(cqCommandQueue,
ray_state,
CL_TRUE,
0,
global_size[0] * global_size[1] * sizeof(char),
hostRayStateArray,
0,
NULL,
NULL);
assert(ciErr == CL_SUCCESS);
activeRaysAvailable = false;
for(int rayStateIter = 0;
rayStateIter < global_size[0] * global_size[1];
++rayStateIter)
{
if(int8_t(hostRayStateArray[rayStateIter]) != RAY_INACTIVE) {
/* Not all rays are RAY_INACTIVE. */
activeRaysAvailable = true;
break;
}
}
if(activeRaysAvailable) {
numHostIntervention++;
PathIteration_times = PATH_ITER_INC_FACTOR;
/* Host intervention done before all rays become RAY_INACTIVE;
* Set do more initial iterations for the next tile.
*/
numNextPathIterTimes += PATH_ITER_INC_FACTOR;
}
}
/* Execute SumALLRadiance kernel to accumulate radiance calculated in
* per_sample_output_buffers into RenderTile's output buffer.
*/
size_t sum_all_radiance_local_size[2] = {16, 16};
size_t sum_all_radiance_global_size[2];
sum_all_radiance_global_size[0] =
(((d_w - 1) / sum_all_radiance_local_size[0]) + 1) *
sum_all_radiance_local_size[0];
sum_all_radiance_global_size[1] =
(((d_h - 1) / sum_all_radiance_local_size[1]) + 1) *
sum_all_radiance_local_size[1];
ENQUEUE_SPLIT_KERNEL(sum_all_radiance,
sum_all_radiance_global_size,
sum_all_radiance_local_size);
#undef ENQUEUE_SPLIT_KERNEL
#undef GLUE
if(numHostIntervention == 0) {
/* This means that we are executing kernel more than required
* Must avoid this for the next sample/tile.
*/
PathIteration_times = ((numNextPathIterTimes - PATH_ITER_INC_FACTOR) <= 0) ?
PATH_ITER_INC_FACTOR : numNextPathIterTimes - PATH_ITER_INC_FACTOR;
}
else {
/* Number of path-iterations done for this tile is set as
* Initial path-iteration times for the next tile
*/
PathIteration_times = numNextPathIterTimes;
}
first_tile = false;
}
/* Calculates the amount of memory that has to be always
* allocated in order for the split kernel to function.
* This memory is tile/scene-property invariant (meaning,
* the value returned by this function does not depend
* on the user set tile size or scene properties.
*/
size_t get_invariable_mem_allocated()
{
size_t total_invariable_mem_allocated = 0;
size_t KernelGlobals_size = 0;
size_t ShaderData_SOA_size = 0;
KernelGlobals_size = get_KernelGlobals_size();
ShaderData_SOA_size = get_shaderdata_soa_size();
total_invariable_mem_allocated += KernelGlobals_size; /* KernelGlobals size */
total_invariable_mem_allocated += NUM_QUEUES * sizeof(unsigned int); /* Queue index size */
total_invariable_mem_allocated += sizeof(char); /* use_queues_flag size */
total_invariable_mem_allocated += ShaderData_SOA_size; /* sd size */
total_invariable_mem_allocated += ShaderData_SOA_size; /* sd_DL_shadow size */
return total_invariable_mem_allocated;
}
/* Calculate the memory that has-to-be/has-been allocated for
* the split kernel to function.
*/
size_t get_tile_specific_mem_allocated(const int2 tile_size)
{
size_t tile_specific_mem_allocated = 0;
/* Get required tile info */
unsigned int user_set_tile_w = tile_size.x;
unsigned int user_set_tile_h = tile_size.y;
#ifdef __WORK_STEALING__
/* Calculate memory to be allocated for work_pools in
* case of work_stealing.
*/
size_t max_global_size[2];
size_t max_num_work_pools = 0;
max_global_size[0] =
(((user_set_tile_w - 1) / SPLIT_KERNEL_LOCAL_SIZE_X) + 1) *
SPLIT_KERNEL_LOCAL_SIZE_X;
max_global_size[1] =
(((user_set_tile_h - 1) / SPLIT_KERNEL_LOCAL_SIZE_Y) + 1) *
SPLIT_KERNEL_LOCAL_SIZE_Y;
max_num_work_pools =
(max_global_size[0] * max_global_size[1]) /
(SPLIT_KERNEL_LOCAL_SIZE_X * SPLIT_KERNEL_LOCAL_SIZE_Y);
tile_specific_mem_allocated += max_num_work_pools * sizeof(unsigned int);
#endif
tile_specific_mem_allocated +=
user_set_tile_w * user_set_tile_h * per_thread_output_buffer_size;
tile_specific_mem_allocated +=
user_set_tile_w * user_set_tile_h * sizeof(RNG);
return tile_specific_mem_allocated;
}
/* Calculates the texture memories and KernelData (d_data) memory
* that has been allocated.
