blender/source/gameengine/Rasterizer/RAS_OpenGLRasterizer/RAS_OpenGLRasterizer.cpp
Jason Wilkins 8d084e8c8f Ghost Context Refactor
https://developer.blender.org/D643
Separates graphics context creation from window code in Ghost so that they can vary separately.
2014-10-07 15:47:32 -05:00

1595 lines
37 KiB
C++

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file gameengine/Rasterizer/RAS_OpenGLRasterizer/RAS_OpenGLRasterizer.cpp
* \ingroup bgerastogl
*/
#include <math.h>
#include <stdlib.h>
#include "RAS_OpenGLRasterizer.h"
#include "glew-mx.h"
#include "RAS_ICanvas.h"
#include "RAS_Rect.h"
#include "RAS_TexVert.h"
#include "RAS_MeshObject.h"
#include "RAS_Polygon.h"
#include "RAS_ILightObject.h"
#include "MT_CmMatrix4x4.h"
#include "RAS_OpenGLLight.h"
#include "RAS_StorageIM.h"
#include "RAS_StorageVA.h"
#include "RAS_StorageVBO.h"
#include "GPU_draw.h"
#include "GPU_material.h"
extern "C"{
#include "BLF_api.h"
}
// XXX Clean these up <<<
#include "Value.h"
#include "KX_Scene.h"
#include "KX_RayCast.h"
#include "KX_GameObject.h"
// >>>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
/**
* 32x32 bit masks for vinterlace stereo mode
*/
static GLuint left_eye_vinterlace_mask[32];
static GLuint right_eye_vinterlace_mask[32];
/**
* 32x32 bit masks for hinterlace stereo mode.
* Left eye = &hinterlace_mask[0]
* Right eye = &hinterlace_mask[1]
*/
static GLuint hinterlace_mask[33];
RAS_OpenGLRasterizer::RAS_OpenGLRasterizer(RAS_ICanvas* canvas, int storage)
:RAS_IRasterizer(canvas),
m_2DCanvas(canvas),
m_fogenabled(false),
m_time(0.0),
m_campos(0.0f, 0.0f, 0.0f),
m_camortho(false),
m_stereomode(RAS_STEREO_NOSTEREO),
m_curreye(RAS_STEREO_LEFTEYE),
m_eyeseparation(0.0),
m_focallength(0.0),
m_setfocallength(false),
m_noOfScanlines(32),
m_motionblur(0),
m_motionblurvalue(-1.0),
m_usingoverrideshader(false),
m_clientobject(NULL),
m_auxilaryClientInfo(NULL),
m_drawingmode(KX_TEXTURED),
m_texco_num(0),
m_attrib_num(0),
//m_last_alphablend(GPU_BLEND_SOLID),
m_last_frontface(true),
m_materialCachingInfo(0),
m_storage_type(storage)
{
m_viewmatrix.setIdentity();
m_viewinvmatrix.setIdentity();
for (int i = 0; i < 32; i++)
{
left_eye_vinterlace_mask[i] = 0x55555555;
right_eye_vinterlace_mask[i] = 0xAAAAAAAA;
hinterlace_mask[i] = (i&1)*0xFFFFFFFF;
}
hinterlace_mask[32] = 0;
m_prevafvalue = GPU_get_anisotropic();
if (m_storage_type == RAS_VBO /*|| m_storage_type == RAS_AUTO_STORAGE && GLEW_ARB_vertex_buffer_object*/)
{
m_storage = new RAS_StorageVBO(&m_texco_num, m_texco, &m_attrib_num, m_attrib, m_attrib_layer);
m_failsafe_storage = new RAS_StorageIM(&m_texco_num, m_texco, &m_attrib_num, m_attrib, m_attrib_layer);
m_storage_type = RAS_VBO;
}
else if ((m_storage_type == RAS_VA) || (m_storage_type == RAS_AUTO_STORAGE && GLEW_VERSION_1_1))
{
m_storage = new RAS_StorageVA(&m_texco_num, m_texco, &m_attrib_num, m_attrib, m_attrib_layer);
m_failsafe_storage = new RAS_StorageIM(&m_texco_num, m_texco, &m_attrib_num, m_attrib, m_attrib_layer);
m_storage_type = RAS_VA;
}
else
{
m_storage = m_failsafe_storage = new RAS_StorageIM(&m_texco_num, m_texco, &m_attrib_num, m_attrib, m_attrib_layer);
m_storage_type = RAS_IMMEDIATE;
}
glGetIntegerv(GL_MAX_LIGHTS, (GLint *) &m_numgllights);
if (m_numgllights < 8)
m_numgllights = 8;
}
RAS_OpenGLRasterizer::~RAS_OpenGLRasterizer()
{
// Restore the previous AF value
GPU_set_anisotropic(m_prevafvalue);
if (m_failsafe_storage && m_failsafe_storage != m_storage)
delete m_failsafe_storage;
if (m_storage)
delete m_storage;
}
bool RAS_OpenGLRasterizer::Init()
{
bool storage_init;
GPU_state_init();
m_ambr = 0.0f;
m_ambg = 0.0f;
m_ambb = 0.0f;
glDisable(GL_BLEND);
glDisable(GL_ALPHA_TEST);
//m_last_alphablend = GPU_BLEND_SOLID;
GPU_set_material_alpha_blend(GPU_BLEND_SOLID);
glFrontFace(GL_CCW);
m_last_frontface = true;
m_redback = 0.4375;
m_greenback = 0.4375;
m_blueback = 0.4375;
m_alphaback = 0.0;
glClearColor(m_redback,m_greenback,m_blueback,m_alphaback);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glShadeModel(GL_SMOOTH);
storage_init = m_storage->Init();
return true && storage_init;
}
void RAS_OpenGLRasterizer::SetAmbientColor(float red, float green, float blue)
{
m_ambr = red;
m_ambg = green;
m_ambb = blue;
}
void RAS_OpenGLRasterizer::SetAmbient(float factor)
{
float ambient[] = { m_ambr*factor, m_ambg*factor, m_ambb*factor, 1.0f };
