blender/extern/recastnavigation/Recast/Source/RecastMeshDetail.cpp
Sergey Sharybin bdd4aa27b0 Another set of fixes for recats: osx uses different order of arguments for sort_r
and it's callback.

Also do not use char constants like 'NAVM' which is casting to int.
And added defautl section to switch in KX_NavMeshObject::DrawNavMesh.
2011-09-10 14:12:15 +00:00

994 lines
25 KiB
C++

//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#include <float.h>
#define _USE_MATH_DEFINES
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include "Recast.h"
#include "RecastLog.h"
#include "RecastTimer.h"
struct rcHeightPatch
{
inline rcHeightPatch() : data(0) {}
inline ~rcHeightPatch() { delete [] data; }
unsigned short* data;
int xmin, ymin, width, height;
};
static int circumCircle(const float xp, const float yp,
const float x1, const float y1,
const float x2, const float y2,
const float x3, const float y3,
float& xc, float& yc, float& rsqr)
{
static const float EPSILON = 1e-6f;
const float fabsy1y2 = rcAbs(y1-y2);
const float fabsy2y3 = rcAbs(y2-y3);
/* Check for coincident points */
if (fabsy1y2 < EPSILON && fabsy2y3 < EPSILON)
return 0;
if (fabsy1y2 < EPSILON)
{
const float m2 = - (x3-x2) / (y3-y2);
const float mx2 = (x2 + x3) / 2.0f;
const float my2 = (y2 + y3) / 2.0f;
xc = (x2 + x1) / 2.0f;
yc = m2 * (xc - mx2) + my2;
}
else if (fabsy2y3 < EPSILON)
{
const float m1 = - (x2-x1) / (y2-y1);
const float mx1 = (x1 + x2) / 2.0f;
const float my1 = (y1 + y2) / 2.0f;
xc = (x3 + x2) / 2.0f;
yc = m1 * (xc - mx1) + my1;
}
else
{
const float m1 = - (x2-x1) / (y2-y1);
const float m2 = - (x3-x2) / (y3-y2);
const float mx1 = (x1 + x2) / 2.0f;
const float mx2 = (x2 + x3) / 2.0f;
const float my1 = (y1 + y2) / 2.0f;
const float my2 = (y2 + y3) / 2.0f;
xc = (m1 * mx1 - m2 * mx2 + my2 - my1) / (m1 - m2);
if (fabsy1y2 > fabsy2y3)
yc = m1 * (xc - mx1) + my1;
else
yc = m2 * (xc - mx2) + my2;
}
float dx,dy;
dx = x2 - xc;
dy = y2 - yc;
rsqr = dx*dx + dy*dy;
dx = xp - xc;
dy = yp - yc;
const float drsqr = dx*dx + dy*dy;
return (drsqr <= rsqr) ? 1 : 0;
}
#if defined(_MSC_VER)
static int ptcmp(void* up, const void *v1, const void *v2)
#elif defined(__APPLE__)
static int ptcmp(void* up, const void *v1, const void *v2)
#else
static int ptcmp(const void *v1, const void *v2, void* up)
#endif
{
const float* verts = (const float*)up;
const float* p1 = &verts[(*(const int*)v1)*3];
const float* p2 = &verts[(*(const int*)v2)*3];
if (p1[0] < p2[0])
return -1;
else if (p1[0] > p2[0])
return 1;
else
return 0;
}
// Based on Paul Bourke's triangulate.c
// http://astronomy.swin.edu.au/~pbourke/terrain/triangulate/triangulate.c
static void delaunay(const int nv, float *verts, rcIntArray& idx, rcIntArray& tris, rcIntArray& edges)
{
// Sort vertices
idx.resize(nv);
for (int i = 0; i < nv; ++i)
idx[i] = i;
#if defined(_MSC_VER)
qsort_s(&idx[0], idx.size(), sizeof(int), ptcmp, verts);
#elif defined(__APPLE__)
qsort_r(&idx[0], idx.size(), sizeof(int), verts, ptcmp);
#else
qsort_r(&idx[0], idx.size(), sizeof(int), ptcmp, verts);
#endif
// Find the maximum and minimum vertex bounds.
