blender/intern/cycles/bvh/bvh_split.cpp
Sergey Sharybin bf55afbf26 Cycles: Make spatial split BVH multi-threaded
The title actually covers it all, This commit exploits all the work
being done in previous changes to make it possible to build spatial
splits in threads.

Works quite nicely, but has a downside of some extra memory usage.
In practice it doesn't seem to be a huge problem and that we can
always look into later if it becomes a real showstopper.

In practice it shows some nice speedup:

- BMW27 scene takes 3 now (used to be 4)
- Agent shot takes 5 sec (used to be 80)

Such non-linear speedup is most likely coming from much less amount
of heap re-allocations. A a downside, there's a bit of extra memory
used by BVH arrays. From the tests amount of extra memory is below
0.001% so far, so it's not that bad at all.

Reviewers: brecht, juicyfruit, dingto, lukasstockner97

Differential Revision: https://developer.blender.org/D1820
2016-04-04 14:43:21 +02:00

485 lines
16 KiB
C++

/*
* Adapted from code copyright 2009-2010 NVIDIA Corporation
* Modifications Copyright 2011, Blender Foundation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "bvh_build.h"
#include "bvh_split.h"
#include "bvh_sort.h"
#include "mesh.h"
#include "object.h"
#include "util_algorithm.h"
CCL_NAMESPACE_BEGIN
/* Object Split */
BVHObjectSplit::BVHObjectSplit(BVHBuild *builder,
BVHSpatialStorage *storage,
const BVHRange& range,
vector<BVHReference> *references,
float nodeSAH)
: sah(FLT_MAX),
dim(0),
num_left(0),
left_bounds(BoundBox::empty),
right_bounds(BoundBox::empty),
storage_(storage),
references_(references)
{
const BVHReference *ref_ptr = &references_->at(range.start());
float min_sah = FLT_MAX;
for(int dim = 0; dim < 3; dim++) {
/* Sort references. */
bvh_reference_sort(range.start(),
range.end(),
&references_->at(0),
dim);
/* sweep right to left and determine bounds. */
BoundBox right_bounds = BoundBox::empty;
for(int i = range.size() - 1; i > 0; i--) {
right_bounds.grow(ref_ptr[i].bounds());
storage_->right_bounds[i - 1] = right_bounds;
}
/* sweep left to right and select lowest SAH. */
BoundBox left_bounds = BoundBox::empty;
for(int i = 1; i < range.size(); i++) {
left_bounds.grow(ref_ptr[i - 1].bounds());
right_bounds = storage_->right_bounds[i - 1];
float sah = nodeSAH +
left_bounds.safe_area() * builder->params.primitive_cost(i) +
right_bounds.safe_area() * builder->params.primitive_cost(range.size() - i);
if(sah < min_sah) {
min_sah = sah;
this->sah = sah;
this->dim = dim;
this->num_left = i;
this->left_bounds = left_bounds;
this->right_bounds = right_bounds;
}
}
}
}
void BVHObjectSplit::split(BVHRange& left,
BVHRange& right,
const BVHRange& range)
{
/* sort references according to split */
bvh_reference_sort(range.start(),
range.end(),
&references_->at(0),
this->dim);
/* split node ranges */
left = BVHRange(this->left_bounds, range.start(), this->num_left);
right = BVHRange(this->right_bounds, left.end(), range.size() - this->num_left);
}
/* Spatial Split */
BVHSpatialSplit::BVHSpatialSplit(const BVHBuild& builder,
BVHSpatialStorage *storage,
const BVHRange& range,
vector<BVHReference> *references,
float nodeSAH)
: sah(FLT_MAX),
dim(0),
pos(0.0f),
storage_(storage),