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, ambient);
}
void RAS_OpenGLRasterizer::SetBackColor(float red,
float green,
float blue,
float alpha)
{
m_redback = red;
m_greenback = green;
m_blueback = blue;
m_alphaback = alpha;
}
void RAS_OpenGLRasterizer::SetFogColor(float r,
float g,
float b)
{
m_fogr = r;
m_fogg = g;
m_fogb = b;
m_fogenabled = true;
}
void RAS_OpenGLRasterizer::SetFogStart(float start)
{
m_fogstart = start;
m_fogenabled = true;
}
void RAS_OpenGLRasterizer::SetFogEnd(float fogend)
{
m_fogdist = fogend;
m_fogenabled = true;
}
void RAS_OpenGLRasterizer::SetFog(float start,
float dist,
float r,
float g,
float b)
{
m_fogstart = start;
m_fogdist = dist;
m_fogr = r;
m_fogg = g;
m_fogb = b;
m_fogenabled = true;
}
void RAS_OpenGLRasterizer::DisableFog()
{
m_fogenabled = false;
}
bool RAS_OpenGLRasterizer::IsFogEnabled()
{
return m_fogenabled;
}
void RAS_OpenGLRasterizer::DisplayFog()
{
if ((m_drawingmode >= KX_SOLID) && m_fogenabled)
{
float params[5];
glFogi(GL_FOG_MODE, GL_LINEAR);
glFogf(GL_FOG_DENSITY, 0.1f);
glFogf(GL_FOG_START, m_fogstart);
glFogf(GL_FOG_END, m_fogstart + m_fogdist);
params[0] = m_fogr;
params[1] = m_fogg;
params[2] = m_fogb;
params[3] = 0.0;
glFogfv(GL_FOG_COLOR, params);
glEnable(GL_FOG);
}
else
{
glDisable(GL_FOG);
}
}
bool RAS_OpenGLRasterizer::SetMaterial(const RAS_IPolyMaterial& mat)
{
return mat.Activate(this, m_materialCachingInfo);
}
void RAS_OpenGLRasterizer::Exit()
{
m_storage->Exit();
glEnable(GL_CULL_FACE);
glEnable(GL_DEPTH_TEST);
glClearDepth(1.0);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
glClearColor(m_redback, m_greenback, m_blueback, m_alphaback);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glDepthMask (GL_TRUE);
glDepthFunc(GL_LEQUAL);
glBlendFunc(GL_ONE, GL_ZERO);
glDisable(GL_POLYGON_STIPPLE);
glDisable(GL_LIGHTING);
if (GLEW_EXT_separate_specular_color || GLEW_VERSION_1_2)
glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL, GL_SINGLE_COLOR);
EndFrame();
}
bool RAS_OpenGLRasterizer::BeginFrame(double time)
{
m_time = time;
// Blender camera routine destroys the settings
if (m_drawingmode < KX_SOLID)
{
glDisable(GL_CULL_FACE);
glDisable(GL_DEPTH_TEST);
}
else
{
glEnable(GL_DEPTH_TEST);
glEnable(GL_CULL_FACE);
}
glDisable(GL_BLEND);
glDisable(GL_ALPHA_TEST);
//m_last_alphablend = GPU_BLEND_SOLID;
GPU_set_material_alpha_blend(GPU_BLEND_SOLID);
glFrontFace(GL_CCW);
m_last_frontface = true;
glShadeModel(GL_SMOOTH);
glEnable(GL_MULTISAMPLE_ARB);
m_2DCanvas->BeginFrame();
// Render Tools
m_clientobject = NULL;
m_lastlightlayer = -1;
m_lastauxinfo = NULL;
m_lastlighting = true; /* force disable in DisableOpenGLLights() */
DisableOpenGLLights();
return true;
}
void RAS_OpenGLRasterizer::SetDrawingMode(int drawingmode)
{
m_drawingmode = drawingmode;
if (m_drawingmode == KX_WIREFRAME)
glDisable(GL_CULL_FACE);
m_storage->SetDrawingMode(drawingmode);
if (m_failsafe_storage && m_failsafe_storage != m_storage) {
m_failsafe_storage->SetDrawingMode(drawingmode);
}
}
int RAS_OpenGLRasterizer::GetDrawingMode()
{
return m_drawingmode;
}
void RAS_OpenGLRasterizer::SetDepthMask(DepthMask depthmask)
{
glDepthMask(depthmask == KX_DEPTHMASK_DISABLED ? GL_FALSE : GL_TRUE);
}
void RAS_OpenGLRasterizer::ClearColorBuffer()
{
m_2DCanvas->ClearColor(m_redback,m_greenback,m_blueback,m_alphaback);
m_2DCanvas->ClearBuffer(RAS_ICanvas::COLOR_BUFFER);
}
void RAS_OpenGLRasterizer::ClearDepthBuffer()
{
m_2DCanvas->ClearBuffer(RAS_ICanvas::DEPTH_BUFFER);
}
void RAS_OpenGLRasterizer::ClearCachingInfo(void)
{
m_materialCachingInfo = 0;
}
void RAS_OpenGLRasterizer::FlushDebugShapes()
{
if (m_debugShapes.empty())
return;
// DrawDebugLines
GLboolean light, tex;
light= glIsEnabled(GL_LIGHTING);
tex= glIsEnabled(GL_TEXTURE_2D);
if (light) glDisable(GL_LIGHTING);
if (tex) glDisable(GL_TEXTURE_2D);
//draw lines
glBegin(GL_LINES);
for (unsigned int i=0;i<m_debugShapes.size();i++)
{
if (m_debugShapes[i].m_type != OglDebugShape::LINE)
continue;
glColor4f(m_debugShapes[i].m_color[0],m_debugShapes[i].m_color[1],m_debugShapes[i].m_color[2],1.f);
const MT_Scalar* fromPtr = &m_debugShapes[i].m_pos.x();
const MT_Scalar* toPtr= &m_debugShapes[i].m_param.x();
glVertex3dv(fromPtr);
glVertex3dv(toPtr);
}
glEnd();
//draw circles
for (unsigned int i=0;i<m_debugShapes.size();i++)
{
if (m_debugShapes[i].m_type != OglDebugShape::CIRCLE)
continue;
