blender/intern/cycles/kernel/geom/geom_bvh_volume.h
Sergey Sharybin 5719ed1225 Cycles: Add leaf primitives sanity check asserts to the kernel
This way we'll notice that leaf splitting didn't happen correct pretty easily
in debug builds.

There'll be absolutely no impact on release builds.
2015-01-12 15:05:14 +05:00

359 lines
12 KiB
C

/*
* Adapted from code Copyright 2009-2010 NVIDIA Corporation,
* and code copyright 2009-2012 Intel Corporation
*
* Modifications Copyright 2011-2014, Blender Foundation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifdef __QBVH__
#include "geom_qbvh_volume.h"
#endif
/* This is a template BVH traversal function for volumes, where
* various features can be enabled/disabled. This way we can compile optimized
* versions for each case without new features slowing things down.
*
* BVH_INSTANCING: object instancing
* BVH_HAIR: hair curve rendering
* BVH_MOTION: motion blur rendering
*
*/
ccl_device bool BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals *kg,
const Ray *ray,
Intersection *isect)
{
/* todo:
* - test if pushing distance on the stack helps (for non shadow rays)
* - separate version for shadow rays
* - likely and unlikely for if() statements
* - test restrict attribute for pointers
*/
/* traversal stack in CUDA thread-local memory */
int traversalStack[BVH_STACK_SIZE];
traversalStack[0] = ENTRYPOINT_SENTINEL;
/* traversal variables in registers */
int stackPtr = 0;
int nodeAddr = kernel_data.bvh.root;
/* ray parameters in registers */
float3 P = ray->P;
float3 dir = bvh_clamp_direction(ray->D);
float3 idir = bvh_inverse_direction(dir);
int object = OBJECT_NONE;
const uint visibility = PATH_RAY_ALL_VISIBILITY;
#if BVH_FEATURE(BVH_MOTION)
Transform ob_tfm;
#endif
isect->t = ray->t;
isect->u = 0.0f;
isect->v = 0.0f;
isect->prim = PRIM_NONE;
isect->object = OBJECT_NONE;
#if defined(__KERNEL_SSE2__)
const shuffle_swap_t shuf_identity = shuffle_swap_identity();
const shuffle_swap_t shuf_swap = shuffle_swap_swap();
const ssef pn = cast(ssei(0, 0, 0x80000000, 0x80000000));
ssef Psplat[3], idirsplat[3];
shuffle_swap_t shufflexyz[3];
Psplat[0] = ssef(P.x);
Psplat[1] = ssef(P.y);
Psplat[2] = ssef(P.z);
ssef tsplat(0.0f, 0.0f, -isect->t, -isect->t);
gen_idirsplat_swap(pn, shuf_identity, shuf_swap, idir, idirsplat, shufflexyz);
#endif
IsectPrecalc isect_precalc;
triangle_intersect_precalc(dir, &isect_precalc);
/* traversal loop */
do {
do {
/* traverse internal nodes */
while(nodeAddr >= 0 && nodeAddr != ENTRYPOINT_SENTINEL) {
bool traverseChild0, traverseChild1;
int nodeAddrChild1;
#if !defined(__KERNEL_SSE2__)
/* Intersect two child bounding boxes, non-SSE version */
float t = isect->t;
/* fetch node data */
float4 node0 = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+0);
float4 node1 = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+1);
float4 node2 = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+2);
float4 cnodes = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+3);
/* intersect ray against child nodes */
NO_EXTENDED_PRECISION float c0lox = (node0.x - P.x) * idir.x;
NO_EXTENDED_PRECISION float c0hix = (node0.z - P.x) * idir.x;
NO_EXTENDED_PRECISION float c0loy = (node1.x - P.y) * idir.y;
NO_EXTENDED_PRECISION float c0hiy = (node1.z - P.y) * idir.y;
NO_EXTENDED_PRECISION float c0loz = (node2.x - P.z) * idir.z;
NO_EXTENDED_PRECISION float c0hiz = (node2.z - P.z) * idir.z;
NO_EXTENDED_PRECISION float c0min = max4(min(c0lox, c0hix), min(c0loy, c0hiy), min(c0loz, c0hiz), 0.0f);