// This is to allow calculation of the bounding triangle
float xmin = verts[0];
float ymin = verts[2];
float xmax = xmin;
float ymax = ymin;
for (int i = 1; i < nv; ++i)
{
xmin = rcMin(xmin, verts[i*3+0]);
xmax = rcMax(xmax, verts[i*3+0]);
ymin = rcMin(ymin, verts[i*3+2]);
ymax = rcMax(ymax, verts[i*3+2]);
}
float dx = xmax - xmin;
float dy = ymax - ymin;
float dmax = (dx > dy) ? dx : dy;
float xmid = (xmax + xmin) / 2.0f;
float ymid = (ymax + ymin) / 2.0f;
// Set up the supertriangle
// This is a triangle which encompasses all the sample points.
// The supertriangle coordinates are added to the end of the
// vertex list. The supertriangle is the first triangle in
// the triangle list.
float sv[3*3];
sv[0] = xmid - 20 * dmax;
sv[1] = 0;
sv[2] = ymid - dmax;
sv[3] = xmid;
sv[4] = 0;
sv[5] = ymid + 20 * dmax;
sv[6] = xmid + 20 * dmax;
sv[7] = 0;
sv[8] = ymid - dmax;
tris.push(-3);
tris.push(-2);
tris.push(-1);
tris.push(0); // not completed
for (int i = 0; i < nv; ++i)
{
const float xp = verts[idx[i]*3+0];
const float yp = verts[idx[i]*3+2];
edges.resize(0);
// Set up the edge buffer.
// If the point (xp,yp) lies inside the circumcircle then the
// three edges of that triangle are added to the edge buffer
// and that triangle is removed.
for (int j = 0; j < tris.size()/4; ++j)
{
int* t = &tris[j*4];
if (t[3]) // completed?
continue;
const float* v1 = t[0] < 0 ? &sv[(t[0]+3)*3] : &verts[idx[t[0]]*3];
const float* v2 = t[1] < 0 ? &sv[(t[1]+3)*3] : &verts[idx[t[1]]*3];
const float* v3 = t[2] < 0 ? &sv[(t[2]+3)*3] : &verts[idx[t[2]]*3];
float xc,yc,rsqr;
int inside = circumCircle(xp,yp, v1[0],v1[2], v2[0],v2[2], v3[0],v3[2], xc,yc,rsqr);
if (xc < xp && rcSqr(xp-xc) > rsqr)
t[3] = 1;
if (inside)
{
// Collect triangle edges.
edges.push(t[0]);
edges.push(t[1]);
edges.push(t[1]);
edges.push(t[2]);
edges.push(t[2]);
edges.push(t[0]);
// Remove triangle j.
t[0] = tris[tris.size()-4];
t[1] = tris[tris.size()-3];
t[2] = tris[tris.size()-2];
t[3] = tris[tris.size()-1];
tris.resize(tris.size()-4);
j--;
}
}
// Remove duplicate edges.
const int ne = edges.size()/2;
for (int j = 0; j < ne-1; ++j)
{
for (int k = j+1; k < ne; ++k)
{
// Dupe?, make null.
if ((edges[j*2+0] == edges[k*2+1]) && (edges[j*2+1] == edges[k*2+0]))
{
edges[j*2+0] = 0;
edges[j*2+1] = 0;
edges[k*2+0] = 0;
edges[k*2+1] = 0;
}
}
}
// Form new triangles for the current point
// Skipping over any null.
// All edges are arranged in clockwise order.
for (int j = 0; j < ne; ++j)
{
if (edges[j*2+0] == edges[j*2+1]) continue;
tris.push(edges[j*2+0]);
tris.push(edges[j*2+1]);
tris.push(i);
tris.push(0); // not completed
}
}
// Remove triangles with supertriangle vertices
// These are triangles which have a vertex number greater than nv
for (int i = 0; i < tris.size()/4; ++i)
{
int* t = &tris[i*4];
if (t[0] < 0 || t[1] < 0 || t[2] < 0)
{
t[0] = tris[tris.size()-4];
t[1] = tris[tris.size()-3];
t[2] = tris[tris.size()-2];
t[3] = tris[tris.size()-1];
tris.resize(tris.size()-4);
i--;
}
}
// Triangle vertices are pointing to sorted vertices, remap indices.
