blender/intern/cycles/kernel/geom/geom_qbvh_shadow.h
Sergey Sharybin cd095aae13 Cycles: Distance optimization for QBVH
This commit implements heuristic which allows to skip nodes pushed to the stack
from intersection if distance to them is larger than the distance to the current
intersection.

This should solve speed regression which i didn't notice in the original QBVH
commit (which could have because i had WIP version of this patch applied in my
local branch).

From quick tests speed seems to be much closer to what is was with regular BVH.

There's still some possible code cleanup, but they'll need a bit of assembly
code check and now i want to make it so artists can happily use Cycles over the
holidays.
2014-12-25 22:40:02 +05:00

384 lines
12 KiB
C

/*
* Adapted from code Copyright 2009-2010 NVIDIA Corporation,
* and code copyright 2009-2012 Intel Corporation
*
* Modifications Copyright 2011-2014, Blender Foundation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* This is a template BVH traversal function, where various features can be
* enabled/disabled. This way we can compile optimized versions for each case
* without new features slowing things down.
*
* BVH_INSTANCING: object instancing
* BVH_HAIR: hair curve rendering
* BVH_MOTION: motion blur rendering
*
*/
ccl_device bool BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
const Ray *ray,
Intersection *isect_array,
const uint max_hits,
uint *num_hits)
{
/* TODO(sergey):
* - Likely and unlikely for if() statements.
* - Test restrict attribute for pointers.
*/
/* Traversal stack in CUDA thread-local memory. */
QBVHStackItem traversalStack[BVH_STACK_SIZE];
traversalStack[0].addr = ENTRYPOINT_SENTINEL;
/* Traversal variables in registers. */
int stackPtr = 0;
int nodeAddr = kernel_data.bvh.root;
/* Ray parameters in registers. */
const float tmax = ray->t;
float3 P = ray->P;
float3 dir = bvh_clamp_direction(ray->D);
float3 idir = bvh_inverse_direction(dir);
int object = OBJECT_NONE;
float isect_t = tmax;
#if BVH_FEATURE(BVH_MOTION)
Transform ob_tfm;
#endif
#if BVH_FEATURE(BVH_INSTANCING)
int num_hits_in_instance = 0;
#endif
*num_hits = 0;
isect_array->t = tmax;
ssef tnear(0.0f), tfar(tmax);
sse3f idir4(ssef(idir.x), ssef(idir.y), ssef(idir.z));
#ifdef __KERNEL_AVX2__
float3 P_idir = P*idir;
sse3f P_idir4 = sse3f(P_idir.x, P_idir.y, P_idir.z);
#else
sse3f org = sse3f(ssef(P.x), ssef(P.y), ssef(P.z));
#endif
/* Offsets to select the side that becomes the lower or upper bound. */
int near_x, near_y, near_z;
int far_x, far_y, far_z;
if(idir.x >= 0.0f) { near_x = 0; far_x = 1; } else { near_x = 1; far_x = 0; }
if(idir.y >= 0.0f) { near_y = 2; far_y = 3; } else { near_y = 3; far_y = 2; }
if(idir.z >= 0.0f) { near_z = 4; far_z = 5; } else { near_z = 5; far_z = 4; }
IsectPrecalc isect_precalc;
triangle_intersect_precalc(dir, &isect_precalc);
/* Traversal loop. */
do {
do {
/* Traverse internal nodes. */
while(nodeAddr >= 0 && nodeAddr != ENTRYPOINT_SENTINEL) {
ssef dist;
int traverseChild = qbvh_node_intersect(kg,
tnear,
tfar,
#ifdef __KERNEL_AVX2__
P_idir4,
#else
org,
#endif
idir4,
near_x, near_y, near_z,
far_x, far_y, far_z,
nodeAddr,
&dist);
if(traverseChild != 0) {
float4 cnodes = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_QNODE_SIZE+6);
/* One child is hit, continue with that child. */
int r = __bscf(traverseChild);
if(traverseChild == 0) {
nodeAddr = __float_as_int(cnodes[r]);