NO_EXTENDED_PRECISION float c0max = min4(max(c0lox, c0hix), max(c0loy, c0hiy), max(c0loz, c0hiz), t);
NO_EXTENDED_PRECISION float c1lox = (node0.y - P.x) * idir.x;
NO_EXTENDED_PRECISION float c1hix = (node0.w - P.x) * idir.x;
NO_EXTENDED_PRECISION float c1loy = (node1.y - P.y) * idir.y;
NO_EXTENDED_PRECISION float c1hiy = (node1.w - P.y) * idir.y;
NO_EXTENDED_PRECISION float c1loz = (node2.y - P.z) * idir.z;
NO_EXTENDED_PRECISION float c1hiz = (node2.w - P.z) * idir.z;
NO_EXTENDED_PRECISION float c1min = max4(min(c1lox, c1hix), min(c1loy, c1hiy), min(c1loz, c1hiz), 0.0f);
NO_EXTENDED_PRECISION float c1max = min4(max(c1lox, c1hix), max(c1loy, c1hiy), max(c1loz, c1hiz), t);
/* decide which nodes to traverse next */
traverseChild0 = (c0max >= c0min);
traverseChild1 = (c1max >= c1min);
#else // __KERNEL_SSE2__
/* Intersect two child bounding boxes, SSE3 version adapted from Embree */
/* fetch node data */
const ssef *bvh_nodes = (ssef*)kg->__bvh_nodes.data + nodeAddr*BVH_NODE_SIZE;
const float4 cnodes = ((float4*)bvh_nodes)[3];
/* intersect ray against child nodes */
const ssef tminmaxx = (shuffle_swap(bvh_nodes[0], shufflexyz[0]) - Psplat[0]) * idirsplat[0];
const ssef tminmaxy = (shuffle_swap(bvh_nodes[1], shufflexyz[1]) - Psplat[1]) * idirsplat[1];
const ssef tminmaxz = (shuffle_swap(bvh_nodes[2], shufflexyz[2]) - Psplat[2]) * idirsplat[2];
/* calculate { c0min, c1min, -c0max, -c1max} */
ssef minmax = max(max(tminmaxx, tminmaxy), max(tminmaxz, tsplat));
const ssef tminmax = minmax ^ pn;
const sseb lrhit = tminmax <= shuffle<2, 3, 0, 1>(tminmax);
/* decide which nodes to traverse next */
traverseChild0 = (movemask(lrhit) & 1);
traverseChild1 = (movemask(lrhit) & 2);
#endif // __KERNEL_SSE2__
nodeAddr = __float_as_int(cnodes.x);
nodeAddrChild1 = __float_as_int(cnodes.y);
if(traverseChild0 && traverseChild1) {
/* both children were intersected, push the farther one */
#if !defined(__KERNEL_SSE2__)
bool closestChild1 = (c1min < c0min);
#else
bool closestChild1 = tminmax[1] < tminmax[0];
#endif
if(closestChild1) {
int tmp = nodeAddr;
nodeAddr = nodeAddrChild1;
nodeAddrChild1 = tmp;
}
++stackPtr;
kernel_assert(stackPtr < BVH_STACK_SIZE);
traversalStack[stackPtr] = nodeAddrChild1;
}
else {
/* one child was intersected */
if(traverseChild1) {
nodeAddr = nodeAddrChild1;
}
else if(!traverseChild0) {
/* neither child was intersected */
nodeAddr = traversalStack[stackPtr];
--stackPtr;
}
}
}
/* if node is leaf, fetch triangle list */
if(nodeAddr < 0) {
float4 leaf = kernel_tex_fetch(__bvh_nodes, (-nodeAddr-1)*BVH_NODE_SIZE+3);
int primAddr = __float_as_int(leaf.x);
#if BVH_FEATURE(BVH_INSTANCING)
if(primAddr >= 0) {
#endif
const int primAddr2 = __float_as_int(leaf.y);
const uint type = __float_as_int(leaf.w);
/* pop */
nodeAddr = traversalStack[stackPtr];
--stackPtr;
/* primitive intersection */
switch(type & PRIMITIVE_ALL) {
case PRIMITIVE_TRIANGLE: {
/* intersect ray against primitive */
for(; primAddr < primAddr2; primAddr++) {
kernel_assert(kernel_tex_fetch(__prim_type, primAddr) == type);
/* only primitives from volume object */
uint tri_object = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, primAddr): object;
int object_flag = kernel_tex_fetch(__object_flag, tri_object);
if((object_flag & SD_OBJECT_HAS_VOLUME) == 0) {
continue;
}
triangle_intersect(kg, &isect_precalc, isect, P, dir, visibility, object, primAddr);
}
break;
}
#if BVH_FEATURE(BVH_MOTION)