for (int i = 0; i < tris.size(); ++i)
tris[i] = idx[tris[i]];
}
inline float vdot2(const float* a, const float* b)
{
return a[0]*b[0] + a[2]*b[2];
}
static float distPtTri(const float* p, const float* a, const float* b, const float* c)
{
float v0[3], v1[3], v2[3];
vsub(v0, c,a);
vsub(v1, b,a);
vsub(v2, p,a);
const float dot00 = vdot2(v0, v0);
const float dot01 = vdot2(v0, v1);
const float dot02 = vdot2(v0, v2);
const float dot11 = vdot2(v1, v1);
const float dot12 = vdot2(v1, v2);
// Compute barycentric coordinates
float invDenom = 1.0f / (dot00 * dot11 - dot01 * dot01);
float u = (dot11 * dot02 - dot01 * dot12) * invDenom;
float v = (dot00 * dot12 - dot01 * dot02) * invDenom;
// If point lies inside the triangle, return interpolated y-coord.
static const float EPS = 1e-4f;
if (u >= -EPS && v >= -EPS && (u+v) <= 1+EPS)
{
float y = a[1] + v0[1]*u + v1[1]*v;
return fabsf(y-p[1]);
}
return FLT_MAX;
}
static float distancePtSeg(const float* pt, const float* p, const float* q)
{
float pqx = q[0] - p[0];
float pqy = q[1] - p[1];
float pqz = q[2] - p[2];
float dx = pt[0] - p[0];
float dy = pt[1] - p[1];
float dz = pt[2] - p[2];
float d = pqx*pqx + pqy*pqy + pqz*pqz;
float t = pqx*dx + pqy*dy + pqz*dz;
if (d > 0)
t /= d;
if (t < 0)
t = 0;
else if (t > 1)
t = 1;
dx = p[0] + t*pqx - pt[0];
dy = p[1] + t*pqy - pt[1];
dz = p[2] + t*pqz - pt[2];
return dx*dx + dy*dy + dz*dz;
}
static float distancePtSeg2d(const float* pt, const float* p, const float* q)
{
float pqx = q[0] - p[0];
float pqz = q[2] - p[2];
float dx = pt[0] - p[0];
float dz = pt[2] - p[2];
float d = pqx*pqx + pqz*pqz;
float t = pqx*dx + pqz*dz;
if (d > 0)
t /= d;
if (t < 0)
t = 0;
else if (t > 1)
t = 1;
dx = p[0] + t*pqx - pt[0];
dz = p[2] + t*pqz - pt[2];
return dx*dx + dz*dz;
}
static float distToTriMesh(const float* p, const float* verts, int nverts, const int* tris, int ntris)
{
float dmin = FLT_MAX;
for (int i = 0; i < ntris; ++i)
{
const float* va = &verts[tris[i*4+0]*3];
const float* vb = &verts[tris[i*4+1]*3];
const float* vc = &verts[tris[i*4+2]*3];
float d = distPtTri(p, va,vb,vc);
if (d < dmin)
dmin = d;
}
if (dmin == FLT_MAX) return -1;
return dmin;
}
static float distToPoly(int nvert, const float* verts, const float* p)
{
float dmin = FLT_MAX;
int i, j, c = 0;
for (i = 0, j = nvert-1; i < nvert; j = i++)
{
const float* vi = &verts[i*3];
const float* vj = &verts[j*3];
if (((vi[2] > p[2]) != (vj[2] > p[2])) &&
(p[0] < (vj[0]-vi[0]) * (p[2]-vi[2]) / (vj[2]-vi[2]) + vi[0]) )
c = !c;
dmin = rcMin(dmin, distancePtSeg2d(p, vj, vi));
}
return c ? -dmin : dmin;
}
static unsigned short getHeight(const float* pos, const float* bmin, const float ics, const rcHeightPatch& hp)
{
int ix = (int)floorf((pos[0]-bmin[0])*ics + 0.01f);
int iz = (int)floorf((pos[2]-bmin[2])*ics + 0.01f);
ix = rcClamp(ix-hp.xmin, 0, hp.width);
iz = rcClamp(iz-hp.ymin, 0, hp.height);
unsigned short h = hp.data[ix+iz*hp.width];
return h;
}
static bool buildPolyDetail(const float* in, const int nin, unsigned short reg,
const float sampleDist, const float sampleMaxError,
const rcCompactHeightfield& chf, const rcHeightPatch& hp,
float* verts, int& nverts, rcIntArray& tris,
rcIntArray& edges, rcIntArray& idx, rcIntArray& samples)
{
static const int MAX_VERTS = 256;
static const int MAX_EDGE = 64;
float edge[(MAX_EDGE+1)*3];
nverts = 0;
for (int i = 0; i < nin; ++i)
vcopy(&verts[i*3], &in[i*3]);
nverts = nin;
const float ics = 1.0f/chf.cs;
// Tesselate outlines.