glBegin(GL_LINE_LOOP);
glColor4f(m_debugShapes[i].m_color[0],m_debugShapes[i].m_color[1],m_debugShapes[i].m_color[2],1.f);
static const MT_Vector3 worldUp(0.0, 0.0, 1.0);
MT_Vector3 norm = m_debugShapes[i].m_param;
MT_Matrix3x3 tr;
if (norm.fuzzyZero() || norm == worldUp)
{
tr.setIdentity();
}
else
{
MT_Vector3 xaxis, yaxis;
xaxis = MT_cross(norm, worldUp);
yaxis = MT_cross(xaxis, norm);
tr.setValue(xaxis.x(), xaxis.y(), xaxis.z(),
yaxis.x(), yaxis.y(), yaxis.z(),
norm.x(), norm.y(), norm.z());
}
MT_Scalar rad = m_debugShapes[i].m_param2.x();
int n = (int) m_debugShapes[i].m_param2.y();
for (int j = 0; j<n; j++)
{
MT_Scalar theta = j*M_PI*2/n;
MT_Vector3 pos(cos(theta) * rad, sin(theta) * rad, 0.0);
pos = pos*tr;
pos += m_debugShapes[i].m_pos;
const MT_Scalar* posPtr = &pos.x();
glVertex3dv(posPtr);
}
glEnd();
}
if (light) glEnable(GL_LIGHTING);
if (tex) glEnable(GL_TEXTURE_2D);
m_debugShapes.clear();
}
void RAS_OpenGLRasterizer::EndFrame()
{
FlushDebugShapes();
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
glDisable(GL_MULTISAMPLE_ARB);
m_2DCanvas->EndFrame();
}
void RAS_OpenGLRasterizer::SetRenderArea()
{
RAS_Rect area;
// only above/below stereo method needs viewport adjustment
switch (m_stereomode)
{
case RAS_STEREO_ABOVEBELOW:
switch (m_curreye) {
case RAS_STEREO_LEFTEYE:
// upper half of window
area.SetLeft(0);
area.SetBottom(m_2DCanvas->GetHeight() -
int(m_2DCanvas->GetHeight() - m_noOfScanlines) / 2);
area.SetRight(int(m_2DCanvas->GetWidth()));
area.SetTop(int(m_2DCanvas->GetHeight()));
m_2DCanvas->SetDisplayArea(&area);
break;
case RAS_STEREO_RIGHTEYE:
// lower half of window
area.SetLeft(0);
area.SetBottom(0);
area.SetRight(int(m_2DCanvas->GetWidth()));
area.SetTop(int(m_2DCanvas->GetHeight() - m_noOfScanlines) / 2);
m_2DCanvas->SetDisplayArea(&area);
break;
}
break;
case RAS_STEREO_3DTVTOPBOTTOM:
switch (m_curreye) {
case RAS_STEREO_LEFTEYE:
// upper half of window
area.SetLeft(0);
area.SetBottom(m_2DCanvas->GetHeight() -
m_2DCanvas->GetHeight() / 2);
area.SetRight(m_2DCanvas->GetWidth());
area.SetTop(m_2DCanvas->GetHeight());
m_2DCanvas->SetDisplayArea(&area);
break;
case RAS_STEREO_RIGHTEYE:
// lower half of window
area.SetLeft(0);
area.SetBottom(0);
area.SetRight(m_2DCanvas->GetWidth());
area.SetTop(m_2DCanvas->GetHeight() / 2);
m_2DCanvas->SetDisplayArea(&area);
break;
}
break;
case RAS_STEREO_SIDEBYSIDE:
switch (m_curreye)
{
case RAS_STEREO_LEFTEYE:
// Left half of window
area.SetLeft(0);
area.SetBottom(0);
area.SetRight(m_2DCanvas->GetWidth()/2);
area.SetTop(m_2DCanvas->GetHeight());
m_2DCanvas->SetDisplayArea(&area);
break;
case RAS_STEREO_RIGHTEYE:
// Right half of window
area.SetLeft(m_2DCanvas->GetWidth()/2);
area.SetBottom(0);
area.SetRight(m_2DCanvas->GetWidth());
area.SetTop(m_2DCanvas->GetHeight());
m_2DCanvas->SetDisplayArea(&area);
break;
}
break;
default:
// every available pixel
area.SetLeft(0);
area.SetBottom(0);
area.SetRight(int(m_2DCanvas->GetWidth()));
area.SetTop(int(m_2DCanvas->GetHeight()));
m_2DCanvas->SetDisplayArea(&area);
break;
}
}
void RAS_OpenGLRasterizer::SetStereoMode(const StereoMode stereomode)
{
m_stereomode = stereomode;
}
RAS_IRasterizer::StereoMode RAS_OpenGLRasterizer::GetStereoMode()
{
return m_stereomode;
}
bool RAS_OpenGLRasterizer::Stereo()
{
if (m_stereomode > RAS_STEREO_NOSTEREO) // > 0
return true;
else
return false;
}
bool RAS_OpenGLRasterizer::InterlacedStereo()
{
return m_stereomode == RAS_STEREO_VINTERLACE || m_stereomode == RAS_STEREO_INTERLACED;
}
void RAS_OpenGLRasterizer::SetEye(const StereoEye eye)
{
m_curreye = eye;
switch (m_stereomode)
{
case RAS_STEREO_QUADBUFFERED:
glDrawBuffer(m_curreye == RAS_STEREO_LEFTEYE ? GL_BACK_LEFT : GL_BACK_RIGHT);
break;
case RAS_STEREO_ANAGLYPH:
if (m_curreye == RAS_STEREO_LEFTEYE) {
glColorMask(GL_TRUE, GL_FALSE, GL_FALSE, GL_FALSE);
}
else {
//glAccum(GL_LOAD, 1.0);
glColorMask(GL_FALSE, GL_TRUE, GL_TRUE, GL_FALSE);
ClearDepthBuffer();
}
break;
case RAS_STEREO_VINTERLACE:
{
glEnable(GL_POLYGON_STIPPLE);
glPolygonStipple((const GLubyte*) ((m_curreye == RAS_STEREO_LEFTEYE) ? left_eye_vinterlace_mask : right_eye_vinterlace_mask));
if (m_curreye == RAS_STEREO_RIGHTEYE)
ClearDepthBuffer();
break;
}
case RAS_STEREO_INTERLACED:
{
glEnable(GL_POLYGON_STIPPLE);
glPolygonStipple((const GLubyte*) &hinterlace_mask[m_curreye == RAS_STEREO_LEFTEYE?0:1]);
if (m_curreye == RAS_STEREO_RIGHTEYE)
