blender/intern/opensubdiv/gpu_shader_opensubd_display.glsl
Sergey Sharybin bcc0d2fb1d OpenSubdiv: Fix/workaround bad shading on AMD devices
Uniform block data layout was different on CPU and GPU which caused wrong
data being used from shader.

In theory using layout(std140) is what we need to do, but for some reason
such layout specifier is being ignored. This is probably caused by the way
how we exploit extensions from older version of glsl.

For until we've upgraded our glsl pipeline used different approach which
is basically about removing unused fields form the struct manual in hope
that it'll keep memory layout consistent for both CPU and GPU.

This seems to work so far for both NVidia GTX580 and AMD FirePro W8000
here in the studio.
2015-08-26 12:07:38 +02:00

330 lines
7.7 KiB
GLSL

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2014 Blender Foundation.
* All rights reserved.
*
* Contributor(s): Sergey Sharybin
*
* ***** END GPL LICENSE BLOCK *****
*/
/* ***** Vertex shader ***** */
#extension GL_EXT_geometry_shader4 : enable
#extension GL_ARB_gpu_shader5 : enable
#extension GL_ARB_explicit_attrib_location : require
#extension GL_ARB_uniform_buffer_object : require
struct VertexData {
vec4 position;
vec3 normal;
vec2 uv;
};
#ifdef VERTEX_SHADER
in vec3 normal;
in vec4 position;
uniform mat4 modelViewMatrix;
uniform mat3 normalMatrix;
out block {
VertexData v;
} outpt;
void main()
{
outpt.v.position = modelViewMatrix * position;
outpt.v.normal = normalize(normalMatrix * normal);
}
#endif /* VERTEX_SHADER */
/* ***** geometry shader ***** */
#ifdef GEOMETRY_SHADER
#ifndef GLSL_COMPAT_WORKAROUND
layout(lines_adjacency) in;
#ifndef WIREFRAME
layout(triangle_strip, max_vertices = 4) out;
#else
layout(line_strip, max_vertices = 8) out;
#endif
#endif
uniform mat4 modelViewMatrix;
uniform mat4 projectionMatrix;
uniform int PrimitiveIdBase;
uniform int osd_fvar_count;
uniform int osd_active_uv_offset;
in block {
VertexData v;
} inpt[4];
#define INTERP_FACE_VARYING_2(result, fvarOffset, tessCoord) \
{ \
vec2 v[4]; \
int primOffset = (gl_PrimitiveID + PrimitiveIdBase) * 4; \
for (int i = 0; i < 4; ++i) { \
int index = (primOffset + i) * osd_fvar_count + fvarOffset; \
v[i] = vec2(texelFetch(FVarDataBuffer, index).s, \
texelFetch(FVarDataBuffer, index + 1).s); \
} \
result = mix(mix(v[0], v[1], tessCoord.s), \
mix(v[3], v[2], tessCoord.s), \
tessCoord.t); \
}
uniform samplerBuffer FVarDataBuffer;
out block {
VertexData v;
} outpt;
#ifdef FLAT_SHADING
void emit(int index, vec3 normal)
{
outpt.v.position = inpt[index].v.position;
outpt.v.normal = normal;
/* TODO(sergey): Only uniform subdivisions atm. */
vec2 quadst[4] = vec2[](vec2(0,0), vec2(1,0), vec2(1,1), vec2(0,1));
vec2 st = quadst[index];
INTERP_FACE_VARYING_2(outpt.v.uv, osd_active_uv_offset, st);
gl_Position = projectionMatrix * inpt[index].v.position;
EmitVertex();
}
# ifdef WIREFRAME
void emit_edge(int v0, int v1, vec3 normal)
{
emit(v0, normal);
emit(v1, normal);
}
# endif
#else
void emit(int index)
{
outpt.v.position = inpt[index].v.position;
outpt.v.normal = inpt[index].v.normal;
/* TODO(sergey): Only uniform subdivisions atm. */
vec2 quadst[4] = vec2[](vec2(0,0), vec2(1,0), vec2(1,1), vec2(0,1));
vec2 st = quadst[index];
INTERP_FACE_VARYING_2(outpt.v.uv, osd_active_uv_offset, st);
gl_Position = projectionMatrix * inpt[index].v.position;
EmitVertex();
}
# ifdef WIREFRAME
void emit_edge(int v0, int v1)
{
emit(v0);
emit(v1);
}
# endif
#endif
void main()
{
gl_PrimitiveID = gl_PrimitiveIDIn;
#ifdef FLAT_SHADING
vec3 A = (inpt[0].v.position - inpt[1].v.position).xyz;
vec3 B = (inpt[3].v.position - inpt[1].v.position).xyz;
vec3 flat_normal = normalize(cross(B, A));
# ifndef WIREFRAME
emit(0, flat_normal);