// This is done in separate pass in order to ensure
// seamless height values across the ply boundaries.
if (sampleDist > 0)
{
for (int i = 0, j = nin-1; i < nin; j=i++)
{
const float* vj = &in[j*3];
const float* vi = &in[i*3];
// Make sure the segments are always handled in same order
// using lexological sort or else there will be seams.
if (fabsf(vj[0]-vi[0]) < 1e-6f)
{
if (vj[2] > vi[2])
rcSwap(vj,vi);
}
else
{
if (vj[0] > vi[0])
rcSwap(vj,vi);
}
// Create samples along the edge.
float dx = vi[0] - vj[0];
float dy = vi[1] - vj[1];
float dz = vi[2] - vj[2];
float d = sqrtf(dx*dx + dz*dz);
int nn = 1 + (int)floorf(d/sampleDist);
if (nn > MAX_EDGE) nn = MAX_EDGE;
if (nverts+nn >= MAX_VERTS)
nn = MAX_VERTS-1-nverts;
for (int k = 0; k <= nn; ++k)
{
float u = (float)k/(float)nn;
float* pos = &edge[k*3];
pos[0] = vj[0] + dx*u;
pos[1] = vj[1] + dy*u;
pos[2] = vj[2] + dz*u;
pos[1] = chf.bmin[1] + getHeight(pos, chf.bmin, ics, hp)*chf.ch;
}
// Simplify samples.
int idx[MAX_EDGE] = {0,nn};
int nidx = 2;
for (int k = 0; k < nidx-1; )
{
const int a = idx[k];
const int b = idx[k+1];
const float* va = &edge[a*3];
const float* vb = &edge[b*3];
// Find maximum deviation along the segment.
float maxd = 0;
int maxi = -1;
for (int m = a+1; m < b; ++m)
{
float d = distancePtSeg(&edge[m*3],va,vb);
if (d > maxd)
{
maxd = d;
maxi = m;
}
}
// If the max deviation is larger than accepted error,
// add new point, else continue to next segment.
if (maxi != -1 && maxd > rcSqr(sampleMaxError))
{
for (int m = nidx; m > k; --m)
idx[m] = idx[m-1];
idx[k+1] = maxi;
nidx++;
}
else
{
++k;
}
}
// Add new vertices.
for (int k = 1; k < nidx-1; ++k)
{
vcopy(&verts[nverts*3], &edge[idx[k]*3]);
nverts++;
}
}
}
// Tesselate the base mesh.
edges.resize(0);
tris.resize(0);
idx.resize(0);
delaunay(nverts, verts, idx, tris, edges);
if (sampleDist > 0)
{
// Create sample locations in a grid.
float bmin[3], bmax[3];
vcopy(bmin, in);
vcopy(bmax, in);
for (int i = 1; i < nin; ++i)
{
vmin(bmin, &in[i*3]);
vmax(bmax, &in[i*3]);
}
int x0 = (int)floorf(bmin[0]/sampleDist);
int x1 = (int)ceilf(bmax[0]/sampleDist);
int z0 = (int)floorf(bmin[2]/sampleDist);
int z1 = (int)ceilf(bmax[2]/sampleDist);
samples.resize(0);
for (int z = z0; z < z1; ++z)
{
for (int x = x0; x < x1; ++x)
{
float pt[3];
pt[0] = x*sampleDist;
pt[2] = z*sampleDist;
// Make sure the samples are not too close to the edges.
if (distToPoly(nin,in,pt) > -sampleDist/2) continue;
samples.push(x);
samples.push(getHeight(pt, chf.bmin, ics, hp));
samples.push(z);
}
}
// Add the samples starting from the one that has the most
// error. The procedure stops when all samples are added
// or when the max error is within treshold.
const int nsamples = samples.size()/3;
for (int iter = 0; iter < nsamples; ++iter)
{
// Find sample with most error.
float bestpt[3];
float bestd = 0;
for (int i = 0; i < nsamples; ++i)
{
float pt[3];
pt[0] = samples[i*3+0]*sampleDist;
pt[1] = chf.bmin[1] + samples[i*3+1]*chf.ch;
pt[2] = samples[i*3+2]*sampleDist;
float d = distToTriMesh(pt, verts, nverts, &tris[0], tris.size()/4);
if (d < 0) continue; // did not hit the mesh.
if (d > bestd)
{
bestd = d;
vcopy(bestpt,pt);
}
}
// If the max error is within accepted threshold, stop tesselating.
if (bestd <= sampleMaxError)
break;
// Add the new sample point.
vcopy(&verts[nverts*3],bestpt);
nverts++;
// Create new triangulation.