ClearDepthBuffer();
break;
}
default:
break;
}
}
RAS_IRasterizer::StereoEye RAS_OpenGLRasterizer::GetEye()
{
return m_curreye;
}
void RAS_OpenGLRasterizer::SetEyeSeparation(const float eyeseparation)
{
m_eyeseparation = eyeseparation;
}
float RAS_OpenGLRasterizer::GetEyeSeparation()
{
return m_eyeseparation;
}
void RAS_OpenGLRasterizer::SetFocalLength(const float focallength)
{
m_focallength = focallength;
m_setfocallength = true;
}
float RAS_OpenGLRasterizer::GetFocalLength()
{
return m_focallength;
}
void RAS_OpenGLRasterizer::SwapBuffers()
{
m_2DCanvas->SwapBuffers();
}
const MT_Matrix4x4& RAS_OpenGLRasterizer::GetViewMatrix() const
{
return m_viewmatrix;
}
const MT_Matrix4x4& RAS_OpenGLRasterizer::GetViewInvMatrix() const
{
return m_viewinvmatrix;
}
void RAS_OpenGLRasterizer::IndexPrimitives_3DText(RAS_MeshSlot& ms,
class RAS_IPolyMaterial* polymat)
{
bool obcolor = ms.m_bObjectColor;
MT_Vector4& rgba = ms.m_RGBAcolor;
RAS_MeshSlot::iterator it;
const STR_String& mytext = ((CValue*)m_clientobject)->GetPropertyText("Text");
// handle object color
if (obcolor) {
glDisableClientState(GL_COLOR_ARRAY);
glColor4d(rgba[0], rgba[1], rgba[2], rgba[3]);
}
else
glEnableClientState(GL_COLOR_ARRAY);
for (ms.begin(it); !ms.end(it); ms.next(it)) {
RAS_TexVert *vertex;
size_t i, j, numvert;
numvert = it.array->m_type;
if (it.array->m_type == RAS_DisplayArray::LINE) {
// line drawing, no text
glBegin(GL_LINES);
for (i=0; i<it.totindex; i+=2)
{
vertex = &it.vertex[it.index[i]];
glVertex3fv(vertex->getXYZ());
vertex = &it.vertex[it.index[i+1]];
glVertex3fv(vertex->getXYZ());
}
glEnd();
}
else {
// triangle and quad text drawing
for (i=0; i<it.totindex; i+=numvert)
{
float v[4][3];
int glattrib, unit;
for (j=0; j<numvert; j++) {
vertex = &it.vertex[it.index[i+j]];
v[j][0] = vertex->getXYZ()[0];
v[j][1] = vertex->getXYZ()[1];
v[j][2] = vertex->getXYZ()[2];
}
// find the right opengl attribute
glattrib = -1;
if (GLEW_ARB_vertex_program)
for (unit=0; unit<m_attrib_num; unit++)
if (m_attrib[unit] == RAS_TEXCO_UV)
glattrib = unit;
GPU_render_text(polymat->GetMTFace(), polymat->GetDrawingMode(), mytext, mytext.Length(), polymat->GetMCol(), v[0], v[1], v[2], v[3], glattrib);
ClearCachingInfo();
}
}
}
glDisableClientState(GL_COLOR_ARRAY);
}
void RAS_OpenGLRasterizer::SetTexCoordNum(int num)
{
m_texco_num = num;
if (m_texco_num > RAS_MAX_TEXCO)
m_texco_num = RAS_MAX_TEXCO;
}
void RAS_OpenGLRasterizer::SetAttribNum(int num)
{
m_attrib_num = num;
if (m_attrib_num > RAS_MAX_ATTRIB)
m_attrib_num = RAS_MAX_ATTRIB;
}
void RAS_OpenGLRasterizer::SetTexCoord(TexCoGen coords, int unit)
{
// this changes from material to material
if (unit < RAS_MAX_TEXCO)
m_texco[unit] = coords;
}
void RAS_OpenGLRasterizer::SetAttrib(TexCoGen coords, int unit, int layer)
{
// this changes from material to material
if (unit < RAS_MAX_ATTRIB) {
m_attrib[unit] = coords;
m_attrib_layer[unit] = layer;
}
}
void RAS_OpenGLRasterizer::IndexPrimitives(RAS_MeshSlot& ms)
{
if (ms.m_pDerivedMesh)
m_failsafe_storage->IndexPrimitives(ms);
else
m_storage->IndexPrimitives(ms);
}
void RAS_OpenGLRasterizer::IndexPrimitivesMulti(RAS_MeshSlot& ms)
{
if (ms.m_pDerivedMesh)
m_failsafe_storage->IndexPrimitivesMulti(ms);
else
m_storage->IndexPrimitivesMulti(ms);
}
void RAS_OpenGLRasterizer::SetProjectionMatrix(MT_CmMatrix4x4 &mat)
{
glMatrixMode(GL_PROJECTION);
double* matrix = &mat(0, 0);
glLoadMatrixd(matrix);
m_camortho = (mat(3, 3) != 0.0);
}
void RAS_OpenGLRasterizer::SetProjectionMatrix(const MT_Matrix4x4 & mat)
{
glMatrixMode(GL_PROJECTION);
double matrix[16];
/* Get into argument. Looks a bit dodgy, but it's ok. */
mat.getValue(matrix);
/* Internally, MT_Matrix4x4 uses doubles (MT_Scalar). */
glLoadMatrixd(matrix);
m_camortho= (mat[3][3] != 0.0);
}
MT_Matrix4x4 RAS_OpenGLRasterizer::GetFrustumMatrix(
float left,
float right,
float bottom,
float top,
float frustnear,
float frustfar,
float focallength,
bool
) {
MT_Matrix4x4 result;
double mat[16];
// correction for stereo
if (Stereo())
{
float near_div_focallength;
float offset;
// if Rasterizer.setFocalLength is not called we use the camera focallength
if (!m_setfocallength)
// if focallength is null we use a value known to be reasonable
m_focallength = (focallength == 0.f) ? m_eyeseparation * 30.0f
: focallength;
near_div_focallength = frustnear / m_focallength;