*/
size_t get_scene_specific_mem_allocated(cl_mem d_data)
{
size_t scene_specific_mem_allocated = 0;
/* Calculate texture memories. */
#define KERNEL_TEX(type, ttype, name) \
scene_specific_mem_allocated += get_tex_size(#name);
#include "kernel_textures.h"
#undef KERNEL_TEX
size_t d_data_size;
ciErr = clGetMemObjectInfo(d_data,
CL_MEM_SIZE,
sizeof(d_data_size),
&d_data_size,
NULL);
assert(ciErr == CL_SUCCESS && "Can't get d_data mem object info");
scene_specific_mem_allocated += d_data_size;
return scene_specific_mem_allocated;
}
/* Calculate the memory required for one thread in split kernel. */
size_t get_per_thread_memory()
{
size_t shader_closure_size = 0;
size_t shaderdata_volume = 0;
shader_closure_size = get_shader_closure_size(current_max_closure);
/* TODO(sergey): This will actually over-allocate if
* particular kernel does not support multiclosure.
*/
shaderdata_volume = get_shader_data_size(shader_closure_size);
size_t retval = sizeof(RNG)
+ sizeof(float3) /* Throughput size */
+ sizeof(float) /* L transparent size */
+ sizeof(char) /* Ray state size */
+ sizeof(unsigned int) /* Work element size */
+ sizeof(int) /* ISLamp_size */
+ sizeof(PathRadiance) + sizeof(Ray) + sizeof(PathState)
+ sizeof(Intersection) /* Overall isect */
+ sizeof(Intersection) /* Instersection_coop_AO */
+ sizeof(Intersection) /* Intersection coop DL */
+ shaderdata_volume /* Overall ShaderData */
+ (shaderdata_volume * 2) /* ShaderData : DL and shadow */
+ sizeof(Ray) + sizeof(BsdfEval)
+ sizeof(float3) /* AOAlpha size */
+ sizeof(float3) /* AOBSDF size */
+ sizeof(Ray)
+ (sizeof(int) * NUM_QUEUES)
+ per_thread_output_buffer_size;
return retval;
}
/* Considers the total memory available in the device and
* and returns the maximum global work size possible.
*/
size_t get_feasible_global_work_size(int2 tile_size, cl_mem d_data)
{
/* Calculate invariably allocated memory. */
size_t invariable_mem_allocated = get_invariable_mem_allocated();
/* Calculate tile specific allocated memory. */
size_t tile_specific_mem_allocated =
get_tile_specific_mem_allocated(tile_size);
/* Calculate scene specific allocated memory. */
size_t scene_specific_mem_allocated =
get_scene_specific_mem_allocated(d_data);
/* Calculate total memory available for the threads in global work size. */
size_t available_memory = total_allocatable_memory
- invariable_mem_allocated
- tile_specific_mem_allocated
- scene_specific_mem_allocated
- DATA_ALLOCATION_MEM_FACTOR;
size_t per_thread_memory_required = get_per_thread_memory();
return (available_memory / per_thread_memory_required);
}
/* Checks if the device has enough memory to render the whole tile;
* If not, we should split single tile into multiple tiles of small size
* and process them all.
*/
bool need_to_split_tile(unsigned int d_w,
unsigned int d_h,
int2 max_render_feasible_tile_size)
{
size_t global_size_estimate[2];
/* TODO(sergey): Such round-ups are in quite few places, need to replace
* them with an utility macro.
*/
global_size_estimate[0] =
(((d_w - 1) / SPLIT_KERNEL_LOCAL_SIZE_X) + 1) *
SPLIT_KERNEL_LOCAL_SIZE_X;
global_size_estimate[1] =
(((d_h - 1) / SPLIT_KERNEL_LOCAL_SIZE_Y) + 1) *
SPLIT_KERNEL_LOCAL_SIZE_Y;
if((global_size_estimate[0] * global_size_estimate[1]) >
(max_render_feasible_tile_size.x * max_render_feasible_tile_size.y))
{
return true;
}
else {
return false;
}
}
/* Considers the scene properties, global memory available in the device
* and returns a rectanglular tile dimension (approx the maximum)
* that should render on split kernel.