// TODO: Incremental add instead of full rebuild.
edges.resize(0);
tris.resize(0);
idx.resize(0);
delaunay(nverts, verts, idx, tris, edges);
if (nverts >= MAX_VERTS)
break;
}
}
return true;
}
static void getHeightData(const rcCompactHeightfield& chf,
const unsigned short* poly, const int npoly,
const unsigned short* verts,
rcHeightPatch& hp, rcIntArray& stack)
{
// Floodfill the heightfield to get 2D height data,
// starting at vertex locations as seeds.
memset(hp.data, 0xff, sizeof(unsigned short)*hp.width*hp.height);
stack.resize(0);
// Use poly vertices as seed points for the flood fill.
for (int j = 0; j < npoly; ++j)
{
const int ax = (int)verts[poly[j]*3+0];
const int ay = (int)verts[poly[j]*3+1];
const int az = (int)verts[poly[j]*3+2];
if (ax < hp.xmin || ax >= hp.xmin+hp.width ||
az < hp.ymin || az >= hp.ymin+hp.height)
continue;
const rcCompactCell& c = chf.cells[ax+az*chf.width];
int dmin = 0xffff;
int ai = -1;
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
const rcCompactSpan& s = chf.spans[i];
int d = rcAbs(ay - (int)s.y);
if (d < dmin)
{
ai = i;
dmin = d;
}
}
if (ai != -1)
{
stack.push(ax);
stack.push(az);
stack.push(ai);
}
}
while (stack.size() > 0)
{
int ci = stack.pop();
int cy = stack.pop();
int cx = stack.pop();
// Skip already visited locations.
int idx = cx-hp.xmin+(cy-hp.ymin)*hp.width;
if (hp.data[idx] != 0xffff)
continue;
const rcCompactSpan& cs = chf.spans[ci];
hp.data[idx] = cs.y;
for (int dir = 0; dir < 4; ++dir)
{
if (rcGetCon(cs, dir) == 0xf) continue;
const int ax = cx + rcGetDirOffsetX(dir);
const int ay = cy + rcGetDirOffsetY(dir);
if (ax < hp.xmin || ax >= (hp.xmin+hp.width) ||
ay < hp.ymin || ay >= (hp.ymin+hp.height))
continue;
if (hp.data[ax-hp.xmin+(ay-hp.ymin)*hp.width] != 0xffff)
continue;
const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(cs, dir);
stack.push(ax);
stack.push(ay);
stack.push(ai);
}
}
}
static unsigned char getEdgeFlags(const float* va, const float* vb,
const float* vpoly, const int npoly)
{
// Return true if edge (va,vb) is part of the polygon.
static const float thrSqr = rcSqr(0.001f);
for (int i = 0, j = npoly-1; i < npoly; j=i++)
{
if (distancePtSeg2d(va, &vpoly[j*3], &vpoly[i*3]) < thrSqr &&
distancePtSeg2d(vb, &vpoly[j*3], &vpoly[i*3]) < thrSqr)
return 1;
}
return 0;
}
static unsigned char getTriFlags(const float* va, const float* vb, const float* vc,
const float* vpoly, const int npoly)
{
unsigned char flags = 0;
flags |= getEdgeFlags(va,vb,vpoly,npoly) << 0;
flags |= getEdgeFlags(vb,vc,vpoly,npoly) << 2;
flags |= getEdgeFlags(vc,va,vpoly,npoly) << 4;
return flags;
}
bool rcBuildPolyMeshDetail(const rcPolyMesh& mesh, const rcCompactHeightfield& chf,
const float sampleDist, const float sampleMaxError,
rcPolyMeshDetail& dmesh)
{
if (mesh.nverts == 0 || mesh.npolys == 0)
return true;
rcTimeVal startTime = rcGetPerformanceTimer();
rcTimeVal endTime;
int vcap;
int tcap;
const int nvp = mesh.nvp;
const float cs = mesh.cs;
const float ch = mesh.ch;
const float* orig = mesh.bmin;
rcIntArray edges(64);
rcIntArray tris(512);
rcIntArray idx(512);
rcIntArray stack(512);
rcIntArray samples(512);
float verts[256*3];
float* poly = 0;
int* bounds = 0;
rcHeightPatch hp;
int nPolyVerts = 0;
int maxhw = 0, maxhh = 0;
bounds = new int[mesh.npolys*4];
if (!bounds)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'bounds' (%d).", mesh.npolys*4);
goto failure;
}
poly = new float[nvp*3];
if (!bounds)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'poly' (%d).", nvp*3);
goto failure;
}
// Find max size for a polygon area.