offset = 0.5f * m_eyeseparation * near_div_focallength;
switch (m_curreye) {
case RAS_STEREO_LEFTEYE:
left += offset;
right += offset;
break;
case RAS_STEREO_RIGHTEYE:
left -= offset;
right -= offset;
break;
}
// leave bottom and top untouched
if (m_stereomode == RAS_STEREO_3DTVTOPBOTTOM) {
// restore the vertical frustrum because the 3DTV will
// expande the top and bottom part to the full size of the screen
bottom *= 2.0f;
top *= 2.0f;
}
}
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustum(left, right, bottom, top, frustnear, frustfar);
glGetDoublev(GL_PROJECTION_MATRIX, mat);
result.setValue(mat);
return result;
}
MT_Matrix4x4 RAS_OpenGLRasterizer::GetOrthoMatrix(
float left,
float right,
float bottom,
float top,
float frustnear,
float frustfar
) {
MT_Matrix4x4 result;
double mat[16];
// stereo is meaning less for orthographic, disable it
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(left, right, bottom, top, frustnear, frustfar);
glGetDoublev(GL_PROJECTION_MATRIX, mat);
result.setValue(mat);
return result;
}
// next arguments probably contain redundant info, for later...
void RAS_OpenGLRasterizer::SetViewMatrix(const MT_Matrix4x4 &mat,
const MT_Matrix3x3 & camOrientMat3x3,
const MT_Point3 & pos,
bool perspective)
{
m_viewmatrix = mat;
// correction for stereo
if (Stereo() && perspective)
{
MT_Vector3 unitViewDir(0.0, -1.0, 0.0); // minus y direction, Blender convention
MT_Vector3 unitViewupVec(0.0, 0.0, 1.0);
MT_Vector3 viewDir, viewupVec;
MT_Vector3 eyeline;
// actual viewDir
viewDir = camOrientMat3x3 * unitViewDir; // this is the moto convention, vector on right hand side
// actual viewup vec
viewupVec = camOrientMat3x3 * unitViewupVec;
// vector between eyes
eyeline = viewDir.cross(viewupVec);
switch (m_curreye) {
case RAS_STEREO_LEFTEYE:
{
// translate to left by half the eye distance
MT_Transform transform;
transform.setIdentity();
transform.translate(-(eyeline * m_eyeseparation / 2.0));
m_viewmatrix *= transform;
}
break;
case RAS_STEREO_RIGHTEYE:
{
// translate to right by half the eye distance
MT_Transform transform;
transform.setIdentity();
transform.translate(eyeline * m_eyeseparation / 2.0);
m_viewmatrix *= transform;
}
break;
}
}
m_viewinvmatrix = m_viewmatrix;
m_viewinvmatrix.invert();
// note: getValue gives back column major as needed by OpenGL
MT_Scalar glviewmat[16];
m_viewmatrix.getValue(glviewmat);
glMatrixMode(GL_MODELVIEW);
glLoadMatrixd(glviewmat);
m_campos = pos;
}
const MT_Point3& RAS_OpenGLRasterizer::GetCameraPosition()
{
return m_campos;
}
bool RAS_OpenGLRasterizer::GetCameraOrtho()
{
return m_camortho;
}
void RAS_OpenGLRasterizer::SetCullFace(bool enable)
{
if (enable)
glEnable(GL_CULL_FACE);
else
glDisable(GL_CULL_FACE);
}
void RAS_OpenGLRasterizer::SetLines(bool enable)
{
if (enable)
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
else
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
}
void RAS_OpenGLRasterizer::SetSpecularity(float specX,
float specY,
float specZ,
float specval)
{
GLfloat mat_specular[] = {specX, specY, specZ, specval};
glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, mat_specular);
}
void RAS_OpenGLRasterizer::SetShinyness(float shiny)
{
GLfloat mat_shininess[] = { shiny };
glMaterialfv(GL_FRONT_AND_BACK, GL_SHININESS, mat_shininess);
}
void RAS_OpenGLRasterizer::SetDiffuse(float difX,float difY,float difZ,float diffuse)
{
GLfloat mat_diffuse [] = {difX, difY,difZ, diffuse};
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, mat_diffuse);
}
void RAS_OpenGLRasterizer::SetEmissive(float eX, float eY, float eZ, float e)
{
GLfloat mat_emit [] = {eX,eY,eZ,e};
glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION, mat_emit);
}
double RAS_OpenGLRasterizer::GetTime()
{
return m_time;
}
void RAS_OpenGLRasterizer::SetPolygonOffset(float mult, float add)
{
glPolygonOffset(mult, add);
GLint mode = GL_POLYGON_OFFSET_FILL;
if (m_drawingmode < KX_SHADED)
mode = GL_POLYGON_OFFSET_LINE;
if (mult != 0.0f || add != 0.0f)
glEnable(mode);
else
glDisable(mode);
}
void RAS_OpenGLRasterizer::EnableMotionBlur(float motionblurvalue)
{
/* don't just set m_motionblur to 1, but check if it is 0 so
* we don't reset a motion blur that is already enabled */
if (m_motionblur == 0)
m_motionblur = 1;
m_motionblurvalue = motionblurvalue;
}
void RAS_OpenGLRasterizer::DisableMotionBlur()
{
m_motionblur = 0;