*/
int2 get_max_render_feasible_tile_size(size_t feasible_global_work_size)
{
int2 max_render_feasible_tile_size;
int square_root_val = (int)sqrt(feasible_global_work_size);
max_render_feasible_tile_size.x = square_root_val;
max_render_feasible_tile_size.y = square_root_val;
/* Ciel round-off max_render_feasible_tile_size. */
int2 ceil_render_feasible_tile_size;
ceil_render_feasible_tile_size.x =
(((max_render_feasible_tile_size.x - 1) / SPLIT_KERNEL_LOCAL_SIZE_X) + 1) *
SPLIT_KERNEL_LOCAL_SIZE_X;
ceil_render_feasible_tile_size.y =
(((max_render_feasible_tile_size.y - 1) / SPLIT_KERNEL_LOCAL_SIZE_Y) + 1) *
SPLIT_KERNEL_LOCAL_SIZE_Y;
if(ceil_render_feasible_tile_size.x * ceil_render_feasible_tile_size.y <=
feasible_global_work_size)
{
return ceil_render_feasible_tile_size;
}
/* Floor round-off max_render_feasible_tile_size. */
int2 floor_render_feasible_tile_size;
floor_render_feasible_tile_size.x =
(max_render_feasible_tile_size.x / SPLIT_KERNEL_LOCAL_SIZE_X) *
SPLIT_KERNEL_LOCAL_SIZE_X;
floor_render_feasible_tile_size.y =
(max_render_feasible_tile_size.y / SPLIT_KERNEL_LOCAL_SIZE_Y) *
SPLIT_KERNEL_LOCAL_SIZE_Y;
return floor_render_feasible_tile_size;
}
/* Try splitting the current tile into multiple smaller
* almost-square-tiles.
*/
int2 get_split_tile_size(RenderTile rtile,
int2 max_render_feasible_tile_size)
{
int2 split_tile_size;
int num_global_threads = max_render_feasible_tile_size.x *
max_render_feasible_tile_size.y;
int d_w = rtile.w;
int d_h = rtile.h;
/* Ceil round off d_w and d_h */
d_w = (((d_w - 1) / SPLIT_KERNEL_LOCAL_SIZE_X) + 1) *
SPLIT_KERNEL_LOCAL_SIZE_X;
d_h = (((d_h - 1) / SPLIT_KERNEL_LOCAL_SIZE_Y) + 1) *
SPLIT_KERNEL_LOCAL_SIZE_Y;
while(d_w * d_h > num_global_threads) {
/* Halve the longer dimension. */
if(d_w >= d_h) {
d_w = d_w / 2;
d_w = (((d_w - 1) / SPLIT_KERNEL_LOCAL_SIZE_X) + 1) *
SPLIT_KERNEL_LOCAL_SIZE_X;
}
else {
d_h = d_h / 2;
d_h = (((d_h - 1) / SPLIT_KERNEL_LOCAL_SIZE_Y) + 1) *
SPLIT_KERNEL_LOCAL_SIZE_Y;
}
}
split_tile_size.x = d_w;
split_tile_size.y = d_h;
return split_tile_size;
}
/* Splits existing tile into multiple tiles of tile size split_tile_size. */
vector<SplitRenderTile> split_tiles(RenderTile rtile, int2 split_tile_size)
{
vector<SplitRenderTile> to_path_trace_rtile;
int d_w = rtile.w;
int d_h = rtile.h;
int num_tiles_x = (((d_w - 1) / split_tile_size.x) + 1);
int num_tiles_y = (((d_h - 1) / split_tile_size.y) + 1);
/* Buffer and rng_state offset calc. */
size_t offset_index = rtile.offset + (rtile.x + rtile.y * rtile.stride);
size_t offset_x = offset_index % rtile.stride;
size_t offset_y = offset_index / rtile.stride;
/* Resize to_path_trace_rtile. */
to_path_trace_rtile.resize(num_tiles_x * num_tiles_y);
for(int tile_iter_y = 0; tile_iter_y < num_tiles_y; tile_iter_y++) {
for(int tile_iter_x = 0; tile_iter_x < num_tiles_x; tile_iter_x++) {
int rtile_index = tile_iter_y * num_tiles_x + tile_iter_x;