for (int i = 0; i < mesh.npolys; ++i)
{
const unsigned short* p = &mesh.polys[i*nvp*2];
int& xmin = bounds[i*4+0];
int& xmax = bounds[i*4+1];
int& ymin = bounds[i*4+2];
int& ymax = bounds[i*4+3];
xmin = chf.width;
xmax = 0;
ymin = chf.height;
ymax = 0;
for (int j = 0; j < nvp; ++j)
{
if(p[j] == 0xffff) break;
const unsigned short* v = &mesh.verts[p[j]*3];
xmin = rcMin(xmin, (int)v[0]);
xmax = rcMax(xmax, (int)v[0]);
ymin = rcMin(ymin, (int)v[2]);
ymax = rcMax(ymax, (int)v[2]);
nPolyVerts++;
}
xmin = rcMax(0,xmin-1);
xmax = rcMin(chf.width,xmax+1);
ymin = rcMax(0,ymin-1);
ymax = rcMin(chf.height,ymax+1);
if (xmin >= xmax || ymin >= ymax) continue;
maxhw = rcMax(maxhw, xmax-xmin);
maxhh = rcMax(maxhh, ymax-ymin);
}
hp.data = new unsigned short[maxhw*maxhh];
if (!hp.data)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'hp.data' (%d).", maxhw*maxhh);
goto failure;
}
dmesh.nmeshes = mesh.npolys;
dmesh.nverts = 0;
dmesh.ntris = 0;
dmesh.meshes = new unsigned short[dmesh.nmeshes*4];
if (!dmesh.meshes)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.meshes' (%d).", dmesh.nmeshes*4);
goto failure;
}
vcap = nPolyVerts+nPolyVerts/2;
tcap = vcap*2;
dmesh.nverts = 0;
dmesh.verts = new float[vcap*3];
if (!dmesh.verts)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.verts' (%d).", vcap*3);
goto failure;
}
dmesh.ntris = 0;
dmesh.tris = new unsigned char[tcap*4];
if (!dmesh.tris)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.tris' (%d).", tcap*4);
goto failure;
}
for (int i = 0; i < mesh.npolys; ++i)
{
const unsigned short* p = &mesh.polys[i*nvp*2];
// Find polygon bounding box.
int npoly = 0;
for (int j = 0; j < nvp; ++j)
{
if(p[j] == 0xffff) break;
const unsigned short* v = &mesh.verts[p[j]*3];
poly[j*3+0] = orig[0] + v[0]*cs;
poly[j*3+1] = orig[1] + v[1]*ch;
poly[j*3+2] = orig[2] + v[2]*cs;
npoly++;
}
// Get the height data from the area of the polygon.
hp.xmin = bounds[i*4+0];
hp.ymin = bounds[i*4+2];
hp.width = bounds[i*4+1]-bounds[i*4+0];
hp.height = bounds[i*4+3]-bounds[i*4+2];
getHeightData(chf, p, npoly, mesh.verts, hp, stack);
// Build detail mesh.
int nverts = 0;
if (!buildPolyDetail(poly, npoly, mesh.regs[i],
sampleDist, sampleMaxError,
chf, hp, verts, nverts, tris,
edges, idx, samples))
{
goto failure;
}
// Offset detail vertices, unnecassary?
for (int j = 0; j < nverts; ++j)
verts[j*3+1] += chf.ch;
// Store detail submesh.
const int ntris = tris.size()/4;
dmesh.meshes[i*4+0] = dmesh.nverts;
dmesh.meshes[i*4+1] = (unsigned short)nverts;
dmesh.meshes[i*4+2] = dmesh.ntris;
dmesh.meshes[i*4+3] = (unsigned short)ntris;
// Store vertices, allocate more memory if necessary.