m_motionblurvalue = -1.0;
}
void RAS_OpenGLRasterizer::SetAlphaBlend(int alphablend)
{
/* Variance shadow maps don't handle alpha well, best to not allow it for now */
if (m_drawingmode == KX_SHADOW && m_usingoverrideshader)
GPU_set_material_alpha_blend(GPU_BLEND_SOLID);
else
GPU_set_material_alpha_blend(alphablend);
/*
if (alphablend == m_last_alphablend)
return;
if (alphablend == GPU_BLEND_SOLID) {
glDisable(GL_BLEND);
glDisable(GL_ALPHA_TEST);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}
else if (alphablend == GPU_BLEND_ADD) {
glBlendFunc(GL_ONE, GL_ONE);
glEnable(GL_BLEND);
glDisable(GL_ALPHA_TEST);
}
else if (alphablend == GPU_BLEND_ALPHA) {
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_BLEND);
glEnable(GL_ALPHA_TEST);
glAlphaFunc(GL_GREATER, 0.0f);
}
else if (alphablend == GPU_BLEND_CLIP) {
glDisable(GL_BLEND);
glEnable(GL_ALPHA_TEST);
glAlphaFunc(GL_GREATER, 0.5f);
}
m_last_alphablend = alphablend;
*/
}
void RAS_OpenGLRasterizer::SetFrontFace(bool ccw)
{
if (m_last_frontface == ccw)
return;
if (ccw)
glFrontFace(GL_CCW);
else
glFrontFace(GL_CW);
m_last_frontface = ccw;
}
void RAS_OpenGLRasterizer::SetAnisotropicFiltering(short level)
{
GPU_set_anisotropic((float)level);
}
short RAS_OpenGLRasterizer::GetAnisotropicFiltering()
{
return (short)GPU_get_anisotropic();
}
void RAS_OpenGLRasterizer::SetMipmapping(MipmapOption val)
{
if (val == RAS_IRasterizer::RAS_MIPMAP_LINEAR)
{
GPU_set_linear_mipmap(1);
GPU_set_mipmap(1);
}
else if (val == RAS_IRasterizer::RAS_MIPMAP_NEAREST)
{
GPU_set_linear_mipmap(0);
GPU_set_mipmap(1);
}
else
{
GPU_set_linear_mipmap(0);
GPU_set_mipmap(0);
}
}
RAS_IRasterizer::MipmapOption RAS_OpenGLRasterizer::GetMipmapping()
{
if (GPU_get_linear_mipmap())
return RAS_IRasterizer::RAS_MIPMAP_LINEAR;
else if (GPU_get_mipmap())
return RAS_IRasterizer::RAS_MIPMAP_NEAREST;
else
return RAS_IRasterizer::RAS_MIPMAP_NONE;
}
void RAS_OpenGLRasterizer::SetUsingOverrideShader(bool val)
{
m_usingoverrideshader = val;
}
bool RAS_OpenGLRasterizer::GetUsingOverrideShader()
{
return m_usingoverrideshader;
}
/**
* Render Tools
*/
/* ProcessLighting performs lighting on objects. the layer is a bitfield that
* contains layer information. There are 20 'official' layers in blender. A
* light is applied on an object only when they are in the same layer. OpenGL
* has a maximum of 8 lights (simultaneous), so 20 * 8 lights are possible in
* a scene. */
void RAS_OpenGLRasterizer::ProcessLighting(bool uselights, const MT_Transform& viewmat)
{
bool enable = false;
int layer= -1;
/* find the layer */
if (uselights) {
if (m_clientobject)
layer = static_cast<KX_GameObject*>(m_clientobject)->GetLayer();
}
/* avoid state switching */
if (m_lastlightlayer == layer && m_lastauxinfo == m_auxilaryClientInfo)
return;
m_lastlightlayer = layer;
m_lastauxinfo = m_auxilaryClientInfo;
/* enable/disable lights as needed */
if (layer >= 0) {
//enable = ApplyLights(layer, viewmat);
// taken from blender source, incompatibility between Blender Object / GameObject
KX_Scene* kxscene = (KX_Scene*)m_auxilaryClientInfo;
float glviewmat[16];
unsigned int count;
std::vector<RAS_OpenGLLight*>::iterator lit = m_lights.begin();
for (count=0; count<m_numgllights; count++)
glDisable((GLenum)(GL_LIGHT0+count));
viewmat.getValue(glviewmat);
glPushMatrix();
glLoadMatrixf(glviewmat);
for (lit = m_lights.begin(), count = 0; !(lit==m_lights.end()) && count < m_numgllights; ++lit)
{
RAS_OpenGLLight* light = (*lit);
if (light->ApplyFixedFunctionLighting(kxscene, layer, count))
count++;
}
glPopMatrix();
enable = count > 0;
}
if (enable)
EnableOpenGLLights();
else
DisableOpenGLLights();
}
void RAS_OpenGLRasterizer::EnableOpenGLLights()
{
if (m_lastlighting == true)
return;
glEnable(GL_LIGHTING);
glEnable(GL_COLOR_MATERIAL);
glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE);
glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);
glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, (GetCameraOrtho())? GL_FALSE: GL_TRUE);
if (GLEW_EXT_separate_specular_color || GLEW_VERSION_1_2)
glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL, GL_SEPARATE_SPECULAR_COLOR);
m_lastlighting = true;
}
void RAS_OpenGLRasterizer::DisableOpenGLLights()
{
if (m_lastlighting == false)
return;
glDisable(GL_LIGHTING);
glDisable(GL_COLOR_MATERIAL);
m_lastlighting = false;
}
RAS_ILightObject *RAS_OpenGLRasterizer::CreateLight()