to_path_trace_rtile[rtile_index].rng_state_offset_x = offset_x + tile_iter_x * split_tile_size.x;
to_path_trace_rtile[rtile_index].rng_state_offset_y = offset_y + tile_iter_y * split_tile_size.y;
to_path_trace_rtile[rtile_index].buffer_offset_x = offset_x + tile_iter_x * split_tile_size.x;
to_path_trace_rtile[rtile_index].buffer_offset_y = offset_y + tile_iter_y * split_tile_size.y;
to_path_trace_rtile[rtile_index].start_sample = rtile.start_sample;
to_path_trace_rtile[rtile_index].num_samples = rtile.num_samples;
to_path_trace_rtile[rtile_index].sample = rtile.sample;
to_path_trace_rtile[rtile_index].resolution = rtile.resolution;
to_path_trace_rtile[rtile_index].offset = rtile.offset;
to_path_trace_rtile[rtile_index].buffers = rtile.buffers;
to_path_trace_rtile[rtile_index].buffer = rtile.buffer;
to_path_trace_rtile[rtile_index].rng_state = rtile.rng_state;
to_path_trace_rtile[rtile_index].x = rtile.x + (tile_iter_x * split_tile_size.x);
to_path_trace_rtile[rtile_index].y = rtile.y + (tile_iter_y * split_tile_size.y);
to_path_trace_rtile[rtile_index].buffer_rng_state_stride = rtile.stride;
/* Fill width and height of the new render tile. */
to_path_trace_rtile[rtile_index].w = (tile_iter_x == (num_tiles_x - 1)) ?
(d_w - (tile_iter_x * split_tile_size.x)) /* Border tile */
: split_tile_size.x;
to_path_trace_rtile[rtile_index].h = (tile_iter_y == (num_tiles_y - 1)) ?
(d_h - (tile_iter_y * split_tile_size.y)) /* Border tile */
: split_tile_size.y;
to_path_trace_rtile[rtile_index].stride = to_path_trace_rtile[rtile_index].w;
}
}
return to_path_trace_rtile;
}
void thread_run(DeviceTask *task)
{
if(task->type == DeviceTask::FILM_CONVERT) {
film_convert(*task, task->buffer, task->rgba_byte, task->rgba_half);
}
else if(task->type == DeviceTask::SHADER) {
shader(*task);
}
else if(task->type == DeviceTask::PATH_TRACE) {
RenderTile tile;
bool initialize_data_and_check_render_feasibility = false;
bool need_to_split_tiles_further = false;
int2 max_render_feasible_tile_size;
size_t feasible_global_work_size;
const int2 tile_size = task->requested_tile_size;
/* Keep rendering tiles until done. */
while(task->acquire_tile(this, tile)) {
if(!initialize_data_and_check_render_feasibility) {
/* Initialize data. */
/* Calculate per_thread_output_buffer_size. */
size_t output_buffer_size = 0;
ciErr = clGetMemObjectInfo((cl_mem)tile.buffer,
CL_MEM_SIZE,
sizeof(output_buffer_size),
&output_buffer_size,
NULL);
assert(ciErr == CL_SUCCESS && "Can't get tile.buffer mem object info");
/* This value is different when running on AMD and NV. */
if(background) {
/* In offline render the number of buffer elements
* associated with tile.buffer is the current tile size.
*/
per_thread_output_buffer_size =
output_buffer_size / (tile.w * tile.h);
}
else {
/* interactive rendering, unlike offline render, the number of buffer elements
* associated with tile.buffer is the entire viewport size.