if (dmesh.nverts+nverts > vcap)
{
while (dmesh.nverts+nverts > vcap)
vcap += 256;
float* newv = new float[vcap*3];
if (!newv)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'newv' (%d).", vcap*3);
goto failure;
}
if (dmesh.nverts)
memcpy(newv, dmesh.verts, sizeof(float)*3*dmesh.nverts);
delete [] dmesh.verts;
dmesh.verts = newv;
}
for (int j = 0; j < nverts; ++j)
{
dmesh.verts[dmesh.nverts*3+0] = verts[j*3+0];
dmesh.verts[dmesh.nverts*3+1] = verts[j*3+1];
dmesh.verts[dmesh.nverts*3+2] = verts[j*3+2];
dmesh.nverts++;
}
// Store triangles, allocate more memory if necessary.
if (dmesh.ntris+ntris > tcap)
{
while (dmesh.ntris+ntris > tcap)
tcap += 256;
unsigned char* newt = new unsigned char[tcap*4];
if (!newt)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'newt' (%d).", tcap*4);
goto failure;
}
if (dmesh.ntris)
memcpy(newt, dmesh.tris, sizeof(unsigned char)*4*dmesh.ntris);
delete [] dmesh.tris;
dmesh.tris = newt;
}
for (int j = 0; j < ntris; ++j)
{
const int* t = &tris[j*4];
dmesh.tris[dmesh.ntris*4+0] = (unsigned char)t[0];
dmesh.tris[dmesh.ntris*4+1] = (unsigned char)t[1];
dmesh.tris[dmesh.ntris*4+2] = (unsigned char)t[2];
dmesh.tris[dmesh.ntris*4+3] = getTriFlags(&verts[t[0]*3], &verts[t[1]*3], &verts[t[2]*3], poly, npoly);
dmesh.ntris++;
}
}
delete [] bounds;
delete [] poly;
endTime = rcGetPerformanceTimer();
if (rcGetBuildTimes())
rcGetBuildTimes()->buildDetailMesh += rcGetDeltaTimeUsec(startTime, endTime);
return true;
failure:
delete [] bounds;
delete [] poly;
return false;
}
bool rcMergePolyMeshDetails(rcPolyMeshDetail** meshes, const int nmeshes, rcPolyMeshDetail& mesh)
{
rcTimeVal startTime = rcGetPerformanceTimer();
int maxVerts = 0;
int maxTris = 0;
int maxMeshes = 0;
for (int i = 0; i < nmeshes; ++i)
{
if (!meshes[i]) continue;
maxVerts += meshes[i]->nverts;
maxTris += meshes[i]->ntris;
maxMeshes += meshes[i]->nmeshes;
}
mesh.nmeshes = 0;
mesh.meshes = new unsigned short[maxMeshes*4];
if (!mesh.meshes)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'pmdtl.meshes' (%d).", maxMeshes*4);
return false;
}
mesh.ntris = 0;
mesh.tris = new unsigned char[maxTris*4];
if (!mesh.tris)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.tris' (%d).", maxTris*4);
return false;
}
mesh.nverts = 0;
mesh.verts = new float[maxVerts*3];
if (!mesh.verts)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.verts' (%d).", maxVerts*3);
return false;
}
// Merge datas.
for (int i = 0; i < nmeshes; ++i)
{
rcPolyMeshDetail* dm = meshes[i];
if (!dm) continue;
for (int j = 0; j < dm->nmeshes; ++j)
{
unsigned short* dst = &mesh.meshes[mesh.nmeshes*4];
unsigned short* src = &dm->meshes[j*4];
dst[0] = mesh.nverts+src[0];
dst[1] = src[1];
dst[2] = mesh.ntris+src[2];
dst[3] = src[3];
mesh.nmeshes++;
}
for (int k = 0; k < dm->nverts; ++k)
{
vcopy(&mesh.verts[mesh.nverts*3], &dm->verts[k*3]);
mesh.nverts++;
}
for (int k = 0; k < dm->ntris; ++k)
{
mesh.tris[mesh.ntris*4+0] = dm->tris[k*4+0];
mesh.tris[mesh.ntris*4+1] = dm->tris[k*4+1];
mesh.tris[mesh.ntris*4+2] = dm->tris[k*4+2];
mesh.tris[mesh.ntris*4+3] = dm->tris[k*4+3];
mesh.ntris++;
}
}
rcTimeVal endTime = rcGetPerformanceTimer();
if (rcGetBuildTimes())
rcGetBuildTimes()->mergePolyMeshDetail += rcGetDeltaTimeUsec(startTime, endTime);
return true;
}