blender/intern/cycles/kernel/kernel_camera.h
Brecht Van Lommel 6915394a3b Attempts to fix CUDA issues on sm 2.0 cards, still no luck getting motion blur
working, but this should make it not crash.

Also fix for wrong shutter time, should have been shorter.
2012-10-17 22:48:29 +00:00

234 lines
7.1 KiB
C

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
CCL_NAMESPACE_BEGIN
/* Perspective Camera */
__device float2 camera_sample_aperture(KernelGlobals *kg, float u, float v)
{
float blades = kernel_data.cam.blades;
if(blades == 0.0f) {
/* sample disk */
return concentric_sample_disk(u, v);
}
else {
/* sample polygon */
float rotation = kernel_data.cam.bladesrotation;
return regular_polygon_sample(blades, rotation, u, v);
}
}
__device void camera_sample_perspective(KernelGlobals *kg, float raster_x, float raster_y, float lens_u, float lens_v, Ray *ray)
{
/* create ray form raster position */
Transform rastertocamera = kernel_data.cam.rastertocamera;
float3 Pcamera = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y, 0.0f));
ray->P = make_float3(0.0f, 0.0f, 0.0f);
ray->D = Pcamera;
/* modify ray for depth of field */
float aperturesize = kernel_data.cam.aperturesize;
if(aperturesize > 0.0f) {
/* sample point on aperture */
float2 lensuv = camera_sample_aperture(kg, lens_u, lens_v)*aperturesize;
/* compute point on plane of focus */
float ft = kernel_data.cam.focaldistance/ray->D.z;
float3 Pfocus = ray->P + ray->D*ft;
/* update ray for effect of lens */
ray->P = make_float3(lensuv.x, lensuv.y, 0.0f);
ray->D = normalize(Pfocus - ray->P);
}
/* transform ray from camera to world */
Transform cameratoworld = kernel_data.cam.cameratoworld;
#ifdef __CAMERA_MOTION__
if(kernel_data.cam.have_motion)
transform_motion_interpolate(&cameratoworld, &kernel_data.cam.motion, ray->time);
#endif
ray->P = transform_point(&cameratoworld, ray->P);
ray->D = transform_direction(&cameratoworld, ray->D);
ray->D = normalize(ray->D);
#ifdef __RAY_DIFFERENTIALS__
/* ray differential */
float3 Ddiff = transform_direction(&cameratoworld, Pcamera);
ray->dP.dx = make_float3(0.0f, 0.0f, 0.0f);
ray->dP.dy = make_float3(0.0f, 0.0f, 0.0f);
ray->dD.dx = normalize(Ddiff + float4_to_float3(kernel_data.cam.dx)) - normalize(Ddiff);
ray->dD.dy = normalize(Ddiff + float4_to_float3(kernel_data.cam.dy)) - normalize(Ddiff);
#endif
#ifdef __CAMERA_CLIPPING__
/* clipping */
ray->P += kernel_data.cam.nearclip*ray->D;
ray->t = kernel_data.cam.cliplength;
#else
ray->t = FLT_MAX;
#endif
}
/* Orthographic Camera */
__device void camera_sample_orthographic(KernelGlobals *kg, float raster_x, float raster_y, Ray *ray)
{
/* create ray form raster position */
Transform rastertocamera = kernel_data.cam.rastertocamera;
float3 Pcamera = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y, 0.0f));
ray->P = Pcamera;
ray->D = make_float3(0.0f, 0.0f, 1.0f);
/* transform ray from camera to world */
Transform cameratoworld = kernel_data.cam.cameratoworld;
#ifdef __CAMERA_MOTION__
if(kernel_data.cam.have_motion)
transform_motion_interpolate(&cameratoworld, &kernel_data.cam.motion, ray->time);
#endif
ray->P = transform_point(&cameratoworld, ray->P);
ray->D = transform_direction(&cameratoworld, ray->D);
ray->D = normalize(ray->D);
#ifdef __RAY_DIFFERENTIALS__
/* ray differential */
ray->dP.dx = float4_to_float3(kernel_data.cam.dx);