*/
per_thread_output_buffer_size =
output_buffer_size / (tile.buffers->params.width *
tile.buffers->params.height);
}
/* Check render feasibility. */
feasible_global_work_size = get_feasible_global_work_size(
tile_size,
CL_MEM_PTR(const_mem_map["__data"]->device_pointer));
max_render_feasible_tile_size =
get_max_render_feasible_tile_size(
feasible_global_work_size);
need_to_split_tiles_further =
need_to_split_tile(tile_size.x,
tile_size.y,
max_render_feasible_tile_size);
initialize_data_and_check_render_feasibility = true;
}
if(need_to_split_tiles_further) {
int2 split_tile_size =
get_split_tile_size(tile,
max_render_feasible_tile_size);
vector<SplitRenderTile> to_path_trace_render_tiles =
split_tiles(tile, split_tile_size);
/* Print message to console */
if(background && (to_path_trace_render_tiles.size() > 1)) {
fprintf(stderr, "Message : Tiles need to be split "
"further inside path trace (due to insufficient "
"device-global-memory for split kernel to "
"function) \n"
"The current tile of dimensions %dx%d is split "
"into tiles of dimension %dx%d for render \n",
tile.w, tile.h,
split_tile_size.x,
split_tile_size.y);
}
/* Process all split tiles. */
for(int tile_iter = 0;
tile_iter < to_path_trace_render_tiles.size();
++tile_iter)
{
path_trace(to_path_trace_render_tiles[tile_iter],
max_render_feasible_tile_size);
}
}
else {
/* No splitting required; process the entire tile at once. */
/* Render feasible tile size is user-set-tile-size itself. */
max_render_feasible_tile_size.x =
(((tile_size.x - 1) / SPLIT_KERNEL_LOCAL_SIZE_X) + 1) *
SPLIT_KERNEL_LOCAL_SIZE_X;
max_render_feasible_tile_size.y =
(((tile_size.y - 1) / SPLIT_KERNEL_LOCAL_SIZE_Y) + 1) *
SPLIT_KERNEL_LOCAL_SIZE_Y;
/* buffer_rng_state_stride is stride itself. */
SplitRenderTile split_tile(tile);
split_tile.buffer_rng_state_stride = tile.stride;
path_trace(split_tile, max_render_feasible_tile_size);
}
tile.sample = tile.start_sample + tile.num_samples;
/* Complete kernel execution before release tile. */
/* This helps in multi-device render;
* The device that reaches the critical-section function
* release_tile waits (stalling other devices from entering
* release_tile) for all kernels to complete. If device1 (a
* slow-render device) reaches release_tile first then it would
* stall device2 (a fast-render device) from proceeding to render
* next tile.
*/
clFinish(cqCommandQueue);
task->release_tile(tile);
}
}
}
protected:
cl_mem mem_alloc(size_t bufsize, cl_mem_flags mem_flag = CL_MEM_READ_WRITE)
{
cl_mem ptr;
assert(bufsize != 0);
ptr = clCreateBuffer(cxContext, mem_flag, bufsize, NULL, &ciErr);
opencl_assert_err(ciErr, "clCreateBuffer");
return ptr;
}
};
Device *device_opencl_create(DeviceInfo& info, Stats &stats, bool background)
{
vector<OpenCLPlatformDevice> usable_devices;
opencl_get_usable_devices(&usable_devices);
assert(info.num < usable_devices.size());
OpenCLPlatformDevice& platform_device = usable_devices[info.num];
char name[256];
if(clGetPlatformInfo(platform_device.platform_id,
CL_PLATFORM_NAME,
sizeof(name),
&name,
NULL) != CL_SUCCESS)
{
VLOG(1) << "Failed to retrieve platform name, using mega kernel.";
return new OpenCLDeviceMegaKernel(info, stats, background);
}
string platform_name = name;
cl_device_type device_type;
if(clGetDeviceInfo(platform_device.device_id,
CL_DEVICE_TYPE,
sizeof(cl_device_type),
&device_type,
NULL) != CL_SUCCESS)
{
VLOG(1) << "Failed to retrieve device type, using mega kernel,";
return new OpenCLDeviceMegaKernel(info, stats, background);
}
if(opencl_kernel_use_split(platform_name, device_type)) {
VLOG(1) << "Using split kernel.";
return new OpenCLDeviceSplitKernel(info, stats, background);
} else {
VLOG(1) << "Using mega kernel.";
return new OpenCLDeviceMegaKernel(info, stats, background);
}
}
bool device_opencl_init(void)
{
static bool initialized = false;
static bool result = false;
if(initialized)
return result;
initialized = true;
result = clewInit() == CLEW_SUCCESS;
return result;
}
void device_opencl_info(vector<DeviceInfo>& devices)
{
vector<OpenCLPlatformDevice> usable_devices;
opencl_get_usable_devices(&usable_devices);
/* Devices are numbered consecutively across platforms. */
int num_devices = 0;
foreach(OpenCLPlatformDevice& platform_device, usable_devices) {
cl_platform_id platform_id = platform_device.platform_id;
cl_device_id device_id = platform_device.device_id;
/* We always increment the device number, so there;s 1:1 mapping from
* info.num to indexinside usable_devices vector.