references_(references)
{
/* initialize bins. */
float3 origin = range.bounds().min;
float3 binSize = (range.bounds().max - origin) * (1.0f / (float)BVHParams::NUM_SPATIAL_BINS);
float3 invBinSize = 1.0f / binSize;
for(int dim = 0; dim < 3; dim++) {
for(int i = 0; i < BVHParams::NUM_SPATIAL_BINS; i++) {
BVHSpatialBin& bin = storage_->bins[dim][i];
bin.bounds = BoundBox::empty;
bin.enter = 0;
bin.exit = 0;
}
}
/* chop references into bins. */
for(unsigned int refIdx = range.start(); refIdx < range.end(); refIdx++) {
const BVHReference& ref = references_->at(refIdx);
float3 firstBinf = (ref.bounds().min - origin) * invBinSize;
float3 lastBinf = (ref.bounds().max - origin) * invBinSize;
int3 firstBin = make_int3((int)firstBinf.x, (int)firstBinf.y, (int)firstBinf.z);
int3 lastBin = make_int3((int)lastBinf.x, (int)lastBinf.y, (int)lastBinf.z);
firstBin = clamp(firstBin, 0, BVHParams::NUM_SPATIAL_BINS - 1);
lastBin = clamp(lastBin, firstBin, BVHParams::NUM_SPATIAL_BINS - 1);
for(int dim = 0; dim < 3; dim++) {
BVHReference currRef = ref;
for(int i = firstBin[dim]; i < lastBin[dim]; i++) {
BVHReference leftRef, rightRef;
split_reference(builder, leftRef, rightRef, currRef, dim, origin[dim] + binSize[dim] * (float)(i + 1));
storage_->bins[dim][i].bounds.grow(leftRef.bounds());
currRef = rightRef;
}
storage_->bins[dim][lastBin[dim]].bounds.grow(currRef.bounds());
storage_->bins[dim][firstBin[dim]].enter++;
storage_->bins[dim][lastBin[dim]].exit++;
}
}
/* select best split plane. */
for(int dim = 0; dim < 3; dim++) {
/* sweep right to left and determine bounds. */
BoundBox right_bounds = BoundBox::empty;
for(int i = BVHParams::NUM_SPATIAL_BINS - 1; i > 0; i--) {
right_bounds.grow(storage_->bins[dim][i].bounds);
storage_->right_bounds[i - 1] = right_bounds;
}
/* sweep left to right and select lowest SAH. */
BoundBox left_bounds = BoundBox::empty;
int leftNum = 0;
int rightNum = range.size();
for(int i = 1; i < BVHParams::NUM_SPATIAL_BINS; i++) {
left_bounds.grow(storage_->bins[dim][i - 1].bounds);
leftNum += storage_->bins[dim][i - 1].enter;
rightNum -= storage_->bins[dim][i - 1].exit;
float sah = nodeSAH +
left_bounds.safe_area() * builder.params.primitive_cost(leftNum) +
storage_->right_bounds[i - 1].safe_area() * builder.params.primitive_cost(rightNum);
if(sah < this->sah) {
this->sah = sah;
this->dim = dim;
this->pos = origin[dim] + binSize[dim] * (float)i;
}
}
}
}
void BVHSpatialSplit::split(BVHBuild *builder,
BVHRange& left,
BVHRange& right,
const BVHRange& range)
{
/* Categorize references and compute bounds.
*
* Left-hand side: [left_start, left_end[
* Uncategorized/split: [left_end, right_start[
* Right-hand side: [right_start, refs.size()[ */
vector<BVHReference>& refs = *references_;
int left_start = range.start();
int left_end = left_start;
int right_start = range.end();
int right_end = range.end();
BoundBox left_bounds = BoundBox::empty;
BoundBox right_bounds = BoundBox::empty;
for(int i = left_end; i < right_start; i++) {
if(refs[i].bounds().max[this->dim] <= this->pos) {
/* entirely on the left-hand side */
left_bounds.grow(refs[i].bounds());
swap(refs[i], refs[left_end++]);
}
else if(refs[i].bounds().min[this->dim] >= this->pos) {
/* entirely on the right-hand side */