{
return new RAS_OpenGLLight(this);
}
void RAS_OpenGLRasterizer::AddLight(RAS_ILightObject* lightobject)
{
RAS_OpenGLLight* gllight = dynamic_cast<RAS_OpenGLLight*>(lightobject);
assert(gllight);
m_lights.push_back(gllight);
}
void RAS_OpenGLRasterizer::RemoveLight(RAS_ILightObject* lightobject)
{
RAS_OpenGLLight* gllight = dynamic_cast<RAS_OpenGLLight*>(lightobject);
assert(gllight);
std::vector<RAS_OpenGLLight*>::iterator lit =
std::find(m_lights.begin(),m_lights.end(),gllight);
if (!(lit==m_lights.end()))
m_lights.erase(lit);
}
bool RAS_OpenGLRasterizer::RayHit(struct KX_ClientObjectInfo *client, KX_RayCast *result, void * const data)
{
double* const oglmatrix = (double* const) data;
RAS_Polygon* poly = result->m_hitMesh->GetPolygon(result->m_hitPolygon);
if (!poly->IsVisible())
return false;
MT_Point3 resultpoint(result->m_hitPoint);
MT_Vector3 resultnormal(result->m_hitNormal);
MT_Vector3 left(oglmatrix[0],oglmatrix[1],oglmatrix[2]);
MT_Vector3 dir = -(left.cross(resultnormal)).safe_normalized();
left = (dir.cross(resultnormal)).safe_normalized();
// for the up vector, we take the 'resultnormal' returned by the physics
double maat[16] = {left[0], left[1], left[2], 0,
dir[0], dir[1], dir[2], 0,
resultnormal[0], resultnormal[1], resultnormal[2], 0,
0, 0, 0, 1};
glTranslated(resultpoint[0],resultpoint[1],resultpoint[2]);
//glMultMatrixd(oglmatrix);
glMultMatrixd(maat);
return true;
}
void RAS_OpenGLRasterizer::applyTransform(double* oglmatrix,int objectdrawmode )
{
/* FIXME:
blender: intern/moto/include/MT_Vector3.inl:42: MT_Vector3 operator/(const
MT_Vector3&, double): Assertion `!MT_fuzzyZero(s)' failed.
Program received signal SIGABRT, Aborted.
[Switching to Thread 16384 (LWP 1519)]
0x40477571 in kill () from /lib/libc.so.6
(gdb) bt
#7 0x08334368 in MT_Vector3::normalized() const ()
#8 0x0833e6ec in RAS_OpenGLRasterizer::applyTransform(RAS_IRasterizer*, double*, int) ()
*/
if (objectdrawmode & RAS_IPolyMaterial::BILLBOARD_SCREENALIGNED ||
objectdrawmode & RAS_IPolyMaterial::BILLBOARD_AXISALIGNED)
{
// rotate the billboard/halo
//page 360/361 3D Game Engine Design, David Eberly for a discussion
// on screen aligned and axis aligned billboards
// assumed is that the preprocessor transformed all billboard polygons
// so that their normal points into the positive x direction (1.0, 0.0, 0.0)
// when new parenting for objects is done, this rotation
// will be moved into the object
MT_Point3 objpos (oglmatrix[12],oglmatrix[13],oglmatrix[14]);
MT_Point3 campos = GetCameraPosition();
MT_Vector3 dir = (campos - objpos).safe_normalized();
MT_Vector3 up(0,0,1.0);
KX_GameObject* gameobj = (KX_GameObject*)m_clientobject;
// get scaling of halo object
MT_Vector3 size = gameobj->GetSGNode()->GetWorldScaling();
bool screenaligned = (objectdrawmode & RAS_IPolyMaterial::BILLBOARD_SCREENALIGNED)!=0;//false; //either screen or axisaligned
if (screenaligned)
{
up = (up - up.dot(dir) * dir).safe_normalized();
} else
{
dir = (dir - up.dot(dir)*up).safe_normalized();
}
MT_Vector3 left = dir.normalized();
dir = (up.cross(left)).normalized();
// we have calculated the row vectors, now we keep
// local scaling into account:
left *= size[0];
dir *= size[1];
up *= size[2];
double maat[16] = {left[0], left[1], left[2], 0,
dir[0], dir[1], dir[2], 0,
up[0], up[1], up[2], 0,
0, 0, 0, 1};
glTranslated(objpos[0],objpos[1],objpos[2]);
glMultMatrixd(maat);
}
else {
if (objectdrawmode & RAS_IPolyMaterial::SHADOW)
{
// shadow must be cast to the ground, physics system needed here!
MT_Point3 frompoint(oglmatrix[12],oglmatrix[13],oglmatrix[14]);
KX_GameObject *gameobj = (KX_GameObject*)m_clientobject;
MT_Vector3 direction = MT_Vector3(0,0,-1);
direction.normalize();
direction *= 100000;
MT_Point3 topoint = frompoint + direction;
KX_Scene* kxscene = (KX_Scene*) m_auxilaryClientInfo;
PHY_IPhysicsEnvironment* physics_environment = kxscene->GetPhysicsEnvironment();
PHY_IPhysicsController* physics_controller = gameobj->GetPhysicsController();
KX_GameObject *parent = gameobj->GetParent();
if (!physics_controller && parent)
physics_controller = parent->GetPhysicsController();
KX_RayCast::Callback<RAS_OpenGLRasterizer> callback(this, physics_controller, oglmatrix);
if (!KX_RayCast::RayTest(physics_environment, frompoint, topoint, callback))
{
// couldn't find something to cast the shadow on...