*/
++num_devices;
char platform_name[256];
if(clGetPlatformInfo(platform_id,
CL_PLATFORM_NAME,
sizeof(platform_name),
&platform_name,
NULL) != CL_SUCCESS)
{
continue;
}
char device_name[1024] = "\0";
if(clGetDeviceInfo(device_id,
CL_DEVICE_NAME,
sizeof(device_name),
&device_name,
NULL) != CL_SUCCESS)
{
continue;
}
cl_device_type device_type;
if(clGetDeviceInfo(device_id,
CL_DEVICE_TYPE,
sizeof(cl_device_type),
&device_type,
NULL) != CL_SUCCESS)
{
continue;
}
DeviceInfo info;
info.type = DEVICE_OPENCL;
info.description = string_remove_trademark(string(device_name));
info.num = num_devices - 1;
info.id = string_printf("OPENCL_%d", info.num);
/* We don't know if it's used for display, but assume it is. */
info.display_device = true;
info.advanced_shading = opencl_kernel_use_advanced_shading(platform_name);
info.pack_images = true;
info.use_split_kernel = opencl_kernel_use_split(platform_name,
device_type);
devices.push_back(info);
}
}
string device_opencl_capabilities(void)
{
string result = "";
string error_msg = ""; /* Only used by opencl_assert(), but in the future
* it could also be nicely reported to the console.
*/
cl_uint num_platforms = 0;
opencl_assert(clGetPlatformIDs(0, NULL, &num_platforms));
if(num_platforms == 0) {
return "No OpenCL platforms found\n";
}
result += string_printf("Number of platforms: %u\n", num_platforms);
vector<cl_platform_id> platform_ids;
platform_ids.resize(num_platforms);
opencl_assert(clGetPlatformIDs(num_platforms, &platform_ids[0], NULL));
#define APPEND_STRING_INFO(func, id, name, what) \
do { \
char data[1024] = "\0"; \
opencl_assert(func(id, what, sizeof(data), &data, NULL)); \
result += string_printf("%s: %s\n", name, data); \
} while(false)
#define APPEND_PLATFORM_STRING_INFO(id, name, what) \
APPEND_STRING_INFO(clGetPlatformInfo, id, "\tPlatform " name, what)
#define APPEND_DEVICE_STRING_INFO(id, name, what) \
APPEND_STRING_INFO(clGetDeviceInfo, id, "\t\t\tDevice " name, what)
vector<cl_device_id> device_ids;
for (cl_uint platform = 0; platform < num_platforms; ++platform) {
cl_platform_id platform_id = platform_ids[platform];
result += string_printf("Platform #%u\n", platform);
APPEND_PLATFORM_STRING_INFO(platform_id, "Name", CL_PLATFORM_NAME);
APPEND_PLATFORM_STRING_INFO(platform_id, "Vendor", CL_PLATFORM_VENDOR);
APPEND_PLATFORM_STRING_INFO(platform_id, "Version", CL_PLATFORM_VERSION);
APPEND_PLATFORM_STRING_INFO(platform_id, "Profile", CL_PLATFORM_PROFILE);
APPEND_PLATFORM_STRING_INFO(platform_id, "Extensions", CL_PLATFORM_EXTENSIONS);
cl_uint num_devices = 0;
opencl_assert(clGetDeviceIDs(platform_ids[platform],
CL_DEVICE_TYPE_ALL,
0,
NULL,
&num_devices));
result += string_printf("\tNumber of devices: %u\n", num_devices);
device_ids.resize(num_devices);
opencl_assert(clGetDeviceIDs(platform_ids[platform],
CL_DEVICE_TYPE_ALL,
num_devices,
&device_ids[0],
NULL));
for (cl_uint device = 0; device < num_devices; ++device) {
cl_device_id device_id = device_ids[device];
result += string_printf("\t\tDevice: #%u\n", device);
APPEND_DEVICE_STRING_INFO(device_id, "Name", CL_DEVICE_NAME);
APPEND_DEVICE_STRING_INFO(device_id, "Vendor", CL_DEVICE_VENDOR);
APPEND_DEVICE_STRING_INFO(device_id, "OpenCL C Version", CL_DEVICE_OPENCL_C_VERSION);
APPEND_DEVICE_STRING_INFO(device_id, "Profile", CL_DEVICE_PROFILE);
APPEND_DEVICE_STRING_INFO(device_id, "Version", CL_DEVICE_VERSION);
APPEND_DEVICE_STRING_INFO(device_id, "Extensions", CL_DEVICE_EXTENSIONS);
}
}
#undef APPEND_STRING_INFO
#undef APPEND_PLATFORM_STRING_INFO
#undef APPEND_DEVICE_STRING_INFO
return result;
}
CCL_NAMESPACE_END
#endif /* WITH_OPENCL */