right_bounds.grow(refs[i].bounds());
swap(refs[i--], refs[--right_start]);
}
}
/* Duplicate or unsplit references intersecting both sides.
*
* Duplication happens into a temporary pre-allocated vector in order to
* reduce number of memmove() calls happening in vector.insert().
*/
vector<BVHReference>& new_refs = storage_->new_references;
new_refs.clear();
new_refs.reserve(right_start - left_end);
while(left_end < right_start) {
/* split reference. */
BVHReference lref, rref;
split_reference(*builder, lref, rref, refs[left_end], this->dim, this->pos);
/* compute SAH for duplicate/unsplit candidates. */
BoundBox lub = left_bounds; // Unsplit to left: new left-hand bounds.
BoundBox rub = right_bounds; // Unsplit to right: new right-hand bounds.
BoundBox ldb = left_bounds; // Duplicate: new left-hand bounds.
BoundBox rdb = right_bounds; // Duplicate: new right-hand bounds.
lub.grow(refs[left_end].bounds());
rub.grow(refs[left_end].bounds());
ldb.grow(lref.bounds());
rdb.grow(rref.bounds());
float lac = builder->params.primitive_cost(left_end - left_start);
float rac = builder->params.primitive_cost(right_end - right_start);
float lbc = builder->params.primitive_cost(left_end - left_start + 1);
float rbc = builder->params.primitive_cost(right_end - right_start + 1);
float unsplitLeftSAH = lub.safe_area() * lbc + right_bounds.safe_area() * rac;
float unsplitRightSAH = left_bounds.safe_area() * lac + rub.safe_area() * rbc;
float duplicateSAH = ldb.safe_area() * lbc + rdb.safe_area() * rbc;
float minSAH = min(min(unsplitLeftSAH, unsplitRightSAH), duplicateSAH);
if(minSAH == unsplitLeftSAH) {
/* unsplit to left */
left_bounds = lub;
left_end++;
}
else if(minSAH == unsplitRightSAH) {
/* unsplit to right */
right_bounds = rub;
swap(refs[left_end], refs[--right_start]);
}
else {
/* duplicate */
left_bounds = ldb;
right_bounds = rdb;
refs[left_end++] = lref;
new_refs.push_back(rref);
right_end++;
}
}
/* Insert duplicated references into actual array in one go. */
if(new_refs.size() != 0) {
refs.insert(refs.begin() + (right_end - new_refs.size()),
new_refs.begin(),
new_refs.end());
}
left = BVHRange(left_bounds, left_start, left_end - left_start);
right = BVHRange(right_bounds, right_start, right_end - right_start);
}
void BVHSpatialSplit::split_triangle_primitive(const Mesh *mesh,
const Transform *tfm,
int prim_index,
int dim,
float pos,
BoundBox& left_bounds,
BoundBox& right_bounds)
{
const int *inds = mesh->triangles[prim_index].v;
const float3 *verts = &mesh->verts[0];
float3 v1 = tfm ? transform_point(tfm, verts[inds[2]]) : verts[inds[2]];
for(int i = 0; i < 3; i++) {
float3 v0 = v1;
int vindex = inds[i];
v1 = tfm ? transform_point(tfm, verts[vindex]) : verts[vindex];
float v0p = v0[dim];
float v1p = v1[dim];
/* insert vertex to the boxes it belongs to. */
if(v0p <= pos)
left_bounds.grow(v0);
if(v0p >= pos)
right_bounds.grow(v0);
/* edge intersects the plane => insert intersection to both boxes. */
if((v0p < pos && v1p > pos) || (v0p > pos && v1p < pos)) {
float3 t = lerp(v0, v1, clamp((pos - v0p) / (v1p - v0p), 0.0f, 1.0f));
left_bounds.grow(t);
right_bounds.grow(t);
}
}
}
void BVHSpatialSplit::split_curve_primitive(const Mesh *mesh,
const Transform *tfm,
int prim_index,
int segment_index,