glMultMatrixd(oglmatrix);
}
else
{ // we found the "ground", but the cast matrix doesn't take
// scaling in consideration, so we must apply the object scale
MT_Vector3 size = gameobj->GetSGNode()->GetLocalScale();
glScalef(size[0], size[1], size[2]);
}
} else
{
// 'normal' object
glMultMatrixd(oglmatrix);
}
}
}
static void DisableForText()
{
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); /* needed for texture fonts otherwise they render as wireframe */
glDisable(GL_BLEND);
glDisable(GL_ALPHA_TEST);
glDisable(GL_LIGHTING);
glDisable(GL_COLOR_MATERIAL);
if (GLEW_ARB_multitexture) {
for (int i=0; i<RAS_MAX_TEXCO; i++) {
glActiveTextureARB(GL_TEXTURE0_ARB+i);
if (GLEW_ARB_texture_cube_map)
glDisable(GL_TEXTURE_CUBE_MAP_ARB);
glDisable(GL_TEXTURE_2D);
}
glActiveTextureARB(GL_TEXTURE0_ARB);
}
else {
if (GLEW_ARB_texture_cube_map)
glDisable(GL_TEXTURE_CUBE_MAP_ARB);
glDisable(GL_TEXTURE_2D);
}
}
void RAS_OpenGLRasterizer::RenderBox2D(int xco,
int yco,
int width,
int height,
float percentage)
{
/* This is a rather important line :( The gl-mode hasn't been left
* behind quite as neatly as we'd have wanted to. I don't know
* what cause it, though :/ .*/
glDisable(GL_DEPTH_TEST);
glMatrixMode(GL_PROJECTION);
glPushMatrix();
glLoadIdentity();
glOrtho(0, width, 0, height, -100, 100);
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
yco = height - yco;
int barsize = 50;
/* draw in black first*/
glColor3ub(0, 0, 0);
glBegin(GL_QUADS);
glVertex2f(xco + 1 + 1 + barsize * percentage, yco - 1 + 10);
glVertex2f(xco + 1, yco - 1 + 10);
glVertex2f(xco + 1, yco - 1);
glVertex2f(xco + 1 + 1 + barsize * percentage, yco - 1);
glEnd();
glColor3ub(255, 255, 255);
glBegin(GL_QUADS);
glVertex2f(xco + 1 + barsize * percentage, yco + 10);
glVertex2f(xco, yco + 10);
glVertex2f(xco, yco);
glVertex2f(xco + 1 + barsize * percentage, yco);
glEnd();
glMatrixMode(GL_PROJECTION);
glPopMatrix();
glMatrixMode(GL_MODELVIEW);
glPopMatrix();
glEnable(GL_DEPTH_TEST);
}
void RAS_OpenGLRasterizer::RenderText3D(
int fontid, const char *text, int size, int dpi,
const float color[4], const double mat[16], float aspect)
{
/* gl prepping */
DisableForText();
/* the actual drawing */
glColor4fv(color);
/* multiply the text matrix by the object matrix */
BLF_enable(fontid, BLF_MATRIX|BLF_ASPECT);
BLF_matrix(fontid, mat);
/* aspect is the inverse scale that allows you to increase */
/* your resolution without sizing the final text size */
/* the bigger the size, the smaller the aspect */
BLF_aspect(fontid, aspect, aspect, aspect);
BLF_size(fontid, size, dpi);
BLF_position(fontid, 0, 0, 0);
BLF_draw(fontid, text, 65535);
BLF_disable(fontid, BLF_MATRIX|BLF_ASPECT);
}
void RAS_OpenGLRasterizer::RenderText2D(
RAS_TEXT_RENDER_MODE mode,
const char* text,
int xco, int yco,
int width, int height)
{
/* This is a rather important line :( The gl-mode hasn't been left
* behind quite as neatly as we'd have wanted to. I don't know
* what cause it, though :/ .*/
DisableForText();
glDisable(GL_DEPTH_TEST);
glMatrixMode(GL_PROJECTION);
glPushMatrix();
glLoadIdentity();
glOrtho(0, width, 0, height, -100, 100);
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
if (mode == RAS_TEXT_PADDED) {
/* draw in black first*/
glColor3ub(0, 0, 0);
BLF_size(blf_mono_font, 11, 72);
BLF_position(blf_mono_font, (float)xco+1, (float)(height-yco-1), 0.0f);
BLF_draw(blf_mono_font, text, 65535); /* XXX, use real len */
}
/* the actual drawing */
glColor3ub(255, 255, 255);
BLF_size(blf_mono_font, 11, 72);
BLF_position(blf_mono_font, (float)xco, (float)(height-yco), 0.0f);
BLF_draw(blf_mono_font, text, 65535); /* XXX, use real len */
glMatrixMode(GL_PROJECTION);
glPopMatrix();
glMatrixMode(GL_MODELVIEW);
glPopMatrix();
glEnable(GL_DEPTH_TEST);
}
void RAS_OpenGLRasterizer::PushMatrix()
{
glPushMatrix();
}
void RAS_OpenGLRasterizer::PopMatrix()
{
glPopMatrix();
}
void RAS_OpenGLRasterizer::MotionBlur()
{
int state = GetMotionBlurState();
float motionblurvalue;
if (state)
{
motionblurvalue = GetMotionBlurValue();
if (state==1)
{
//bugfix:load color buffer into accum buffer for the first time(state=1)
glAccum(GL_LOAD, 1.0);
SetMotionBlurState(2);
}
else if (motionblurvalue >= 0.0f && motionblurvalue <= 1.0f) {
glAccum(GL_MULT, motionblurvalue);
glAccum(GL_ACCUM, 1-motionblurvalue);
glAccum(GL_RETURN, 1.0);
glFlush();
}
}
}
void RAS_OpenGLRasterizer::SetClientObject(void* obj)
{
if (m_clientobject != obj)
{
bool ccw = (obj == NULL || !((KX_GameObject*)obj)->IsNegativeScaling());
SetFrontFace(ccw);
m_clientobject = obj;
}
}
void RAS_OpenGLRasterizer::SetAuxilaryClientInfo(void* inf)
{
m_auxilaryClientInfo = inf;
}