case PRIMITIVE_MOTION_TRIANGLE: {
/* intersect ray against primitive */
for(; primAddr < primAddr2; primAddr++) {
kernel_assert(kernel_tex_fetch(__prim_type, primAddr) == type);
/* only primitives from volume object */
uint tri_object = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, primAddr): object;
int object_flag = kernel_tex_fetch(__object_flag, tri_object);
if((object_flag & SD_OBJECT_HAS_VOLUME) == 0) {
continue;
}
motion_triangle_intersect(kg, isect, P, dir, ray->time, visibility, object, primAddr);
}
break;
}
#endif
#if BVH_FEATURE(BVH_HAIR)
case PRIMITIVE_CURVE:
case PRIMITIVE_MOTION_CURVE: {
/* intersect ray against primitive */
for(; primAddr < primAddr2; primAddr++) {
kernel_assert(kernel_tex_fetch(__prim_type, primAddr) == type);
/* only primitives from volume object */
uint tri_object = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, primAddr): object;
int object_flag = kernel_tex_fetch(__object_flag, tri_object);
if((object_flag & SD_OBJECT_HAS_VOLUME) == 0) {
continue;
}
if(kernel_data.curve.curveflags & CURVE_KN_INTERPOLATE)
bvh_cardinal_curve_intersect(kg, isect, P, dir, visibility, object, primAddr, ray->time, type, NULL, 0, 0);
else
bvh_curve_intersect(kg, isect, P, dir, visibility, object, primAddr, ray->time, type, NULL, 0, 0);
}
break;
}
#endif
default: {
break;
}
}
}
#if BVH_FEATURE(BVH_INSTANCING)
else {
/* instance push */
object = kernel_tex_fetch(__prim_object, -primAddr-1);
int object_flag = kernel_tex_fetch(__object_flag, object);
if(object_flag & SD_OBJECT_HAS_VOLUME) {
#if BVH_FEATURE(BVH_MOTION)
bvh_instance_motion_push(kg, object, ray, &P, &dir, &idir, &isect->t, &ob_tfm);
#else
bvh_instance_push(kg, object, ray, &P, &dir, &idir, &isect->t);
#endif
triangle_intersect_precalc(dir, &isect_precalc);
#if defined(__KERNEL_SSE2__)
Psplat[0] = ssef(P.x);
Psplat[1] = ssef(P.y);
Psplat[2] = ssef(P.z);
tsplat = ssef(0.0f, 0.0f, -isect->t, -isect->t);
gen_idirsplat_swap(pn, shuf_identity, shuf_swap, idir, idirsplat, shufflexyz);
#endif
++stackPtr;
kernel_assert(stackPtr < BVH_STACK_SIZE);
traversalStack[stackPtr] = ENTRYPOINT_SENTINEL;
nodeAddr = kernel_tex_fetch(__object_node, object);
}
else {
/* pop */
object = OBJECT_NONE;
nodeAddr = traversalStack[stackPtr];
--stackPtr;
}
}
}
#endif /* FEATURE(BVH_INSTANCING) */
} while(nodeAddr != ENTRYPOINT_SENTINEL);
#if BVH_FEATURE(BVH_INSTANCING)
if(stackPtr >= 0) {
kernel_assert(object != OBJECT_NONE);
/* instance pop */
#if BVH_FEATURE(BVH_MOTION)
bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, &isect->t, &ob_tfm);
#else
bvh_instance_pop(kg, object, ray, &P, &dir, &idir, &isect->t);
#endif
triangle_intersect_precalc(dir, &isect_precalc);
#if defined(__KERNEL_SSE2__)
Psplat[0] = ssef(P.x);
Psplat[1] = ssef(P.y);
Psplat[2] = ssef(P.z);
tsplat = ssef(0.0f, 0.0f, -isect->t, -isect->t);
gen_idirsplat_swap(pn, shuf_identity, shuf_swap, idir, idirsplat, shufflexyz);
#endif
object = OBJECT_NONE;
nodeAddr = traversalStack[stackPtr];
--stackPtr;
}
#endif /* FEATURE(BVH_MOTION) */
} while(nodeAddr != ENTRYPOINT_SENTINEL);
return (isect->prim != PRIM_NONE);
}
ccl_device_inline bool BVH_FUNCTION_NAME(KernelGlobals *kg,
const Ray *ray,
Intersection *isect)
{
#ifdef __QBVH__
if(kernel_data.bvh.use_qbvh) {
return BVH_FUNCTION_FULL_NAME(QBVH)(kg,
ray,
isect);
}
else
#endif
{
kernel_assert(kernel_data.bvh.use_qbvh == false);
return BVH_FUNCTION_FULL_NAME(BVH)(kg,
ray,
isect);
}
}
#undef BVH_FUNCTION_NAME
#undef BVH_FUNCTION_FEATURES