int dim,
float pos,
BoundBox& left_bounds,
BoundBox& right_bounds)
{
/* curve split: NOTE - Currently ignores curve width and needs to be fixed.*/
const int k0 = mesh->curves[prim_index].first_key + segment_index;
const int k1 = k0 + 1;
const float4& key0 = mesh->curve_keys[k0];
const float4& key1 = mesh->curve_keys[k1];
float3 v0 = float4_to_float3(key0);
float3 v1 = float4_to_float3(key1);
if(tfm != NULL) {
v0 = transform_point(tfm, v0);
v1 = transform_point(tfm, v1);
}
float v0p = v0[dim];
float v1p = v1[dim];
/* insert vertex to the boxes it belongs to. */
if(v0p <= pos)
left_bounds.grow(v0);
if(v0p >= pos)
right_bounds.grow(v0);
if(v1p <= pos)
left_bounds.grow(v1);
if(v1p >= pos)
right_bounds.grow(v1);
/* edge intersects the plane => insert intersection to both boxes. */
if((v0p < pos && v1p > pos) || (v0p > pos && v1p < pos)) {
float3 t = lerp(v0, v1, clamp((pos - v0p) / (v1p - v0p), 0.0f, 1.0f));
left_bounds.grow(t);
right_bounds.grow(t);
}
}
void BVHSpatialSplit::split_triangle_reference(const BVHReference& ref,
const Mesh *mesh,
int dim,
float pos,
BoundBox& left_bounds,
BoundBox& right_bounds)
{
split_triangle_primitive(mesh,
NULL,
ref.prim_index(),
dim,
pos,
left_bounds,
right_bounds);
}
void BVHSpatialSplit::split_curve_reference(const BVHReference& ref,
const Mesh *mesh,
int dim,
float pos,
BoundBox& left_bounds,
BoundBox& right_bounds)
{
split_curve_primitive(mesh,
NULL,
ref.prim_index(),
PRIMITIVE_UNPACK_SEGMENT(ref.prim_type()),
dim,
pos,
left_bounds,
right_bounds);
}
void BVHSpatialSplit::split_object_reference(const Object *object,
int dim,
float pos,
BoundBox& left_bounds,
BoundBox& right_bounds)
{
Mesh *mesh = object->mesh;
for(int tri_idx = 0; tri_idx < mesh->triangles.size(); ++tri_idx) {
split_triangle_primitive(mesh,
&object->tfm,
tri_idx,
dim,
pos,
left_bounds,
right_bounds);
}
for(int curve_idx = 0; curve_idx < mesh->curves.size(); ++curve_idx) {
Mesh::Curve &curve = mesh->curves[curve_idx];
for(int segment_idx = 0;
segment_idx < curve.num_keys - 1;
++segment_idx)
{
split_curve_primitive(mesh,
&object->tfm,
curve_idx,
segment_idx,
dim,
pos,
left_bounds,
right_bounds);
}
}
}
void BVHSpatialSplit::split_reference(const BVHBuild& builder,
BVHReference& left,
BVHReference& right,
const BVHReference& ref,
int dim,
float pos)
{
/* initialize boundboxes */
BoundBox left_bounds = BoundBox::empty;
BoundBox right_bounds = BoundBox::empty;
/* loop over vertices/edges. */
const Object *ob = builder.objects[ref.prim_object()];
const Mesh *mesh = ob->mesh;
if(ref.prim_type() & PRIMITIVE_ALL_TRIANGLE) {
split_triangle_reference(ref,
mesh,
dim,
pos,
left_bounds,
right_bounds);
}
else if(ref.prim_type() & PRIMITIVE_ALL_CURVE) {
split_curve_reference(ref,
mesh,
dim,
pos,
left_bounds,
right_bounds);
}
else {
split_object_reference(ob,
dim,
pos,
left_bounds,
right_bounds);
}
/* intersect with original bounds. */
left_bounds.max[dim] = pos;
right_bounds.min[dim] = pos;
left_bounds.intersect(ref.bounds());
right_bounds.intersect(ref.bounds());
/* set references */
left = BVHReference(left_bounds, ref.prim_index(), ref.prim_object(), ref.prim_type());
right = BVHReference(right_bounds, ref.prim_index(), ref.prim_object(), ref.prim_type());
}
CCL_NAMESPACE_END