continue;
}
/* Two children are hit, push far child, and continue with
* closer child.
*/
int c0 = __float_as_int(cnodes[r]);
float d0 = ((float*)&dist)[r];
r = __bscf(traverseChild);
int c1 = __float_as_int(cnodes[r]);
float d1 = ((float*)&dist)[r];
if(traverseChild == 0) {
if(d1 < d0) {
nodeAddr = c1;
++stackPtr;
traversalStack[stackPtr].addr = c0;
traversalStack[stackPtr].dist = d0;
continue;
}
else {
nodeAddr = c0;
++stackPtr;
traversalStack[stackPtr].addr = c1;
traversalStack[stackPtr].dist = d1;
continue;
}
}
/* Here starts the slow path for 3 or 4 hit children. We push
* all nodes onto the stack to sort them there.
*/
++stackPtr;
traversalStack[stackPtr].addr = c1;
traversalStack[stackPtr].dist = c1;
++stackPtr;
traversalStack[stackPtr].addr = c0;
traversalStack[stackPtr].dist = c0;
/* Three children are hit, push all onto stack and sort 3
* stack items, continue with closest child.
*/
r = __bscf(traverseChild);
int c2 = __float_as_int(cnodes[r]);
float d2 = ((float*)&dist)[r];
if(traverseChild == 0) {
++stackPtr;
traversalStack[stackPtr].addr = c2;
traversalStack[stackPtr].dist = d2;
qbvh_stack_sort(&traversalStack[stackPtr],
&traversalStack[stackPtr - 1],
&traversalStack[stackPtr - 2]);
nodeAddr = traversalStack[stackPtr].addr;
--stackPtr;
continue;
}
/* Four children are hit, push all onto stack and sort 4
* stack items, continue with closest child.
*/
r = __bscf(traverseChild);
int c3 = __float_as_int(cnodes[r]);
float d3 = ((float*)&dist)[r];
++stackPtr;
traversalStack[stackPtr].addr = c3;
traversalStack[stackPtr].dist = d3;
++stackPtr;
traversalStack[stackPtr].addr = c2;
traversalStack[stackPtr].dist = d2;
qbvh_stack_sort(&traversalStack[stackPtr],
&traversalStack[stackPtr - 1],
&traversalStack[stackPtr - 2],
&traversalStack[stackPtr - 3]);
}
nodeAddr = traversalStack[stackPtr].addr;
--stackPtr;
}
/* If node is leaf, fetch triangle list. */
if(nodeAddr < 0) {
float4 leaf = kernel_tex_fetch(__bvh_nodes, (-nodeAddr-1)*BVH_QNODE_SIZE+6);
int primAddr = __float_as_int(leaf.x);
#if BVH_FEATURE(BVH_INSTANCING)
if(primAddr >= 0) {
#endif
int primAddr2 = __float_as_int(leaf.y);
/* Pop. */
nodeAddr = traversalStack[stackPtr].addr;
--stackPtr;
#ifdef __VISIBILITY_FLAG__
if((__float_as_uint(leaf.z) & PATH_RAY_SHADOW) == 0) {
continue;
}
#endif
/* Primitive intersection. */
while(primAddr < primAddr2) {
bool hit;
uint type = kernel_tex_fetch(__prim_type, primAddr);
/* todo: specialized intersect functions which don't fill in
* isect unless needed and check SD_HAS_TRANSPARENT_SHADOW?
* might give a few % performance improvement */
switch(type & PRIMITIVE_ALL) {
case PRIMITIVE_TRIANGLE: {
hit = triangle_intersect(kg, &isect_precalc, isect_array, P, dir, PATH_RAY_SHADOW, object, primAddr);
break;
}
#if BVH_FEATURE(BVH_MOTION)
case PRIMITIVE_MOTION_TRIANGLE: {
hit = motion_triangle_intersect(kg, isect_array, P, dir, ray->time, PATH_RAY_SHADOW, object, primAddr);
break;
}
#endif
#if BVH_FEATURE(BVH_HAIR)
case PRIMITIVE_CURVE:
case PRIMITIVE_MOTION_CURVE: {
if(kernel_data.curve.curveflags & CURVE_KN_INTERPOLATE)
hit = bvh_cardinal_curve_intersect(kg, isect_array, P, dir, PATH_RAY_SHADOW, object, primAddr, ray->time, type, NULL, 0, 0);
else
hit = bvh_curve_intersect(kg, isect_array, P, dir, PATH_RAY_SHADOW, object, primAddr, ray->time, type, NULL, 0, 0);
break;
}
#endif
default: {
hit = false;
break;
}
}
/* Shadow ray early termination. */
if(hit) {