ray->dP.dy = float4_to_float3(kernel_data.cam.dy);
ray->dD.dx = make_float3(0.0f, 0.0f, 0.0f);
ray->dD.dy = make_float3(0.0f, 0.0f, 0.0f);
#endif
#ifdef __CAMERA_CLIPPING__
/* clipping */
ray->t = kernel_data.cam.cliplength;
#else
ray->t = FLT_MAX;
#endif
}
/* Panorama Camera */
__device void camera_sample_panorama(KernelGlobals *kg, float raster_x, float raster_y, float lens_u, float lens_v, Ray *ray)
{
Transform rastertocamera = kernel_data.cam.rastertocamera;
float3 Pcamera = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y, 0.0f));
/* create ray form raster position */
ray->P = make_float3(0.0f, 0.0f, 0.0f);
#ifdef __CAMERA_CLIPPING__
/* clipping */
ray->t = kernel_data.cam.cliplength;
#else
ray->t = FLT_MAX;
#endif
ray->D = panorama_to_direction(kg, Pcamera.x, Pcamera.y);
/* modify ray for depth of field */
float aperturesize = kernel_data.cam.aperturesize;
if(aperturesize > 0.0f) {
/* sample point on aperture */
float2 lensuv = camera_sample_aperture(kg, lens_u, lens_v)*aperturesize;
/* compute point on plane of focus */
float3 D = normalize(ray->D);
float3 Pfocus = D * kernel_data.cam.focaldistance;
/* calculate orthonormal coordinates perpendicular to D */
float3 U, V;
make_orthonormals(D, &U, &V);
/* update ray for effect of lens */
ray->P = U * lensuv.x + V * lensuv.y;
ray->D = normalize(Pfocus - ray->P);
}
/* indicates ray should not receive any light, outside of the lens */
if(len_squared(ray->D) == 0.0f) {
ray->t = 0.0f;
return;
}
/* transform ray from camera to world */
Transform cameratoworld = kernel_data.cam.cameratoworld;
#ifdef __CAMERA_MOTION__
if(kernel_data.cam.have_motion)
transform_motion_interpolate(&cameratoworld, &kernel_data.cam.motion, ray->time);
#endif
ray->P = transform_point(&cameratoworld, ray->P);
ray->D = transform_direction(&cameratoworld, ray->D);
ray->D = normalize(ray->D);
#ifdef __RAY_DIFFERENTIALS__
/* ray differential */
ray->dP.dx = make_float3(0.0f, 0.0f, 0.0f);
ray->dP.dy = make_float3(0.0f, 0.0f, 0.0f);
Pcamera = transform_perspective(&rastertocamera, make_float3(raster_x + 1.0f, raster_y, 0.0f));
ray->dD.dx = normalize(transform_direction(&cameratoworld, panorama_to_direction(kg, Pcamera.x, Pcamera.y))) - ray->D;
Pcamera = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y + 1.0f, 0.0f));
ray->dD.dy = normalize(transform_direction(&cameratoworld, panorama_to_direction(kg, Pcamera.x, Pcamera.y))) - ray->D;
#endif
}
/* Common */
__device void camera_sample(KernelGlobals *kg, int x, int y, float filter_u, float filter_v,
float lens_u, float lens_v, float time, Ray *ray)
{
/* pixel filter */
float raster_x = x + kernel_tex_interp(__filter_table, filter_u, FILTER_TABLE_SIZE);
float raster_y = y + kernel_tex_interp(__filter_table, filter_v, FILTER_TABLE_SIZE);
#ifdef __CAMERA_MOTION__
/* motion blur */
if(kernel_data.cam.shuttertime == 0.0f)
ray->time = TIME_INVALID;
else
ray->time = 0.5f + 0.5f*(time - 0.5f)*kernel_data.cam.shuttertime;
#endif
/* sample */
if(kernel_data.cam.type == CAMERA_PERSPECTIVE)
camera_sample_perspective(kg, raster_x, raster_y, lens_u, lens_v, ray);
else if(kernel_data.cam.type == CAMERA_ORTHOGRAPHIC)
camera_sample_orthographic(kg, raster_x, raster_y, ray);
else
camera_sample_panorama(kg, raster_x, raster_y, lens_u, lens_v, ray);
}
CCL_NAMESPACE_END