emit(1, flat_normal);
emit(3, flat_normal);
emit(2, flat_normal);
# else
emit_edge(0, 1, flat_normal);
emit_edge(1, 2, flat_normal);
emit_edge(2, 3, flat_normal);
emit_edge(3, 0, flat_normal);
# endif
#else
# ifndef WIREFRAME
emit(0);
emit(1);
emit(3);
emit(2);
# else
emit_edge(0, 1);
emit_edge(1, 2);
emit_edge(2, 3);
emit_edge(3, 0);
# endif
#endif
EndPrimitive();
}
#endif /* GEOMETRY_SHADER */
/* ***** Fragment shader ***** */
#ifdef FRAGMENT_SHADER
#define MAX_LIGHTS 8
#define NUM_SOLID_LIGHTS 3
struct LightSource {
vec4 position;
vec4 ambient;
vec4 diffuse;
vec4 specular;
vec4 spotDirection;
#ifdef SUPPORT_COLOR_MATERIAL
float constantAttenuation;
float linearAttenuation;
float quadraticAttenuation;
float spotCutoff;
float spotExponent;
float spotCosCutoff;
#endif
};
layout(std140) uniform Lighting {
LightSource lightSource[MAX_LIGHTS];
int num_enabled_lights;
};
uniform vec4 diffuse;
uniform vec4 specular;
uniform float shininess;
uniform sampler2D texture_buffer;
in block {
VertexData v;
} inpt;
void main()
{
#ifdef WIREFRAME
gl_FragColor = diffuse;
#else
vec3 N = inpt.v.normal;
if (!gl_FrontFacing)
N = -N;
/* Compute diffuse and specular lighting. */
vec3 L_diffuse = vec3(0.0);
vec3 L_specular = vec3(0.0);
#ifndef USE_COLOR_MATERIAL
/* Assume NUM_SOLID_LIGHTS directional lights. */
for (int i = 0; i < NUM_SOLID_LIGHTS; i++) {
vec4 Plight = lightSource[i].position;
#ifdef USE_DIRECTIONAL_LIGHT
vec3 l = (Plight.w == 0.0)
? normalize(Plight.xyz)
: normalize(inpt.v.position.xyz);
#else /* USE_DIRECTIONAL_LIGHT */
/* TODO(sergey): We can normalize it outside of the shader. */
vec3 l = normalize(Plight.xyz);
#endif /* USE_DIRECTIONAL_LIGHT */
vec3 h = normalize(l + vec3(0, 0, 1));
float d = max(0.0, dot(N, l));
float s = pow(max(0.0, dot(N, h)), shininess);
L_diffuse += d * lightSource[i].diffuse.rgb;
L_specular += s * lightSource[i].specular.rgb;
}
#else /* USE_COLOR_MATERIAL */
vec3 varying_position = inpt.v.position.xyz;
vec3 V = (gl_ProjectionMatrix[3][3] == 0.0) ?
normalize(varying_position): vec3(0.0, 0.0, -1.0);
for (int i = 0; i < num_enabled_lights; i++) {
/* todo: this is a slow check for disabled lights */
if (lightSource[i].specular.a == 0.0)
continue;
float intensity = 1.0;
vec3 light_direction;
if (lightSource[i].position.w == 0.0) {
/* directional light */
light_direction = lightSource[i].position.xyz;
}
else {
/* point light */
vec3 d = lightSource[i].position.xyz - varying_position;
light_direction = normalize(d);
/* spot light cone */
if (lightSource[i].spotCutoff < 90.0) {
float cosine = max(dot(light_direction,
-lightSource[i].spotDirection.xyz),
0.0);
intensity = pow(cosine, lightSource[i].spotExponent);
intensity *= step(lightSource[i].spotCosCutoff, cosine);
}
/* falloff */
float distance = length(d);
intensity /= lightSource[i].constantAttenuation +
lightSource[i].linearAttenuation * distance +
lightSource[i].quadraticAttenuation * distance * distance;
}
/* diffuse light */
vec3 light_diffuse = lightSource[i].diffuse.rgb;
float diffuse_bsdf = max(dot(N, light_direction), 0.0);
L_diffuse += light_diffuse*diffuse_bsdf*intensity;
/* specular light */
vec3 light_specular = lightSource[i].specular.rgb;
vec3 H = normalize(light_direction - V);
float specular_bsdf = pow(max(dot(N, H), 0.0),
gl_FrontMaterial.shininess);
L_specular += light_specular*specular_bsdf * intensity;
}
#endif /* USE_COLOR_MATERIAL */
/* Compute diffuse color. */
#ifdef USE_TEXTURE_2D
L_diffuse *= texture2D(texture_buffer, inpt.v.uv).rgb;
#else
L_diffuse *= diffuse.rgb;
#endif
/* Sum lighting. */
vec3 L = L_diffuse;
if (shininess != 0) {
L += L_specular * specular.rgb;
}
/* Write out fragment color. */
gl_FragColor = vec4(L, diffuse.a);
#endif
}
#endif // FRAGMENT_SHADER