/* detect if this surface has a shader with transparent shadows */
/* todo: optimize so primitive visibility flag indicates if
* the primitive has a transparent shadow shader? */
int prim = kernel_tex_fetch(__prim_index, isect_array->prim);
int shader = 0;
#ifdef __HAIR__
if(kernel_tex_fetch(__prim_type, isect_array->prim) & PRIMITIVE_ALL_TRIANGLE)
#endif
{
shader = kernel_tex_fetch(__tri_shader, prim);
}
#ifdef __HAIR__
else {
float4 str = kernel_tex_fetch(__curves, prim);
shader = __float_as_int(str.z);
}
#endif
int flag = kernel_tex_fetch(__shader_flag, (shader & SHADER_MASK)*2);
/* if no transparent shadows, all light is blocked */
if(!(flag & SD_HAS_TRANSPARENT_SHADOW)) {
return true;
}
/* if maximum number of hits reached, block all light */
else if(*num_hits == max_hits) {
return true;
}
/* move on to next entry in intersections array */
isect_array++;
(*num_hits)++;
#if BVH_FEATURE(BVH_INSTANCING)
num_hits_in_instance++;
#endif
isect_array->t = isect_t;
}
primAddr++;
}
}
#if BVH_FEATURE(BVH_INSTANCING)
else {
/* Instance push. */
object = kernel_tex_fetch(__prim_object, -primAddr-1);
#if BVH_FEATURE(BVH_MOTION)
bvh_instance_motion_push(kg, object, ray, &P, &dir, &idir, &isect_t, &ob_tfm);
#else
bvh_instance_push(kg, object, ray, &P, &dir, &idir, &isect_t);
#endif
num_hits_in_instance = 0;
isect_array->t = isect_t;
if(idir.x >= 0.0f) { near_x = 0; far_x = 1; } else { near_x = 1; far_x = 0; }
if(idir.y >= 0.0f) { near_y = 2; far_y = 3; } else { near_y = 3; far_y = 2; }
if(idir.z >= 0.0f) { near_z = 4; far_z = 5; } else { near_z = 5; far_z = 4; }
tfar = ssef(isect_t);
idir4 = sse3f(ssef(idir.x), ssef(idir.y), ssef(idir.z));
#ifdef __KERNEL_AVX2__
P_idir = P*idir;
P_idir4 = sse3f(P_idir.x, P_idir.y, P_idir.z);
#else
org = sse3f(ssef(P.x), ssef(P.y), ssef(P.z));
#endif
triangle_intersect_precalc(dir, &isect_precalc);
++stackPtr;
traversalStack[stackPtr].addr = ENTRYPOINT_SENTINEL;
nodeAddr = kernel_tex_fetch(__object_node, object);
}
}
#endif /* FEATURE(BVH_INSTANCING) */
} while(nodeAddr != ENTRYPOINT_SENTINEL);
#if BVH_FEATURE(BVH_INSTANCING)
if(stackPtr >= 0) {
kernel_assert(object != OBJECT_NONE);
if(num_hits_in_instance) {
float t_fac;
#if BVH_FEATURE(BVH_MOTION)
bvh_instance_motion_pop_factor(kg, object, ray, &P, &dir, &idir, &t_fac, &ob_tfm);
#else
bvh_instance_pop_factor(kg, object, ray, &P, &dir, &idir, &t_fac);
#endif
/* scale isect->t to adjust for instancing */
for(int i = 0; i < num_hits_in_instance; i++)
(isect_array-i-1)->t *= t_fac;
}
else {
float ignore_t = FLT_MAX;
#if BVH_FEATURE(BVH_MOTION)
bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, &ignore_t, &ob_tfm);
#else
bvh_instance_pop(kg, object, ray, &P, &dir, &idir, &ignore_t);
#endif
}
isect_t = tmax;
isect_array->t = isect_t;
if(idir.x >= 0.0f) { near_x = 0; far_x = 1; } else { near_x = 1; far_x = 0; }
if(idir.y >= 0.0f) { near_y = 2; far_y = 3; } else { near_y = 3; far_y = 2; }
if(idir.z >= 0.0f) { near_z = 4; far_z = 5; } else { near_z = 5; far_z = 4; }
tfar = ssef(tmax);
idir4 = sse3f(ssef(idir.x), ssef(idir.y), ssef(idir.z));
#ifdef __KERNEL_AVX2__
P_idir = P*idir;
P_idir4 = sse3f(P_idir.x, P_idir.y, P_idir.z);
#else
org = sse3f(ssef(P.x), ssef(P.y), ssef(P.z));
#endif
triangle_intersect_precalc(dir, &isect_precalc);
object = OBJECT_NONE;
nodeAddr = traversalStack[stackPtr].addr;
--stackPtr;
}
#endif /* FEATURE(BVH_INSTANCING) */
} while(nodeAddr != ENTRYPOINT_SENTINEL);
return false;
}